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The routine assessment of fluid responsiveness (i.e., 
the identification of patients in whom IV fluids will 
increase cardiac index [CI]) is the basis of any goal-

directed fluid therapy aimed at both optimizing volemia 
and avoiding the deleterious consequences of fluid over-
load in patients undergoing surgery.1–5

Nowadays it is well accepted that dynamic assessments 
are more reliable in predicting fluid responsiveness than 
static parameters, such as cardiac filling pressures.6–8 An 
ideal dynamic technique for preload assessment would be 
one performed in a simple, noninvasive, and real-time man-
ner. Monge et al.9 and Monnet et al.10 have recently described 
such a dynamic approach by using the end-tidal carbon 

dioxide (Petco2) as a noninvasive surrogate for changes in 
CI induced by the passive leg-raising test. The rationale of 
this approach is based on the known dependency of Petco2 
on CI as observed during pulmonary embolism or cardio-
pulmonary resuscitation.11–13

In this study, we propose another dynamic approach that 
consists of (1) a fast-step increment in positive end-expira-
tory pressure (PEEP) to challenge the cardiovascular sys-
tem sufficient to unmask hidden preload dependency14–19 
and (2) the evaluation of the effects of this maneuver on the 
amount of CO2 exhaled during 1 minute (Vco2) obtained 
by volumetric capnography. We hypothesized that Vco2 
should be a more reliable approximation of CI than the sin-
gular Petco2, because Vco2 has a dimension of flow just 
like CI.20–22 Thus, the aim of this study was to determine the 
diagnostic accuracy of Vco2 to detect the fluid responsive-
ness during a 1-step increment in PEEP in comparison with 
the clinical reference parameter CI.

METHODS
The study was performed in the operating theater of the 
Hospital Privado de Comunidad with the approval of our 
IRB and after obtaining written informed consent from each 
patient. We prospectively included a series of patients older 
than 40 years scheduled for programmed cardiac surgery 
with a New York Heart Association classification status II to 
III. Exclusion criteria were the presence of acute pulmonary 
diseases, decompensated heart failure, cardiac arrhythmias, 
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contraindication for femoral artery catheterization, and the 
use of aortic balloon counterpulsation.

Anesthesia and Ventilation
A 5F femoral artery catheter (PV2015L20, Pulsion Medical 
Systems, Munich, Germany) and peripheral and internal 
jugular venous cannulas were inserted under local anes-
thesia. Electrocardiogram, time-based capnography, pulse 
oximetry, and esophageal temperature were recorded 
by the monitor S/5 (Datex-Ohmeda, Helsinki, Finland). 
Anesthesia was induced with 1 to 1.5 mg/kg propofol, 0.08 
mg/kg vecuronium, and 10 μg/kg fentanyl and maintained 
with isoflurane of 0.5 to 0.7 minimum alveolar concentra-
tion and 0.5 μg/kg/h remifentanil. Continuous IV infusions 
of both 3 mL/kg/h saline and 3 to 5 μg/kg/h dopamine 
were maintained throughout the study.

The lungs were ventilated in a volume-controlled mode 
of ventilation through a cuffed endotracheal tube using the 
Advance workstation (GE Healthcare, Madison, WI) with 
the following baseline settings: tidal volume (VT) 7 mL/kg 
of lean body weight, respiratory rate 15 breaths per minute, 
PEEP 5 cm H2O, I:E ratio 1:2 without inspiratory pause, and 
Fio2 0.5.

Hemodynamic Measurements
The PiCCO2 Science (Pulsion Medical Systems) was used 
to measure CI by transthoracic thermodilution, injecting 
15 mL of cold saline into the central venous catheter and 
recording the change in temperature with thermistors 
placed at the injection site and at the tip of the femoral 
catheter. After calibration with 3 stable thermodilutions 
performed by the same investigator, CI was then calcu-
lated automatically by analyzing, beat by beat, the contour 
of the femoral arterial pressure wave.23 The precision of 
these measurements was calculated as twice their coeffi-
cient of variation (CV = SD/mean) determined in patients 
at baseline during stable hemodynamic and respiratory 
conditions. The least significant change (LSC) is defined 
as the minimum change in successive CI measurements 
that can be considered not to be due to random error and 
therefore represents a real change. LSC was calculated as 
precision × √2.24

Mean systemic arterial pressure, central venous pressure 
(CVP), and heart rate were measured continuously.

