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The accuracy of the Kirchhoff Approximation (KA) for rough-surface electromagnetic wave scattering is
studied by comparison with accurate numerical solutions in the context of three-dimensional dielectric
surfaces. The Kirchhoff tangent-plane approximation is examined without resorting to the principle of
stationary phase. In particular, it is shown that this additional assumption leads to zero cross-polarized
backscattered power, but not the tangent-plane approximation itself. Extensive numerical results in the
case of a bisinusoidal surface are presented for a wide range of problem parameters: height-to-period,
wavelength, incidence angles and dielectric constants. In particular, this paper shows that the range of
validity inherent in KA includes surfaces whose curvature is not only much smaller, but also comparable
to the incident wavelength, with errors smaller than 5% in total reflectivity; thus presenting a detailed
and reliable source for the validity of KA in a three-dimensional fully polarimetric formulation. © 2017
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1. INTRODUCTION

This paper studies the accuracy of the Kirchhoff theory of rough-
surface electromagnetic wave scattering in the context of three-
dimensional double periodic dielectric surfaces [1, 2], with an
emphasis in cross polarization and total reflectivity. The need
to evaluate the scattering of electromagnetic fields by rough
surfaces arises in many applications. For example, in the field
of active and passive microwave remote sensing, the evalua-
tion of backscattered power and emissivity of agricultural fields
and oceanic surfaces is of crucial importance. In view of the
widespread use of the Kirchhoff Approximation (KA) [3–15]
this paper seeks to supplement existing error studies for this
method, and to provide a detailed and reliable source for its
validity.

Historically, comparisons of the predictions arising from use
of the KA with those of numerical methods were carried out
in the late 80’s [16, 17] by resorting to numerical methods ap-

plicable in the context of periodic (two-dimensional) perfectly
conducting surfaces. In spite of having provided a very signif-
icant insight into the nature of the KA, these classical studies
contain several limitations. In particular, effects such as shadow-
ing and multiple scattering, that are sources of error in the KA,
can have a significantly different impact in three-dimensional
configurations as compared to periodic two-dimensional cases
[7, 12]. More significantly, such two-dimensional geometries do
not include the possibility of mode conversions, that only takes
place in fully vectorial three-dimensional configurations.

Three-dimensional double periodic dielectric profiles were
studied in [1, 2, 18] in the context of brightness temperature
for ocean surfaces. In [1] the scattered wave from a bi-periodic
surface is obtained through a procedure based on Huygens’
principle and a Fourier expansion of the surface profile, while in
[2, 18] the tangential fields on the surface are computed under
physical optics and are used as a part of a Monte Carlo procedure
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for randomly rough surfaces. In all these works the focus is on
the brightness temperature and therefore do not provide details
on the cross-polarized signal in the backscattering direction.

As more advanced numerical methods for the scattering of
rough surfaces were developed in the past decades [19, 20], com-
parisons of the predictions of various approximate models and
numerical solutions is now possible in the more relevant context
of three-dimensional configurations. Nevertheless, comparisons
require highly accurate numerical solutions that can still be quite
expensive to achieve for the case of three-dimensional configu-
rations. In the context of bi-periodic dielectric surfaces, the high
order perturbation method [19] provides the required accurate
solutions that include, in particular, accurate cross-polarizations
and reflectivities. Using that method, this contribution system-
atically explores the range of validity inherent in Kirchhoff’s
tangent plane approximation, under no additional simplifying
assumptions, and as a function of the various parameters of the
problem: the height-to-period ratio of the illuminated surface,
the dielectric constant, the incidence and observation angles,
and the wavelength of the illuminating radiation.

The Kirchhoff Approximation relies in the combination of
Huygens principle together with the tangent-plane approxima-
tion (i.e. the assumption that the induced currents at a point can
be expressed by that resulting from a local tangent plane approx-
imation of the surface). In order to evaluate the scattered field
integral in the far-zone by an analytic closed form expression,
Kirchhoff’s original contribution additionally employed the ap-
proximation now known as stationary phase. Since then, this
further high-frequency approximation became customarily used
by many authors in view of its analytic usefulness. This addi-
tional assumption leads, in particular, to zero cross-polarization
in the backscattering direction [4, 11] (i.e. an incident wave with
a given polarization will be reflected with the same polariza-
tion), a fact that limits the experimental usefulness of the overall
approach. In this work we examine the accuracy of the Kirch-
hoff tangent-plane approximation itself, which will be referred
to as the Kirchhoff Approximation (KA), without resorting to
additional approximations. The full expression to the surface
induced fields is kept, and the resulting far-field expression is
evaluated numerically. In particular, the present paper helps
to clarify the effect of the stationary phase approximation in
different regards, specifically on the effect on cross-polarized
backscattered power, which, while the stationary phase predicts
zero power, this is sometimes incorrectly attributed to the KA
itself. In fact, as it is shown in [21, 22] for randomly rough sur-
faces, non-zero depolarization in backscattering condition under
KA is achieved if the currents induced on the surface are writ-
ten at least up to second order in the surface derivatives and
stationary phase approximation is avoided.

Likewise, errors in both co-polarization and cross-
polarization components are examined in detail. These errors,
however, arise not only from the local geometrical tangent plane
assumption, but also from global effects due to the overall shape
of the rough surface, such as multiple scattering and shadowing.
These global errors become larger as the roughness or incidence
angle increase, or as the frequency decreases. Multiple scattering
limits the amount of power scattered at large (grazing) scattering
angles whereas surface shadowing reduces the total power scat-
tered by a factor related to the portion of the scattering area that
is illuminated. In these regards, the classical validity condition
for KA, which states that a radius of curvature much larger than
the incident wavelength is necessary, is examined in this paper
in the case of an isotropic bi-sinusoidal diffraction grating. The

analysis shows that this condition is exceedingly restrictive.
The paper is organized as follows: in Section 2 we develop

the scattering of a electromagnetic plane wave over periodic
surfaces in terms of the periodic Green function and the induced
currents on the surface. Then, in Section C we give the am-
plitude of these induced currents using the tangent plane or
Kirchhoff Approximation (KA). As our main interest is study
how accurate results the KA, we need a standard to the scatter-
ing problem. This is briefly developed in Section D, where is
given an overview for Perturbation Theory (PT) based on Padé
approximants [19]. Finally, comparisons between KA and PT
are shown in Section 3 for several sets of surface parameters
as for different illumination geometries or incident wavelength.
Section 4 contains our final remarks.

