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Abstract In this paper we shall introduce the notion of σ -
ideals in the variety of pseudocomplemented residuated lat-
tices.We shall also give some characterizations of the stonean
pseudocomplemented residuated lattices.

Keywords Distributive residuated lattices · Pseudocom-
plemented lattices · Stonean residuated lattices

1 Introduction

It is well known that a subset I of a Boolean algebra A
is an ideal iff the subset ¬(I ) = {¬a | a ∈ I } is a filter,
where ¬a is the negation of a. For distributive pseudo-
complemented lattices we do not have an equivalent result,
but we can identify an interesting class of ideals where
there exists a similar result. A σ -ideal in a distributive
pseudocomplemented lattice A is an ideal I such that I =
{a | ∃x ∈ I (a∗ ∨ x = 1)}, where a∗ is the pseudocomple-
ment of a. If I is aσ -ideal, then there exists a filter F such that
I = ((F)∗

] = {a | ∃ f ∈ F : (a ≤ f ∗)}. This class of ideals
was introduced by Cornish 1977 (see also Cornish 1973) to
study congruences and sheaf representations of distributive
pseudocomplemented lattices, and to give some characteri-
zations of Stone lattices.
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A distributive pseudocomplemented residuated lattice is
a distributive residuated lattice A = 〈A,∨,∧, ◦,→, 0, 1〉
such that it satisfies the equation x ∧ ¬x = 0, where
¬x = x → 0 (see Torrens 2011; Chajda et al. 2007; Cignoli
2008; Cignoli and Esteva 2009). The main objective of this
paper is to introduce the notion σ -ideal in the variety of dis-
tributive pseudocomplemented residuated lattices and give a
characterization of stonean distributive residuated lattice in
terms of σ -ideals.

The paper is organized as follows. In Sect. 2 we will recall
some notions that will be needed in the sequel. In Sect. 3 we
shall define the notion of σ -ideal in the variety of distributive
pseudocomplemented residuated lattices.We shall give some
properties of this class of ideals, and we will give charac-
terizations of the class of distributive pseudocomplemented
residuated lattices that satisfy the Stone identity.

2 Preliminaries

For basic notions in residuated lattices we refer to Chajda
et al. (2007), Galatos et al. (2007), Höhle (1995) and Turunen
(1999), and for basic concepts in distributive lattices we refer
to Balbes and Dwinger (1974). First, we recall the definition
of a distributive residuated lattice.

Definition 1 An integral bounded residuated lattice-ordered
commutative monoid, or distributive residuated lattice, for
short, is an algebra A = 〈A,∨,∧, ◦,→, 0, 1〉 of type
(2, 2, 2, 2, 0, 0) satisfying the following conditions:

R1 〈A,∨,∧, 0, 1〉 is a bounded distributive lattice,
R2 〈A, ◦, 1〉 is a commutative monoid,
R3 x ◦ (y ∨ z) = (x ◦ y) ∨ (x ◦ z),
R4 (x ◦ (x → y)) ∨ y = y,
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1774 S. A. Celani

R5 x → (y → z) = (x ◦ y) → z,
R6 x → (x ∨ y) = 1.

We denote by DRL the variety of distributive residuated
lattices.

In the next lemmawe list, for further reference, somewell-
known properties which we will use throughout this paper.
Proofs of these properties can be found, for example in Höhle
(1995).

Proposition 1 Let A ∈ DRL. Then the following conditions
hold for all x, y, z ∈ A:

1. x ≤ y iff x → y = 1.
2. z ◦ x ≤ y iff z ≤ x → y.
3. If x ≤ y, then x ◦ z ≤ y ◦ z.
4. x ◦ y ≤ x, y.

Proof 1. If x ≤ y, then by condition R6 of Definition 1, x →
(x ∨ y) = x → y = 1. If x → y = 1, then by the condition
R4 of Definition 1 (x ◦ (x → y)) ∨ y = (x ◦ 1) ∨ y = y.
The property 2 follows by the condition R5 of Definition 1.
The others properties are well known. �


Let A ∈ DRL. We define a unary operation ¬ by

¬x = x → 0,

for each x ∈ A. As usual this operation is called the negation
operation. The following properties are well known.

Proposition 2 Let A ∈ DRL. The following identities and
quasi-identities hold true in A :

1. x ≤ y, then ¬y ≤ ¬x,
2. ¬x = ¬¬¬x,
3. x ≤ ¬¬x,
4. x → ¬y = y → ¬x,
5. x → y ≤ ¬y → ¬x,
6. x ◦ ¬x = 0,
7. ¬(x ∨ y) = ¬x ∧ ¬y.
8. ¬¬x ◦ ¬¬y ≤ ¬¬(x ◦ y).