Pulse pressure variation (PPV) was calculated on a beat-
by-beat basis as follows:
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where PPmax and PPmin are the maximal and minimal 
pulse pressure values, respectively, determined over a sin-
gle respiratory cycle.

Volumetric Capnography and Respiratory 
Measurements
Volumetric capnography was obtained from the NICO mon-
itor and recorded on a laptop using the software DataColl 
(both, Respironics, Wallingford, CT). The software Flowtool 
(Respironics) was used to analyze the NICO raw data and 
to generate the CO2 database. The NICO’s mainstream CO2 
and flow sensors were placed at the airway opening after 
zeroing them according to the manufacturer’s guidelines. 
The device provides the CO2 eliminated per minute (Vco2, 
in mL/min) by multiplying the area under the receiver 
operating characteristic (ROC) curve (AUC) of the volumet-
ric capnography by the respiratory rate.25 The Petco2 cor-
responds to the last expired CO2 value on the capnography 
before the next inspiration. We calculated the precision and 
LSC for Vco2 and Petco2 in all patients during stable base-
line hemodynamic and respiratory conditions.24

Study Design
Figure 1 shows a schematic representation of the protocol, 
which was performed with patients in the supine posi-
tion before surgery with the chest closed. After anesthesia 
induction, the lung’s volume history was standardized by 
ventilating each patient at a PEEP of 10 cm H2O and a VT 
of 10 mL/kg for 10 breaths before returning to baseline set-
tings. After calibration, CI was determined continuously by 
automatic pulse contour analysis rather than by repeated 
discontinuous manual thermodilutions. This was because 
the latter are time consuming and not representative of the 
fast and transient beat-by-beat changes in CI induced by the 
brief PEEP challenge.

The protocol was performed according to the following 
sequence (Fig. 1): First, 3 manual thermodilutions were done 
to calibrate the CI measurements (asterisk). Then, at base-
line, ventilation was performed as described in Anesthesia 
and Ventilation, and data were recorded for 5 minutes. After 
3 minutes at PEEP 5 cm H2O, the PEEP challenge consisting 
of a sudden increase in PEEP from 5 to 10 cm H2O for 1 min-
ute was performed with return to baseline PEEP 5 cm H2O. 

Figure 1. Schematic protocol. The protocol was executed in a closed chest condition after anesthesia induction. Asterisks mark times of 
calibrations of pulse contour cardiac index using triplicate transthoracic thermodilutions. B is the baseline condition before and after fluid 
administration. PEEP challenges—consisting of a sudden increment from 5 to 10 cm H2O of PEEP for just 1 minute—were performed before 
and after fluid administration (see text for more details). PEEP = positive end-expiratory pressure.



Copyright © 2015 International Anesthesia Research Society. Unauthorized reproduction of this article is prohibited.
1406     www.anesthesia-analgesia.org� anesthesia & analgesia

Assessment of Preload by Expired Elimination of CO2

This sequence was repeated after infusing 500 mL of saline 
solution over 10 minutes.

Data Analysis
Hemodynamics and CO2 data were analyzed offline by 
coauthors blinded to the results of this study. Patients in 
whom fluid administration increased CI by ≥15 % from the 
individual baseline value were defined as volume respond-
ers and the remaining ones as nonresponders. This cutoff 
value was justified by the fact that the LSC of CI measured 
by thermodilution was 12% when 3 optimum measurements 
were averaged.26 To confirm this cutoff in our study popula-
tion, we ensured that every responding patient increased CI 
above his or her individual LSC value.9,24

During each study period, the last 4 breaths were ana-
lyzed. This standardized selection of breaths is of particular 
importance for the PEEP challenges because the increase in 
PEEP from 5 to 10 cm H2O induced parallel changes in VT, 
Petco2, and Vco2, which were, however, limited to the first 
5 to 7 breaths of each study period (Fig. 2).27