2. PRELIMINARIES

A. Scattered field
We consider the problem of scattering of an electromagnetic
plane wave of wavelength λ, impinging from free space onto a
three dimensional bi-periodic surface with spatial frequencies Lx
and Ly in two orthogonal directions, acting as interface between
two media where dielectric constant is ε.

The incidence plane wave is characterized by its wavenumber
ki defined in terms of the polar and azimuthal angles θi and φi,
respectively, as shown in Figure 1.

kix = k cos(φi) sin(θi)

kiy = k sin(φi) sin(θi)

kiz = −k cos(θi),

where k = 2 π/λ. In what follows, ki⊥ will denote the projection
of ki on the mean plane of the surface.

Fig. 1. Geometry of incident wave. ki⊥ is the component of ki
parallel to the mean plane of the surface.

The scattered field is a solution of Maxwell’s equations, which
can be written in integral form by resorting to the Huygens
principle

Es(r) =
∫

ds′
{
∇× ¯̄G(r, r) ·

[
n̂′ × E(r′)

]
+

η ¯̄G(r, r′) · n̂′ ×H(r′)
}

, (1)

where r′ is any point on the surface, ¯̄G(r, r′) =(
¯̄I + ∇∇

k2

)
G(r, r′) is the dyadic Green, G(r, r′) the scalar
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free-space Green function and ∇ is the gradient with respect to
r; n̂′ represents the normal to the surface at the surface point
r′, η =

√
µ/ε is the impedance of the dielectric medium below

the surface and E(r′) and H(r′) are the fields induced over the
surface, which are still unknown variables. In equation (1) the
integral is performed over the whole illuminated surface.

B. The Rayleigh Expansion for bi-periodic surfaces
For bi-periodic surfaces, the scattered can be expressed in terms
of the Rayleigh Expansion [23] (see Appendix A for details)

Es
p(r) = ∑

n,m
eı(knx x+kmyy+knmzz) Bnm(knm) (2)

where the scattering directions knm are given by
knx = kix + n 2π

L

kmy = kiy + m 2π
L

knmz =
√

k2 − k2
nx − k2

my.

(3)

where n, m ∈ Z are known as the order of each mode.
It is clear that only a finite number of modes propagate away

from the dielectric surface, i.e. the modes (n, m) such that knmz is
real, as shown in Figure 2. The remaining modes decay exponen-
tially. The transmitted modes can be expressed in a similar way,
using the corresponding wavenumber for the dielectric medium
(kt =

√
ε k) in which the transmitted wave propagates.

m

n
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k
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−k

nx

2
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my

2
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Fig. 2. Propagating modes (n,m) are defined by the integers
(cross marks) laying within the contour level k2− k2

nx− k2
my = 0,

whose shape is an ellipse. This contour is computed at θi =

45◦, φi = 63.4349◦, and λ
L = 0.6325, wherein eight propagating

modes arose.

In the Rayleigh Expansion of equation 2, the amplitudes Bnm
are given by

Bnm(knm) =
1

2ıknmz

1
Lx Ly

∫ Lx/2

−Lx/2
dx′

∫ Ly/2

−Ly/2
dy′ Fp(r′) ×

×e−ı(knx x′+kmy y′+knmz z(x′ ,y′)). (4)

where we have expressed the (unknown) induced currents over
the surface for a p̂-polarized incident wave, by

Fp(r′) = (v̂s v̂s + ĥs ĥs) · n̂′ ×Hp(r′) +
1
η

k̂s ×

×(v̂s v̂s + ĥs ĥs) · n̂′ × Ep(r′). (5)

and where
{

k̂s, ĥs, v̂s

}
denotes the orthonormal basis consisting

of the propagation direction k̂s of each mode, and the corre-
sponding horizontal and vertical polarizations ĥs, v̂s, respec-
tively. For details, see Appendix A.

For the finitely many propagating modes, we define the sur-
face efficiencies as

enm =
knmz

k00z
|Bnm|2. (6)

We note that k00z = |kiz| and, for a flat surface, e00 = R2
p (p = h

or v), i.e. the efficiency is proportional to the Fresnel reflection
coefficient as expected for a specular reflection. The reflectivity
R is defined as the sum of the efficiencies for each scattered
mode,

R = ∑
(n,m)∈U

enm, (7)

where U is the set of propagating modes. Similarly, the trans-
missivity T is defined over the set of propagating transmitted
modes. In the case of lossless media, the emissivity ε (measured
in passive remote sensing) is given by ε = 1− R.

Backscattering modes are important within various applica-
tion areas, such as active remote sensing. For a backscattering

mode to exist, k(bs)
nx = −kix and k(bs)

ny = −kiy must hold, where
(bs) stands for backscattering configuration. Using (3), this im-
plies that  kix + nbs

2π
L = −kix

kiy + mbs
2π
L = −kiy,

(8)

where the mode (nbs, mbs) is directed towards −knm.

C. Kirchhoff Approximation
A surface is considered to be sufficiently flat when its radius of
curvature is much larger than the incident wavelength. In detail
[5],

2 RC k cos3 θl � 1 (9)
where RC is the mean radius of curvature of the surface, k is the
incident wavenumber (k = 2 π/λ) and θl is the local incidence
angle defined as cos θl = −n̂ · k̂i.

For bisinusoidal surfaces of the kind

z(r) = − h
4
[
cos(κx x) + cos(κy y)

]
(10)

with κx = 2π/Lx, κy = 2π/Ly, as shown in the Appendix B, the
Kirchhoff condition (9), when κx = κy = 2π/L, is reduced to

C =
h
L

λ

L
π

cos3 θi
� 1, (11)

In Figure 3 we show the contour levels resulting from inequal-
ity (11) as a function of λ

L and h
L , for an incidence angle θi = 45º.

Throughout this paper, h
L = 0.2 and λ

L = 0.6325 will be used
as reference, up to which the Kirchhoff solution will compared
with highly accurate numerical solutions. This reference point is
depicted as a black diamond in Figure 3, and is well beyond the
validity condition given by inequality (9).