Statistical analysis was performed using IBM SPSS 
Statistic 19.0.0 (IBM Corp., Armonk, NY) and MATLAB® 
(Mathworks, Natick, MA). Sample size was calculated to 
detect differences of 0.10 with an expected AUC curve of 
0.85. We selected a type I error of 0.05 and a type II error 
of 0.02 assuming that fluid responsiveness occurs in 50% of 
patients undergoing cardiac surgery.19,28

Normal distribution of data was tested using the 
Lilliefors test. CVP, heart rate, and PPV showed a 

nonnormal distribution in some protocol steps; therefore, 
a nonparametric 2-sample Kolmogorov–Smirnov test was 
applied for pairwise comparison of values between study 
periods. Linear regression analysis between all the vari-
ables studied was performed. Areas under the ROC curves 
for volume-induced changes in CI, Vco2, Petco2, and PPV 
were calculated and compared by using the Hanley–McNeil 
test. Results are expressed as mean ± SD, median and inter-
quartile range, or 95% confidence interval as appropriate.  
A P value <0.05 was considered statistically significant.

RESULTS
From June 1, 2012, to August 31, 2013, we studied 52 patients 
undergoing cardiac surgery whose demographic character-
istics are shown in Table 1. One patient was dropped from 
the analysis because of missing hemodynamic data of the 
PICCO device. Precision and LSC was 2.1% ± 0.2% and 2.9% 
± 2.6% for pulse contour CI, 1.4% ± 0.7% and 2.1% ± 1.0% 
for Vco2, and 1.2% ± 0.6% and 1.7% ± 0.8% for Petco2.

Effects of Fluid Administration at Baseline 
Conditions
Twenty-one patients (40%) were volume responders when 
baseline data were compared before and after fluid admin-
istration. Table  2 presents the effect of volume expansion 
on the study parameters, and Figure 3 illustrates this effect 
on the studied CO2-derived variables. Volume respond-
ers increased CI from 2.65 ± 0.33 to 3.29 ± 0.40 L/mi/m2 
(P < 0.0001), Vco2 and Petco2 did not show significant 
changes, whereas PPV decreased from 9.1% ± 2.5% to 
6.3% ± 3.1 % (P = 0.0036) after fluid administration with all 

Figure 2. Schematic representation of data selection during the 
positive end-expiratory pressure (PEEP) challenge. Representative 
recording of carbon dioxide, tidal volume (VT), and airway pressure 
(Paw) during a PEEP challenge. Transition: As PEEP changes from 
5 to 10 cm H2O, lung volume increases by preventing inspired gas 
from leaving the lungs. During 5 to 7 successive breaths, CO2 elimi-
nation decreases because of both decreasing expired VTs and a 
transient dilution of the CO2 stored within the lungs by CO2-free 
inspired gases. Therefore, only the last 4 breaths of the new equilib-
rium were analyzed (data selected).

Table 1.   Characteristics of the Study Population
Age (yr) 70 ± 6
Weight (kg) 82 ± 17
Sex (male) 38 (73%)
Height (cm) 170 ± 11
BMI (kg/m2) 28 ± 9
EF (%) 51 ± 10
NYHA 2 (2–3)
Type of surgery, absolute value (%)
 ��� CABG 42 (81)
 ��� Valvular repair 10 (19)
 ��� Both 3 (6)
Chronic diseases, absolute value (%)
 ��� Hypertension 31 (60)
 ��� AMI 10 (19)
 ��� CCF 5 (9)
 ��� Diabetes 23 (44)
 ��� COPD 18 (34)
 ��� Ex-smoking 40 (76)
 ��� CRF 4 (8)
 ��� Obesity 20 (38)
Preoperatory drugs, absolute value (%)
 ��� β-Blockers 21 (40)
 ��� Vasodilators 25 (49)
 ��� Diuretics 17 (33)

Quantitative data are presented as mean ± SD except for NYHA (median and 
first to third interquartile). Qualitative data are presented as absolute values: 
number of patients (% of total).
AMI = acute myocardial infarction; BMI = body mass index; CABG = coronary 
artery bypass graft; CCF = chronic cardiac failure; COPD = chronic obstructive 
pulmonary disease; CRF = chronic renal failure; EF = ejection fraction; NYHA 
= New York Heart Association classification status.
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values exceeding the individual LSC values. Nonresponders 
showed nonsignificant changes in CI, Vco2, and Petco2 
(Table 2). PPV decreased from 8.7% ± 3.6% to 6.5% ± 2.8 % 
(P = 0.0299).

Taking all patients together and comparing baseline 
conditions before and after fluid administration, we found 
a weak correlation between volume-induced changes in 
CI (ΔCI) and Vco2 (ΔVco2; r2 = 0.34, P < 0.0001) but no 
correlations at all between ΔCI and ΔPetco2 or ΔPPV. 
Correlations between ΔCI and the main studied vari-
ables reached significance neither in responders nor in 
nonresponders.

Effects of PEEP Challenges
The first PEEP challenge before IV fluids were given, 
made CI drop from 2.64 ± 0.34 to 2.21 ± 0.32 L/min/m2 
(P = 0.0011) in responders but without significant changes 
in nonresponders. Vco2 decreased from 150 ± 23 to 123 ± 
23 mL/min (P = 0.0036) in responders. Neither Vco2 nor 
Petco2 showed significant changes during PEEP challenge 
before fluid administration in nonresponders. The incre-
ment in PPV during the first PEEP challenge was significant 
in responders but not in nonresponders (Table 2). A good 
correlation between ΔCI and ΔVco2 was found (r2 = 0.75,  
P < 0.0001; Fig. 4A).

Table 2.   Hemodynamic Data

Parameter

Before IV fluids After IV fluids

Baseline 5 PEEP 10 PEEP Baseline 5 PEEP 10 PEEP
CI (L/min/m2)
 ��� Responders 2.65 ± 0.33 2.64 ± 0.34 2.21 ± 0.32 3.29 ± 0.40 3.28 ± 0.47 3.13 ± 0.44
 ��� Nonresponders 2.94 ± 0.50 2.92 ± 0.48 2.73 ± 0.47 3.13 ± 0.53 3.08 ± 0.55 2.95 ± 0.52
 ��� a P = 0.0420 P = 0.0420 P = 0.0032 P = 0.0198
 ��� b (R) P < 0.0001
 ��� c (NR) P = 0.0011
HR (bpm)
 ��� Responders 70 ± 17 69 ± 16 70 ± 18 69 ± 14 68 ± 15 68 ± 16
 ��� Nonresponders 73 ± 13 72 ± 13 71 ± 14 70 (58.5–84) 70 ± 13 69 ± 14
MAP (mm Hg)
 ��� Responders 78 ± 15 75 ± 14 62 ± 13 87 ± 15 88 ± 16 86 ± 15
 ��� Nonresponders 82 ± 11 80 ± 10 75 ± 13 84 ± 12 84 ± 10 81 ± 11
 ��� a P = 0.0037 P = 0.0455
 ��� c (R) P = 0.0036
CVP (mm Hg)
 ��� Responders 10 ± 4 10 ± 3 12 ± 3 12 ± 4 12 ± 3 13 ± 3
 ��� Nonresponders 10 ± 4 11 ± 4 11.5 (8–15) 11.5 (9–14) 12 ± 3 13 (9–15)
PPV (%)
 ��� Responders 9.1 ± 2.5 10 (7–10) 14.6 ± 4.4 6.3 ± 3.1 6.3 ± 2.8 7.9 ± 3.0
 ��� Nonresponders 8.7 ± 3.6 9 (6–12) 11.9 ± 4.4 6.5 ± 2.8 6.9 ± 3.2 8.2 ± 2.8
 ��� b (R) P = 0.0036
 ��� b (NR) P = 0.0299
 ��� c (R) P <0.0001
Vco2 (mL/min)
 ��� Responders 148 ± 24 150 ± 23 123 ± 23 159 ± 25 156 ± 24 146 ± 24
 ��� Nonreponders 159 ± 30 158 ± 30 148 ± 29 167 ± 31 165 ± 30 156 ± 29
 ��� a P = 0.042 P = 0.0003
 ��� c (R) P = 0.0036
Petco2 (mm Hg)
 ��� Responders 33.0 ± 2.4 32.5 ± 2.4 30.8 ± 2.4 33.9 ± 2.8 33.8 ± 2.7 33.2 ± 2.7
 ��� Nonresponders 34.4 ± 2.9 33.9 ± 2.7 32.9 ± 2.9 34.2 ± 3.1 34.0 ± 3.0 33.4 ± 3.0
 ��� a P = 0.0087