To use the tangent plane approximation we define a local

orthonormal system at each point of the surface
{

n̂, t̂, d̂
}

, fol-
lowing [4, 11, 13], by

n̂(x′) = −zx(x′) x̂−zy(x′) ŷ+ẑ√
z2

x(x′)+z2
y(x′)+1

t̂(x′) = k̂i×n̂(x′)
|k̂i×n̂(x′)|

ˆd(x′) = k̂i × t̂(x′).
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Fig. 3. Contour levels for Kirchhoff Approximation (KA) in-
equality applied to a doubly periodic bisinusoidal surface of
period L in both directions. Incident radiation is at θi = 45◦.
The smaller the level, the more accurate KA for describing the
scattering from the surface.

The vectors t̂ and d̂ are the local decomposition of the perpendic-
ular and parallel polarization with respect to the incidence plane
defined by k̂i and n̂. The incident electric field can be decom-
posed into t̂ (local TE mode) and d̂ (local TM mode) components.
Later, at each point of the surface we consider that the total
electric field is the sum of the incident and the locally reflected,
the latter proportional to the local Fresnel reflection coefficients
Rh(r′) (TE mode) or Rv(r′) (TM mode). These coefficients are
the usual ones, using the local incidence angle θl instead of the
overall mean incidence angle θi.

Thus, for the TE mode as example, in (5) the tangent electric
field induced at the point r′, can be represented as [13]

n̂× Ep(r′) = (n̂× t̂)( p̂ · t̂)(1 + Rh(r
′)), (12)

and the corresponding magnetic field as

n̂×Hp(r′) = −
1
η

t̂(n̂ · k̂i)( p̂ · t̂)(1− Rh(r
′). (13)

Similar expressions can be given for the TM mode using the
reciprocity property (E→ H, H→ −E and Rh → Rv).

Finally, considering the most general case where the incident
field has both local components of polarization, the induced
current on the surface under the Kirchhoff Approximation is
then given by [11, 13]

FKA
p (r′) =

[
1 + z2

x(r
′) + z2

y(r
′)
]1/2

{
−( p̂ · t̂) (n̂ · k̂i) t̂ (1− Rh(r

′))

+( p̂ · d̂) (n̂× t̂) (1 + Rv(r′))

+( p̂ · t̂) (k̂s × (n̂× t̂)) (1 + Rh(r
′))

+( p̂ · d̂) (n̂ · k̂i) (k̂s × t̂) (1− Rv(r′))
}

, (14)

Using this expressions, we will denote Es
qp as the scattered field

with polarization q̂ that results from an incident wave with
polarization p̂. This is computed by taking the inner product
between q̂ and equation (2).

D. Perturbation theory
For comparison purposes, the amplitudes Bnm in (2) will be com-
puted by using the numerical method put forth in [19], which
will be referred to in this paper as the perturbation method.
This method is based on boundary perturbations as depicted
schematically in Figure 4, and is applicable to general bi-periodic
surfaces, expressed in terms of their Fourier coefficients.

As shown in [19, 24], the scattered field of the surface z(x)
can be represented by a convergent power series on h. However
valid, this power series can have a very small radius of con-
vergence, so in order to obtain useful expressions, the method
resorts to the use of Padé approximants. We will denote as the
[U/V] Padé approximant of a function Bl

nm to the rational func-
tion whose Taylor series agrees with that of Bl

nm up to order
U+V+1 [25]. In detail,

Bl
nm =

a0 + a1h + · · · aLhU

b0 + b1h + · · · bMhV +O(hU+V+1) (15)

where a’s and b’s coefficients are computed by solving a linear
system on the coefficients of the power series representation of
Bl

nm. Here, Bl
nm(l = 1, 2, 3) are the components of the scattering

amplitude vector Bnm(knm) = [B1
nm, B2

nm, B3
nm]. In what follows,

it will be assumed that U = V = np, where np will be the order
of the Padé approximant.

The method of variation of boundaries has been demon-
strated to be very accurate in numerous cases and has also been
checked successfully against experimental data in optics [19, 26].
The method converges rapidly as the order of the Padé approxi-
mant is increased, and therefore, it will be used as benchmark to
test the Kirchhoff Approximation.
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Fig. 4. A surface z(r) = − h
4
[
cos(κx x) + cos(κy y)

]
viewed

as the perturbation of a smooth plane, from h = 0 to increas-
ingly rougher parameterizations. It was proven in [24] that the
electromagnetic field varies analytically with the parameter h,
enabling a power series representation of the scattered field
and Padé ressumation.

In order to assess the accuracy of the perturbation method
for each scattered mode, we provide the following numerical
experiment: for a fixed height-to-period ratio h

L , the order np of
the Padé approximant is increased. As shown in Table 1, for a
fixed illumination geometry θi = 45◦, φi = 63.4349◦, λ

L = 0.6325,
vertically polarized radiation, and for fixed surface parameters
h
L = 0.20, ε = 36, it is found errors in the reflected modes
are better than 1× 10−11 whenever np ≥ 14. The order np
is chosen by considering the conflicting requirements of both
computing time and accuracy, specially for moderate values of
h
L . This can be seen in Table 2, which contains an additional
study for a much deeper surface with h

L = 0.40. Despite of the
fact that accuracy gets poorer, it is still better than 1× 10−3 (-30
dB error) for np larger than 14. Hence, in terms of accuracy, the
perturbation solution can be regarded as a benchmark which the
Kirchhoff solution can be compared to [19]. The computing time
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Table 1. Convergence of the Perturbation method for each
propagating mode, as the user-prescribed Padé approximant
order np is increased, and elapsed time of computation. Simu-
lation parameters are h

L = 0.2, and ε = 36.

Mode Order np of Padé approximant

n m 6 10 14

-2 -1 3.4663045996e-04 3.4663079487e-04 3.4663079478e-04

-1 -2 7.1082895811e-04 7.1221054613e-04 7.1221054682e-04

-1 -1 1.5824016477e-02 1.5814203852e-02 1.5814203852e-02

-1 0 5.6868055231e-02 5.6857619817e-02 5.6857619810e-02

0 -2 6.8453781526e-03 6.8416409193e-03 6.8416409210e-03

0 -1 8.2355758510e-02 8.2336472323e-02 8.2336472334e-02

0 0 2.2870142288e-01 2.2871317645e-01 2.2871317646e-01

1 -1 3.2379974459e-03 3.2372545268e-03 3.2372545273e-03

time [min] 0.2 3.1 18.5

Table 2. Same as Table 2 for h
L = 0.4.