a: responders (R) versus nonresponders (NR); b: baseline before versus after fluid administration; c: 5-PEEP versus 10-PEEP for both, before, and after fluid 
administration. Results are presented in mean ± SD or median (interquartile intervals).
CI = cardiac index; CVP = central venous pressure; HR = heart rate; MAP = mean arterial pressure; PEEP = positive end-expiratory pressure; Petco2 = end-tidal 
partial pressure of carbon dioxide; PPV = pulse pressure variation; Vco2 = pulmonary elimination of carbon dioxide.

Figure 3. Box plots for responders (R) and nonresponders (NR) during 
the fluid challenge (upper) and during the PEEP challenge before fluids 
(lower). The changes in cardiac index (ΔCI), elimination of CO2 (ΔVco2), 
and end-tidal partial pressure of CO2 (ΔPetco2) are presented as per-
centage. The dotted lines represent the threshold value of cardiac index 
(CI) to define R and NR (upper) or threshold values for each parameter 
to predict fluid responsiveness (lower). Open circles are outliers.
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During the second PEEP challenge after IV fluids were 
given, the changes in ΔCI, ΔVco2, ΔPetco2, and ΔPPV were 
lower than before fluid administration in both responders 
and nonresponders. Neither of these changes was statisti-
cally significant nor was there a good correlation among 
them. The changes in ΔCI induced by fluid loading at base-
line were well correlated with the changes in ΔVco2 induced 
by the first PEEP challenge before fluid administration  
(r2 = 0.71, P < 0.0001; Fig. 4B).

Prediction of Fluid Responsiveness
The comparison of the predictive performance of studied 
parameters for detecting fluid responsiveness is given in 
Figure  5 and Table  3. A decrease of ≥11% in Vco2 during 
the PEEP challenge predicted a ≥15% increase in CI after 
fluid administration with high sensitivity and specificity. 
However, a decrement by ≥5% in Petco2 during the PEEP 
challenge predicted a fluid-induced increase in CI by ≥15% 
with a poor sensitivity and specificity. PPV had also a poor 
sensitivity and specificity for detecting fluid responsiveness 
according to the reference method.

DISCUSSION
The main finding of this study is that a decrease in Vco2 
observed during a brief PEEP challenge was accurate in 
predicting fluid responsiveness. The clinical implication of 
our results is that a dynamic approach using CO2 can detect 
preload dependency at the bedside in a totally noninvasive 
way by means of a simple ventilator maneuver. Thus, the 
always difficult diagnosis of preload dependency could 
be easily established in patients in whom more invasive 
CI monitoring equipment is not available. This is of par-
ticular importance in the operating theater for medical, eco-
nomical, and ethical reasons, because most of our patients 
present no clinical indication for invasive and expensive 
hemodynamic monitoring.

We found that 40% of our patients were fluid responders 
according to the standard definitions.6–8 This result is in line 
with the studies by Kim et al.28 and Preisman et al.19 who 
found that the incidence of fluid responsiveness in patients 
undergoing cardiac surgery was 38% and 46%, respectively.

Different dynamic ventilatory maneuvers to assess fluid 
responsiveness in mechanically ventilated patients have 
been described.29–31 These include cyclical changes during 

mechanical breaths or step changes in PEEP and expiratory 
pauses.15–18 Based on the physiologic principles governing 
heart–lung interactions, these maneuvers stress the hemo-
dynamic state reversibly without the need to administer 
fluids. The principle tested whether a step PEEP change is a 
reversible maneuver that can help detect fluid responsive-
ness as measured by different invasive parameters.15,16 In 
experimental animals, Lambert et al.18 found that 10 cm H2O 
of PEEP affected stroke volume in proportion to the defi-
cit in intravascular fluids. Michard et al.16 showed that the 
variations in pulse pressure induced by 10 cm H2O of PEEP 
were predictive of fluid responsiveness in patients with 
acute respiratory distress syndrome. In patients undergoing 
cardiac surgery, Geerts et al.15 showed that PEEP-induced 
changes in CVP predicted fluid responsiveness in the same 
way as the combination of passive leg-rising test and CI.

Monitoring expired CO2 is attractive because it is simple, 
real time, and noninvasive. The amount of eliminated CO2 
depends simultaneously and continuously on the body’s 
metabolism, pulmonary perfusion, and alveolar ventilation. 

Figure 5. Receiver-operating characteristic (ROC) curves of fluid 
responsiveness. ROC curves for the ability of changes in the elimi-
nation of CO2 (ΔVco2), the end-tidal partial pressure of CO2 (ΔPetco2), 
and pulse pressure variation (ΔPPV) during a positive end-expiratory 
pressure challenge to predict an increase in CI by ≥15% if fluids 
were given. The areas under the ΔPetco2 and ΔPPV curve were dif-
ferent from ΔVco2 (P < 0.05).

Figure 4. A, Linear regression analysis of the relationship between ΔCI and ΔVco2 during the PEEP challenge before fluid administration. B, 
Linear regression analysis of the relationship between ΔVco2 during the PEEP challenge before fluid administration and ΔCI induced by the 
fluids. ΔCI, changes in cardiac index; PEEP = positive end-expiratory pressure; ΔVco2 = elimination of CO2.
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Therefore, the changes in Vco2 must be interpreted with 
caution.27 When metabolic production of CO2 and alveolar 
ventilation are constant during the measuring period, as in 
our short lasting protocol, a change in CO2 can be explained 
conclusively by a parallel change in pulmonary blood 
flow.20,21

Petco2 is the parameter most commonly used in time-
based capnography, which has demonstrated a close associ-
ation with CI in different scenarios.11–13 However, we found 
a rather poor correlation between absolute and relative val-
ues of Petco2 and CI after fluid administration and during 
the PEEP challenge. The performance of ΔPetco2 in pre-
dicting fluid responsiveness was poor in our study (AUC, 
0.69; sensitivity, of 0.67; specificity, 0.77) but excellent in the 
studies by Monnet et al.10 (AUC, 0.93; sensitivity, 0.71; and 
specificity, 1) and Monge et al.9 (AUC, 0.94; sensitivity, 0.91; 
and specificity, 0.94). Despite these differences, the cutoff 
value for ΔPetco2 to detect fluid responsiveness was the 
same (5%) in all studies.

These differences in the performance of Petco2 could be 
explained in part by differences in the patient populations 
studied (intensive care versus cardiac surgery patients) and 
by the nature of the dynamic maneuvers used to challenge 
the heart–lung interaction (passive leg-raising test versus 
PEEP test). We speculate that the degree of change in Petco2 
that these opposing maneuvers induce might be rather dif-
ferent, because the value of Petco2 highly depends on the 
slope of phase III of the capnogram.32–34 Increasing CI by 
passive leg-raising can increase the slope of phase III, and 
hence its final CO2 value, the Petco2.21 Conversely, a PEEP 
challenge will have an opposite effect because the slope of 
phase III becomes flatter and thus Petco2 becomes lower 
any time CI decreases. In other words, the positive changes 
in Petco2 seen during the passive leg-raising test could be 
larger than the negative changes induced by PEEP.

Our results support the hypothesis that Vco2 is a bet-
ter capnographic-derived parameter than Petco2 in pre-
dicting fluid responsiveness for the following reasons: 
First, the correlation between ΔCI and ΔVco2 during the 
PEEP challenge before fluid administration was good, 
whereas the correlation between ΔCI and ΔPetco2 was 
poor. Second, the ΔCI induced by fluids at baseline was 
well correlated with the ΔVco2 induced by the PEEP chal-
lenge before fluid administration but not with ΔPetco2 

at the same instance. Furthermore, Vco2 is obtained by 
volume-based, but not by time-based, capnography and 
thus is measured in the flow domain, the same as for CI.35 
In patients undergoing weaning from cardiopulmonary 
bypass, we demonstrated that Vco2 was directly propor-
tional to the amount of pulmonary blood flow.20,21 The fact 
that the cutoff values for ΔCI and ΔVco2 to detect fluid 
responsiveness were similar in our responder patients 
supports the existence of such a close relationship. The 
ROC curve confirmed the aforementioned notion, show-
ing a higher sensitivity and specificity for ΔVco2 than for 
ΔPetco2 to predict fluid responsiveness.