Mode Order np of Padé approximant

n m 4 6 10 14

-2 -1 1,2074e-02 1.1971e-02 1.1977e-02 1.1977e-02

-1 -2 2,2946e-02 2.4449e-02 2.4414e-02 2.4415e-02

-1 -1 1,0251e-01 9.4817e-02 9.4590e-02 9.4585e-02

-1 0 7,7014e-02 7.4182e-02 7.4444e-02 7.4445e-02

0 -2 4,6445e-02 4.3652e-02 4.3601e-02 4.3601e-02

0 -1 8,0689e-02 7.7835e-02 7.8311e-02 7.8321e-02

0 0 3,6138e-02 3.7576e-02 3.7632e-02 3.7634e-02

1 -1 3,1400e-02 3.0911e-02 3.0545e-02 3.0546e-02

time [min] 0.03 0.2 2.9 17.8

for np = 10 and 14 in the configuration of Tables 1 and 2 are ∼
3 and 18 min in a normal desktop computer (quad-core CPU at
3.40 GHz), respectively.

3. VALIDITY OF KIRCHHOFF APPROXIMATION

The present section analyzes the validity of tangent-plane ap-
proximation for varying values of the height-to-period ratio, di-
electric constant ε, incidence angle θi, and wavelength-to-period
ratio λ

L .

A. Dependence on surface height-to-period ratio

In this section, the second-order tangent plane approximation
from Kirchhoff theory (K) is compared to the method of variation
of boundaries from Perturbation (P) theory. In addition, results
from the stationary phase approximation of the surface induced
current is also shown. In the following, relative errors are com-
puted as the ratio K/P. The simulation parameters are θi = 45◦,
φi = 63.4349◦, λ

L = 0.6325, L = 1.0, and ε = 9. With this config-
uration, some power is backscattered: the backscattering mode
(nbs, mbs) is (-1, -2).

The backscattered mode for vertically polarized (TM-case) in-
cident radiation is shown in Figure 5 for varying surface height-
to-period ratio. The comparison is done for co-polarized (pp)
and cross-polarized (qp) efficiencies (upper panel), and perfor-
mance is assessed as the ratio K/P for each h

L (lower panel).

Figure 5 (left panel) shows how the efficiency e−1,−2 corre-
sponding to the co-polarized backscattering mode increases as
the surface gets rougher as the height increases. The Kirchhoff
prediction is slightly overestimated for larger heights, with a
maximum relative error of 11% corresponding to h

L ≤ 0.20.
On the other hand, the cross-polarized component of the

backscattering mode (Figure 5, right panel) also increases with h
L .

However, the Kirchhoff theory underestimates the backscattered
efficiency since it is a first order prediction (single scattering)
while depolarization effects are related to multiple scattering.
Also, as expected, the tangent plane approximation degrades
as h

L increases, as shown in Figure 3. The stationary phase
approximation yields zero cross-polarized backscattered power.

Notwithstanding this underestimation, it should be high-
lighted that in classical Kirchhoff Theory, where spatial deriva-
tives in the surface induced currents are computed up to first
order only, backscattered cross-polarized power is exactly zero.
The fact that including the full expression for the induced cur-
rents yields a non-zero cross-polarized backscattered power, in
agreement with [21, 22], where it is shown that for randomly
rough surfaces depolarization under KA is obtained if the in-
duced currents on the surface are written up to second order in
surface derivatives.

The aforementioned remarks about the TM-case also apply
to the backscattering mode for horizontally polarized (TE-case)
incident radiation (Figure 6), where Kirchhoff agrees better than
11% for h

L ≤ 0.20 for the co-polarized power. With the stationary
phase approximation, the agreement is 2% poorer in the same
range.
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h
L . The dashed line corresponds to the left hand side of the
validity condition (equation 11) to be equal to 1. The [np/np]
Padé approximant is computed for np = 14. Plane wave is
vertically polarized (TM-case) impinging at θi = 45◦ and
φi = 63.4349◦. Simulation parameters are λ

L = 0.6325, L = 1.0,
and ε = 9. (Left panel) Co-polarized case (vv). (Right panel)
Cross-polarized case (hv).



Research Article Journal of the Optical Society of America A 6

0 0.1 0.2 0.3 0.4
10

−10

10
−8

10
−6

10
−4

10
−2

h/L

b
a

c
k
s
c
a

tt
e

ri
n

g
 e

ff
. 

e −
1

−
2

 

 

0 0.1 0.2 0.3 0.4
10

−12

10
−10

10
−8

10
−6

10
−4

h/L

b
a

c
k
s
c
a

tt
e

ri
n

g
 e

ff
. 

e −
1

−
2

 

 

0 0.1 0.2 0.3 0.4
1.05

1.1

1.15

1.2

1.25

1.3

h/L

ra
ti
o

 K
/P

 

 

0 0.1 0.2 0.3 0.4
0.16

0.18

0.2

0.22

0.24

h/L

ra
ti
o

 K
/P

 

 

K (pp)

P (pp)

K−SP (pp)

C=1

K (qp)

P (qp)

C=1

K/P (pp)

K−SP/P (pp)

C=1

K/P (qp)

C=1

Fig. 6. The same as Figure 5 for a plane wave horizontally
polarized (TE-case). (Left panel) Co-polarized case (hh). (Right
panel) Cross-polarized case (vh).

In comparing both polarizations, it is found that the co-
polarized efficiency for TM-case (i.e. vv) is greater than the
one for TE-case (hh) in the backscattering configuration. Also,
reciprocity theorem between TE- and TM-case establishes ana-
lytically that hv = vh at backscattering. This last statement is
verified for h

L ≤ 0.2 by plotting the induced currents (figures not
shown) for hv and vh cases in a similar way as in [1] (Figures 8a
to 8d therein).

Figure 7 shows the cross-polarized efficiencies on a logarith-
mic scale plot for values of h

L in the range 0.006 to 0.040. The
coefficients of the linear fit are shown in the legend. For such
small perturbation parameters, multiple scattering vanishes and
energy is scattered by single scattering mechanisms only. The(

h
L

)6
-dependence of the dominant power is due to the fact that

the backscattered fields are scattered along the curvature of the
2D rough surface. It can be shown that for this particular sur-
face the first four terms of the backscattered power vanish [27].
Therefore, the leading order in h for the backscattered radiation
for this surface is h6. The difference between the intercepts is due
to different coefficients in the leading term of the induced cur-
rents for the cross-polarized efficiency. This difference is almost
zero in the co-polarized efficiency (figure not shown), where the
coefficients of the linear fit are (6.00,0.852) and (6.00,0.823) for
Kirchhoff and Perturbation, respectively. This accounts for the
excellent agreement showed in Figure 5 (left panel). It will be
shown in Section B that the difference in intercepts depends on
the dielectric constant.