The observed changes in PPV, similar to Vco2 and 
Petco2, presented a predicted physiologic behavior during 
fluid and PEEP challenges in both responders and nonre-
sponders. Even though these congruent changes in PPV 
were significant (Table  2), this variable was poorly corre-
lated with CI and Vco2 and had a limited performance in 
predicting fluid responsiveness in our patients (Table  3). 
This poor performance of PPV in defining fluid responsive-
ness in our study can perhaps be explained by the use of 7 
mL/kg of VT. There is a trend toward decreasing intraop-
erative VT that limits the value of PPV as a clinical tool for 
monitoring in the operating room.36,37

Limitations
The impact of lung diseases or pulmonary shunt on our 
methodology is unknown, because we did not evaluate 
these clinical conditions separately. Vco2 could increase 
with the application of 10 cm H2O of PEEP because of a 
potential recruitment of small airways and atelectasis, 
thereby mitigating the PEEP-induced decrement in Vco2 in 
responders. To eliminate this confounding factor, we stan-
dardized lung volume by applying 10 deep breaths before 
starting the protocol.

We can speculate that our method should also be reli-
able in patients with lung diseases or shunt because (1) 
patients served as their independent controls regardless 
of the underlying lung condition and (2) ΔCI, a variable 
hardly affected by chronic lung diseases and fixed shunt in 
the short run, during the first PEEP challenge changed in a 
similar way as ΔVco2 (−12% vs −11%, respectively) while 
a good correlation between them was found (Fig. 4). This 
important issue should be properly tested in future studies.

Table 3.   Predictive Performance for Detecting Fluid Responsiveness
AUC Threshold (%) Sensitivity Specificity PV+ PV− LR+ LR−

ΔCI 0.99 
(0.96–0.99)

12 0.92 
(0.85–0.97)

0.94 
(0.91–0.97)

0.90 
(0.85–0.96)

0.93 
(0.84–0.97)

6.18 
(2.63–7.80)

0.08 
(0.03–0.16)

ΔVco2 0.99 
(0.97–0.99)

11 0.90 
(0.87–0.93)

0.95 
(0.92–0.98)

0.92 
(0.85–0.96)

0.91 
(0.90–0.94)

6.06 
(3.33–8.00)

0.10 
(0.07–0.14)

ΔPtco2 0.69 
(0.62–0.76)

5 0.63 
(0.49–0.75)

0.74 
(0.67–0.80)

0.61 
(0.55–0.66)

0.71 
(0.56–0.81)

2.74 
(1.51–3.90)

0.55 
(0.34–0.86)

ΔPPV 0.68 
(0.60–0.76)

30 0.48 
(0.39–0.56)

0.75 
(0.66–0.83)

0.73 
(0.61–0.81)

0.46 
(0.36–0.55)

1.62 
(0.73–2.66)

0.79 
(0.62–1.07)

Parentheses values are 95% confidence intervals. Intervals for AUC were computed using a modified Wald interval with continuity correction.38 For sensitivity, 
specificity, PV+, PV−, LR+, LR−, cross-validation k-fold (k = 5), 1000 times were performed, and the 95% confidence interval was considered as the lower and 
upper bounds of the percentiles 2.5% and 97.5%, respectively.
AUC = area under the receiver operating characteristic curve; ΔCI = PEEP challenge-induced changes in cardiac index; LR+ = positive likelihood ratio;  
LR− = negative likelihood ratio; ΔPetco2 = PEEP challenge-induced changes in end-expiratory partial pressure of CO2; PEEP = positive end-expiratory pressure;  
PPV = PEEP challenge-induced changes in pulse pressure variation; PV+ = positive predictive value; PV− = negative predictive value; ΔVco2 = PEEP challenge–
induced changes in the elimination of CO2.
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CONCLUSIONS
The combination of a reversible hemodynamic challenge by 
PEEP in conjunction with the response in noninvasive Vco2 
may be a simple way to identify those patients undergoing car-
diac surgery who could benefit from fluid administration. E
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