It is worth mentioning that total reflectivity R, defined as in
(7), can be seen as a measure of the overall error in the scatter-
ing process since it is includes all the propagating modes. In
comparing to perturbation results for h

L = 0.20, relative errors
as low as 1.2% for vertically and 2.7% for horizontally incident
radiation are found.

Overall, the Kirchhoff Approximation performed well for
both horizontal and vertical polarizations. Recall that the
tangent-plane approximation accuracy is given by the inequality
(9). As a reference, the vertical dashed lines in Figures 5 and 6
correspond to the case where the Kirchhoff condition’s constant
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Fig. 7. Logarithmic scale plot depicting the dominant power
in the computation of the cross polarized backscattering ef-
ficiency e-1-2 by Kirchhoff and Perturbation theory for small
values of the perturbation parameter h

L . The difference in in-
tercepts depends on the dielectric constant (see Section B).
Note that for such a range of small perturbation parameters,
multiple scattering vanishes and energy is scattered by single
scattering mechanisms only. Simulation parameters are the
same as Figure 5.

(C in left hand side of equation (11)) equals 1. The point h
L = 0.20

and λ
L = 0.6325 in the ( h

L , λ
L )-domain of Figure 3 is clearly beyond

the expected validity range for the tangent-plane approximation
to be accurate (level 0.1 or lower), and, nevertheless, very good
results are obtained for such case (as it is discussed p.66 in [3]
for 2D periodic profiles).

B. Dependence on dielectric constant
The accuracy of Kirchhoff approach is now assessed in terms of
the dielectric constant ε of the surface. The simulation parame-
ters used in this section are θi = 45º, φi = 63.4349º, λ

L = 0.6325,
L = 1, and h

L = 0.20. Incident radiation is vertically polarized.
Backscattering efficiency is accurately predicted by the Kirch-

hoff theory for the co-polarized case, with relative errors below
12.5% for the range ε = 1 to ε = 36 (Figure 8, left panel). How-
ever, Kirchhoff approximation is unsuccessful in predicting the
dependence of cross-polarized efficiency on dielectric constant
(Figure 8, right panel). The non-monotonic behavior in K can
be traced to a term of the kind Rv(ε) + Rh(ε) in the Kirchhoff
tangent fields of equation (14) after performing the dot product
q̂ · Fp(r′) and keeping the first non-zero power.

For lossless media (i.e. real-valued dielectric constant ε), ab-
sorptivity equals zero and energy balance implies that reflec-
tivity R and transmissivity T satisfy R + T = 1. Moreover,
as h increases from h = 0 (plane surface) onwards, power is
redistributed from specular to non-specular modes. Hence, com-
paring total reflectivity R between K and P for different h

L and ε
might be useful in assessing the overall accuracy of the Kirchhoff
Approximation. Figure 9a depicts relative error computed as
P−K

P for total reflectivity R as contour levels in the (ε, h
L )-domain.

Error is below 0.05 or 5% in the given range, being Kirchhoff
reflectivity mostly underestimated (i.e. P − K > 0). This un-
derestimation might be ascribed to the modes scattered off the
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Fig. 8. Comparison of the backscattering efficiency e-1-2 calcu-
lated from Kirchhoff (K) approximation, Kirchhoff approxi-
mation with stationary phase (K-SP), and from perturbation
(P) theory with respect to the dielectric constant ε for a bisinu-
soidal surface of h

L = 0.20. The [np/np] Padé approximant
is computed for np = 14. Plane wave is vertically polarized
(TM-case) impinging at θi = 45º and φi = 63.4349º. Simu-
lation parameters are λ

L = 0.6325, and L = 1.0. (Left panel)
Co-polarized case (vv). (Right panel) Cross-polarized case
(hv).

incidence plane with large angles, which are not accurately de-
scribed in first order Kirchhoff theory. As h

L increases, the con-
tribution of non-specular modes to R increases markedly. The
condition C = 1 given by the equation (11) is plotted as a verti-
cal dashed line. For horizontally polarized incident radiation, a
similar trend is found with errors below 5% (figure not shown).

Transmissivity can be assessed by means of kt = k
√

ε, where
kt is the wavenumber for the transmitted radiation below the sur-
face. This implies that wavelength λt in the transmitted medium
is always greater than λ in the upper medium, weakening the
inequality (9). Hence, a better accuracy for Kirchhoff theory for
the transmitted modes is expected, as shown in Figure 9b, where
the relative error is smaller than 0.8%.

In the case of horizontally polarized incident radiation, the
magnitude of the transmissivity is smaller than in the vertically
polarized case, so that differences between K and P have a more
markedly impact on a ratio-based metric such as the relative
error. Relative errors for transmissivity at horizontal polarization
ranges from 0.5% to 6% (figure not shown).

C. Dependence on incidence angle
An assessment of the Kirchhoff Approximation error as a func-
tion of the incidence angle is now done in terms of the total
reflectivity, which includes all the scattered modes.

Total reflectivity R as a function of the incidence angle θi
for the Kirchhoff approach, perturbation method and Fresnel
reflectivity for vertically and horizontally polarized incident
radiation at φi = 63.4349º is shown in Figure 10. Simulation
parameters are ε = 9, λ

L = 0.6325, L = 1.0, and h
L = 0.20.

For vertically polarized incident radiation (Figure 10a), the
Kirchhoff reflectivity agrees below 12% relative error to pertur-

Table 3. Kirchhoff (K) and Perturbation (P) methods for sev-
eral backscattering configurations θi- λ

L from horizontally po-
larized (TE-case) incident radiation. The height-to-period ratio
is h

L = 0.20. The remaining parameters are φi = 63.4349º,
ε = 9, and L = 1.0. The last column states for the evaluation of
equation (11).

Configuration hh vh

θi
λ
L K P K P C

20 0.3059 1.21E-02 1.19E-02 1.08E-06 4.46E-06 0.23

30 0.4472 2.94E-03 2.88E-03 1.05E-06 3.92E-06 0.43

40 0.5749 7.14E-04 6.69E-04 1.07E-06 6.36E-06 0.80

45 0.6325 3.75E-04 3.36E-04 1.20E-06 5.72E-06 1.12

50 0.6852 2.04E-04 1.63E-04 1.50E-06 7.01E-06 1.62

bation results up to the Brewster angle near tan−1(
√

ε) ∼ 71.57º,
where the approximation degrades thereafter. For horizontal
polarization (Figure 10b), the agreement is well until 60º with
relative error below 17%. Dashed lines are the left hand side of
equation (11) evaluated at the simulation parameters. Again,
this values are far beyond the classical validity range of the
Kirchhoff Approximation.

The discontinuities around θi = 15º, 23º and 33º in both po-
larizations are related to the fact that a number of propagating
modes becomes non-propagating, as it is shown in the bottom
panel of Figure 10. The energy carried by these modes is attenu-
ated as the wave travels through the lossless media. For angles
beyond 50º, in the present case, the change in the number of
modes seem to have no effect in the continuity of the reflectiv-
ity R, since these modes have a low contribution to the total
reflectivity.

D. Dependence on wavelength in Littrow configurations

This section performs an assessment of the Kirchhoff approach
against the perturbation method for various values of the wave-
length. In order to guarantee a backscattering mode exists (Lit-
trow configuration), wavelength and incidence angle are varied
pair-wise following equation (8), with the remaining parame-
ters fixed at φi = 63.4349º, ε = 9, h

L = 0.20, and L = 1.0. In
Table 3 Kirchhoff and perturbation methods for incident radia-
tion at horizontal polarization are compared. Both co-polarized
(pp) and cross-polarized (qp) backscattering modes are shown.
Also, the Kirchhoff validity condition C given by equation (11)
is shown. For the co-polarized efficiencies, an accuracy up two
figures is reached provided Kirchhoff validity condition is less
than one. Above this value, the accuracy gets poorer and it
is conditioned mostly by the cubic power of the cosine of the
incidence angle in the denominator of equation (11). For the
cross-polarized case, the efficiencies follow the trend of the per-
turbation results up to θi = 40º. Again, reciprocity is verified
at four figures on both methods. Similar results are found for
vertically polarized incident radiation. In terms of the surface
reflectivity R, an agreement up to 5.7% and 4.7% relative error is
found for the configurations listed in Table 3 for both TE- and
TM-cases respectively.

E. Dependence on wavelength in Bragg configurations

For moderate to large wavelength-to-period ratios, Bragg scat-
tering occurs when Lx, Ly ∼ λ

2 cos(θi)
. Under this condition, KA
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Fig. 9. Contour levels for relative error 1− K
P in the ( h

L ,ε)-domain. Incident radiation is vertically polarized. The vertical dashed line
states the left hand side of equation (11) to be equal to 1.
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Fig. 10. Comparison of total reflectivity for Kirchhoff (K), perturbation (P) and Fresnel reflectivities (top panel) as a function of the
incidence angle θi, at φi = 63.4349º. Simulation parameters are ε = 9, λ

L = 0.6325, L = 1.0, and h
L = 0.20. Dashed lines depict the left

hand side of equation (11) evaluated at the simulation parameters. Number of propagating modes (bottom panel).

is expected to be only accurate for small ratios h
L and small inci-

dence angles θi, otherwise the Kirchhoff condition C will rapidly
increase above one. Results comparing total reflectivity for sev-
eral Bragg configurations are shown in Table 4 for both TE- and
TM-case. Error in KA is as much as 2% for TE-case and less
than 0.5% for TM-case. Also, it is found a marked effect of the
incidence angle on the accuracy of KA in comparing to that of
the wavelength-to-period ratio.

F. Dependence on amplitude and spatial period in two-scale
surfaces

A more general surface involving two scales is of the kind

z(r) = − h
4
[a cos(b κ x) + cos(κ y)] (16)

where parameters a and b accounts for some degree of hetero-
geneity between the x- and y-direction. Results comparing total
reflectivity for varying a and b are summarized in Table 5.

As expected, Kirchhoff theory performance degrades as the
spatial frequency increases. However, it is still accurate enough
to yield errors around 12% and 15% for TE- and TM-case when
C ∼ 1. TE-case is found to be more accurate than TM-case
indicating a lesser sensitivity to surface gradient.
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Table 4. Total reflectivity R for several Bragg configurations
and height-to-period ratios. Results are shown as the ratio
of the Kirchhoff (K) to Perturbation (P) methods for TE- and
TM-case. Kirchhoff condition C is also shown. The remaining
parameters are φi = 0º, ε = 9, and L = 1.0.

K/P λ
L = 1.0000, θi = 60º λ

L = 1.4142, θi = 45º λ
L = 1.7321, θi = 30º

h
L TE TM C TE TM C TE TM C

0.04 1.0033 0.9996 1.01 1.0022 1.0009 0.50 0.9998 1.0002 0.34

0.06 1.0074 0.9991 1.51 1.0050 1.0020 0.75 0.9996 1.0005 0.50

0.08 1.0132 0.9987 2.01 1.0089 1.0036 1.01 0.9992 1.0008 0.67

0.10 1.0206 0.9985 2.51 1.0139 1.0054 1.26 0.9987 1.0011 0.84

Table 5. Total reflectivity R for several two-scale configura-
tions. Surface parameters a and b describing x-direction am-
plitude and spatial frequency are varied (see (16)). Results
are shown as the ratio of the Kirchhoff (K) to Perturbation (P)
methods for TE- and TM-case. Kirchhoff condition C com-
puted for the surface given in (16) is also shown. The remain-
ing parameters are θi = 45º, φi = 63.4349º, λ = 0.6325,
h = 0.05, ε = 9, and L = 1.0.

K/P b = 1 b = 2 b = 3

a TE TM C TE TM C TE TM C

0.2 0.9978 1.0020 0.09 1.1017 0.8642 0.13 1.1147 0.8493 0.21

0.5 0.9989 1.0007 0.11 1.1020 0.8640 0.23 1.1146 0.8525 0.43

1.0 1.0002 0.9981 0.15 1.1032 0.8628 0.40 1.1159 0.8600 0.86

1.5 1.0006 0.9947 0.19 1.1054 0.8604 0.59 1.1188 0.8687 1.36

2.0 1.0003 0.9907 0.23 1.1088 0.8557 0.80 1.1236 0.8756 1.99

4. CONCLUSIONS

The accuracy of the Kirchhoff Approximation (KA) for rough-
surface electromagnetic wave scattering was studied in the con-
text of three-dimensional dielectric surfaces and providing a
detailed and reliable source for its validity. Classical error stud-
ies that have resorted to lower computational capabilities and, at
the same time, low-order numerical methods, have only allowed
to explore a limited set of problem parameters.

The main contribution of this paper is that the KA with a
full expression in the surface currents is a good approximation,
even for configurations close to the lower bound in the classical
validity range, that expects KA to be reliable only when RC � λ.
Indeed, even in the cases in which RC ∼ λ, the KA calculates
reasonably well the reflectivity and backscattered power for
isotropic bi-sinusoidal diffraction gratings. This is relevant in the
context of several application areas, where the classical condition
hardly holds. In two-scale surfaces, where multiple-scattering
and shadowing effect arise as relevant scattering mechanisms,
the accuracy of KA is affected.

In the second place, the present paper contributes to reaffirm
that depolarization can result by surface-scattering only, even
when the tangent plane approximation is used [21, 22]. Indeed,
it is a widespread misconception that zero cross polarization (hv)
in backscattering direction occurs in KA. This paper showed that
this is only due to further simplifying assumptions in addition
to the Kirchhoff induced currents.

Regarding the absolute errors in the cross-polarized backscat-
tered power, these are the same order of magnitude than the co-

polarized errors. However, the relative errors can be larger in the
case of low power signals. In fact, in the case of cross-polarized
backscattering (hv), which is typically an order of magnitude
smaller than the co-polarized case, the Kirchhoff Approximation
provides, within its classical range of validity, the correct order
of magnitude of the scattered signal. Underestimation in cross
polarization is due to the fact that Kirchhoff Approximation
reliably describes single scattering, where multiple scattering
is neglected. Of course, when C > 1, KA leads to an overall
large underestimation of the backscattered power. The larger
errors with respect to the co-polarized case are related to the fact
that the dominant power in the cross-polarized tangent fields is
proportional to the sum of the Fresnel reflection coefficients.

This paper presented an extensive error analysis of the Kirch-
hoff tangent-plane approximation, for a wide range of parame-
ters (height-to-period and wavelength-to-period ratios, dielec-
tric constant, and incidence angle) and contributed to the un-
derstanding of one of the most fundamental analytic approxi-
mations in rough surface scattering, for the three-dimensional,
fully vectorial, dielectric case. The present work facilitates fur-
ther study involving more complex surfaces and other analytic
approximations.
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A. APPENDIX: DEDUCTION OF RAYLEIGH EXPANSION

As we mentioned in Section 2B, the scattered field due to a
periodic surface can be expressed in terms of discrete modes. In
the followin we show how this result is obtained using just the
far field approximation for the Green function.

Here on we will consider that the observation point is located
at the Fraunhofer zone of diffraction, which is the case in the
context of remote sensing, where the scattered field is calculated
in the far field approximation. This fact allows us to deal with
plane scattered waves rather than spherical ones. Then, the
dyadic Green function takes a simple expression, because the
differential operator is reduced to the observation direction:
∇ → ık k̂s, then

¯̄G(r, r′) =
(

¯̄I − k̂s k̂s

)
G(r, r′) =

(
v̂s v̂s + ĥs ĥs

)
G(r, r′), (17)

where we have used the fact that
{

k̂s, ĥs, v̂s

}
forms an orthonor-

mal basis. For the scalar Green function it is suitable to give its
Weyl representation,

G(r, r′) =
∫ d2k⊥

(2π)2 eık⊥ ·(x−x′) eıkz |z−z′(x′)|

2ıkz
, (18)

where we have used that a point in the space is r = x + z(x) ẑ,
and the wavenumber is written as k = k⊥ + kz ẑ, being kz =√

k2 − k2
⊥ with the condition k2

⊥ < k2 for propagating modes.
If we assume that the incident wave has polarization p̂ (either

horizontal – TE mode or vertical – TM mode) and if we use the
far field approximation for the Green function, the scattered field
can be expressed as

Es
p(r) =

∫
ds′ Fp(r′)

∫ d2k⊥
(2π)2 eık⊥ ·(x−x′) eıkz |z−z′(x′)|

2ıkz
, (19)
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where Fp(r′) represents the induced currents over the surface
due to the incident wave with polarization p̂,

Fp(r′) = (v̂s v̂s + ĥs ĥs) · n̂′ ×Hp(r′) +
1
η

k̂s ×

×(v̂s v̂s + ĥs ĥs) · n̂′ × Ep(r′). (20)

Now, we use the fact that the illuminated surface is periodic, and
has discrete periodicity: x′ → x′ + Lnm, where Lnm = n Lx x̂ +
m Ly ŷ for n and m integers. Then, instead of integrate over all
the surface, we just integrate over one period and sum on all the
(n, m) modes covering the total illuminated surface:

Es
p(r) =

∞

∑
n,m=−∞

∫ Lx(n+1)/2

Lx(n−1)/2
dx′

∫ Ly(m+1)/2

Ly(m−1)/2
dy′ Fp(r′) ×

∫ d2k⊥
(2π)2 eık⊥ ·(x−x′) eıkz |z−z′(x′)|

2ıkz
. (21)

We can further exploit the periodicity of the surface observ-
ing that the double periodicity of the structure implies that
the fields must be (n, m) quasi-periodic; i.e. they must ver-
ify Fp(r′ + Lnm) = Fp(r′) eı ki⊥ ·Lnm [24]. Therefore, after some
straightforward algebra,

Es
p(r) =

∞

∑
n,m=−∞

∫ Lx/2

−Lx/2
dx′

∫ Ly/2

−Ly/2
dy′ Fp(r′)×

×
∫ d2k⊥

(2π)2 eık⊥ ·(x−x′) eıkz |z−z′(x′)|

2ıkz
×

e−ı (kx−kixn Lx) e−ı (ky−kiym Ly), (22)

where it was used the fact that z′(x′ + Lnm) = z′(x′) and Lnm =
n Lx x̂ + m Ly ŷ. The sum over the n, m index, which covers the
surface through its periods, can be converted into a sum on
Dirac delta functions. We just rewrite these sums as follows

∞

∑
n=−∞

eı n α =
∞

∑
n=−∞

eı n α e−ın (2πn′)︸ ︷︷ ︸
1

=
∞

∑
n=−∞

eı n (α−2πn′), (23)

where n′ can be any integer.
Now, we use the discrete Fourier transform: ∑n eın (α−α′) =

2π δ(α− α′), but noting that α′ = 2πn′, which means we must
sum over all the possible n′. Then, we have an infinite series of
Dirac delta functions (or a Dirac comb), resulting in

∞

∑
n=−∞

eı n α =
∞

∑
n′=−∞

δ(α− 2πn′). (24)

Using the above result in expression (22), and recognizing αx as
Lx(kx − kix) and αy as Ly(ky − kiy), the scattered field simplifies
to

Es
p(r) =

∞

∑
n,m=−∞

∫ Lx/2

−Lx/2
dx′

∫ Ly/2

−Ly/2
dy′ Fp(r′)×

×
∫ d2k⊥

(2π)2 eık⊥ ·(x−x′) eıkz |z−z′(x′)|

2ıkz
×

δ(Lx(kx − kix)− 2nπ) δ(Ly(ky − kiy)− 2mπ). (25)

We see that the integrals of the Green function collapse to
kx → knx = 2nπ

Lx
+ kix, ky → kmy = 2mπ

Ly
+ kiy and knmz =

√
k2 − k2

nx − k2
my due to the Delta functions. Again, after some

straightforward algebra, the scattered field results

Es
p(r) = ∑

n,m
eı(knx x+kmyy+knmzz) Bnm(knm) (26)

being the equation (2) of Section 2B and which is known as
the Rayleigh expansion for the scattered modes [23].

The amplitude of the induced surface fields Bnm is

Bnm(knm) =
1

2ıknmz

1
Lx Ly

∫ Lx/2

−Lx/2
dx′

∫ Ly/2

Ly/2
dy′ Fp(r′) ×

×e−ı(knx x′+kmy y′+knmz z(x′ ,y′)). (27)

The transmitted modes can be given in the same way, just
using the wavenumber for the dielectric medium (kt =

√
ε k) in

which the transmitted wave propagates.
At this point, it just remains to give a closed expression to

Fp(r′) in equation (5). This is done through the Kirchhoff approx-
imation developed in Section 2C where the equation (14) gives a
explicit expression for the induced fields over the illuminated
surface.

B. APPENDIX: RADIUS OF CURVATURE FOR BISINU-
SOIDAL SURFACES

For a deterministic surface, the radius of curvature is a function
of its first and second derivatives, and it is defined by the inverse
of its curvature H(x),

H(r) =
[(

1 + z2
y(r)

)
zxx(r) +

(
1 + z2

x(r)
)

zyy(r)

−2 zx(r) zy(r) zxy(r)
]
×
[
1 + z2

x(r) + z2
y(r)

]−3/2
,(28)

being zi(r) and zij(r) the first and second derivatives of the
surface.

We want to give a expression for equation (9), the validity
condition of Kirchhoff approximation. If we consider that the
bisinusoidal surface has the same periodicity for both directions,
Lx = Ly = L (i.e. κx = κy = κ), the mean curvature H(r) for
these kind of surfaces is just

H(r) = hκ2
[
cos(κy)

(
16 + h2κ2 sin2(κx)

)
+

cos(κx)
(

16 + h2κ2 sin2(κy)
)]

[
16 + (h κ)2

(
sin2(κx) + sin2(κy)

)]−3/2
. (29)

Then, the radius of curvature RC of equation (9) is given by
RC(r) = 1

|H(r)| . We also need the local incidence angle at each
point of this surface,

cos θl = −n̂ · k̂i

=
4 cos(θi) + h κ sin(θi) [cos(φi) sin(κx) + sin(φi) sin(κy)][

16 + (h κ)2
(
sin2(κx) + sin2(κy)

)]1/2 .

First, we must note that the product RC cos3 θl simplifies the
factor involving the square root that normalize the normal of the
surface. Once this term is simplified, inequality (9) becomes

1� 2
2π

λ

1
hκ2×
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[4 cos(θi) + h κ sin(θi) (cos(φi) sin(κx) + sin(φi) sin(κy))]3∣∣ cos(κy)
(

h2k2 sin2(κx) + 16
)
+

cos(κx)
(

h2κ2 sin2(κy) + 16
) ∣∣−1

Next, using κ = 2π/L and factorizing out the cosine of the
incidence angle, the condition of validity results

1� L2

πhλ
cos3(θi)× f (x, y)

being

f (x, y) = [4 + h k tan(θi) (cos(φi) sin(kx) + sin(φi) sin(ky))]3∣∣∣ cos(ky)
(

h2k2 sin2(kx) + 16
)
+

cos(kx)
(

h2k2 sin2(ky) + 16
) ∣∣∣−1

.

Finally, the validity condition for the Kirchhoff approximation is

π

cos3(θi)

λ

L
h
L
� f (x, y). (30)

Inequality (30) involves the product between the normalized
wavenumber λ

L and surface height h
L . This product must be

smaller than a function f (x, y) which characterizes the radius
of curvature of the surface. The function f (x, y) has a global
minimum greater than one in the range h

L = 0.2 and incidence
angles θi = 45º and φi = 63.4349º. This is easily demonstrated
by plotting f (x, y) within a period (figure not shown). Thus, for
such as values, the expression (30) is always satisfied.

Considering the two-scale surface, the inequality (30) is mod-
ified just rewriting the function f (x, y) and taking into account
that the new function will be depend on a and b, the parameters
that drive the roughness of the surface. Thus, for a surface given
by (16) the validity condition for KA has the same expression
than (30) but changing f (x, y) by

fmr(x, y; a, b) =

[4 + h κ tan(θi) (a b cos(φi) sin(b κ x) + sin(φi) sin(κ y))]3∣∣∣ cos(κ y)
(

a2h2κ2 sin2(b κ x) + 16
)
+

a b2 cos(b κ x)
(

h2κ2 sin2(κ y) + 16
) ∣∣∣−1

.

Again, the new inequality can be easily checked plotting within
a period the ratio between the constant and the function. For
instance, taking h = 0.05m, varying b from 1/3 to 1 and leaving
the remaining of the parameters unchanged, the condition the
multi-roughness surface is satisfied for most of the values used
and reaching a maximum of one in some cases where KA is not
expected to be valid.
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