Definition 2 (Torrens 2011; Cignoli 2008; Cignoli and
Esteva 2009) A distributive pseudocomplemented residu-
ated lattice is a distributive residuated lattice A such that
x ∧ ¬x = 0, for all x ∈ A.

Let A ∈ DRL. If x∧¬x = 0, then¬x is the pseudocom-
plement of x in A as a lattice, i.e., y ∧ x = 0 if and only if
y ≤ ¬x . Indeed, suppose y∧x = 0. Then y◦x ≤ y∧x = 0,
and since ¬x = x → 0, we have y ≤ ¬x .

The variety of distributive pseudocomplemented residu-
ated lattices will be denoted by DPRL.

An implicative filter or i-filter of a bounded residuated lat-
tice A is a subset F ⊆ A satisfying the following conditions:

F1 if a ∈ F and a ≤ b, then b ∈ F ,
F2 if a, b ∈ F , then a ◦ b ∈ F .

Alternatively, an implicative filter can be defined by prop-
erties F1 and F3 : if x ∈ F and x → y ∈ F , then y ∈ F . An
implicative filter is proper if F �= A, i.e., if 0 /∈ F . We note
that every i-filter F is a filter, i.e., F is closed under ∧.

The set of all i-filters of A is denoted by Fi◦ (A). For a
subset X ⊆ A, we denote by 〈X〉 the i-filter generated by X ,
i.e., 〈X〉 =

⋂
{F ∈ Fi◦ (A) : X ⊆ F}. If X = {a}, we write

〈a〉 by 〈{a}〉. We note that

〈X〉 = {a ∈ A : ∃x0, . . . , xk ∈ X (x0 ◦ · · · ◦ xk ≤ a)} .

In particular, 〈x〉 = {a ∈ A : xn ≤ a, for some n ≥ 0}, for
x ∈ A. If F ∈ Fi◦ (A) and a ∈ A, then 〈F ∪ {a}〉 =
{x ∈ A : ∃ f ∈ F∃n ∈ N ( f ◦ an ≤ x)}.

A filter P of A is prime if a ∨ b ∈ P , implies that a ∈ P
or b ∈ P , for all a, b ∈ A. We denote by Pr(A) the set of all
prime filters of A. A prime i-filter is an i-filter P such that
P is prime. We denote by Pr◦(A) the set of all prime i-filters
of A.

The set of all filters of the bounded distributive lattice
〈A,∨,∧, 0, 1〉 is denoted by Fi (A). The set of all lattice
ideals of 〈A,∨,∧, 0, 1〉 is denoted by Id (A). The filter
(ideal) generated by a subset X is denoted by F(X) (I (X)).

Let A ∈ DPRL. A filter (i-filter) U is maximal, if it
is proper and there are not other filters (i-filters) contained
between U and A. In the theory of distributive pseudocom-
plemented lattices is well known that a proper filter U is
maximal if ∀a ∈ A (a /∈ U iff ¬a ∈ U ). We note that if U
is a maximal filter, then U is prime.

The following result, called prime i-filter theorem is fun-
damental in all that follows.

Theorem 1 Let A ∈ DRL. Let F ∈ Fi◦ (A) and I ∈ Id (A)

such that F ∩ I = ∅. Then there exists P ∈ Pr◦(A) such that
F ⊆ P and P ∩ I = ∅.
Proof See Galatos et al. (2007). �

Corollary 1 Let A ∈ DRL. Let F ∈ Fi◦ (A).

1. For each a /∈ F there exists P ∈ Pr◦(A) such that a /∈ P
and F ⊆ P.

2. F = ⋂ {P ∈ Pr◦(A) : F ⊆ P}.
3. If a �= 1 there exists amaximal i-filterU such that a /∈ U.

Lemma 1 Let A ∈ DPRL. Let P ∈ Pr (A).

1. If ¬a /∈ P then there exists Q ∈ Pr (A) such that P ⊆ Q
and a ∈ Q.

2. If¬a /∈ P then there exists a maximal i-filter U such that
P ⊆ U and a ∈ U.
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Proof (1) Let¬a /∈ P . Consider the filter F(P∪{a}). Then
0 /∈ F(P ∪ {a}), otherwise there exists p ∈ P such
that p ∧ a = 0. Since p ◦ a ≤ p ∧ a = 0, we get
that p ≤ ¬a, but this implies that ¬a ∈ P , which is a
contradiction. Thus the filter F(P ∪{a}) is proper. Then
by the prime filter theorem for distributive lattices (see
Balbes and Dwinger 1974) there exists Q ∈ Pr (A) such
that P ⊆ Q and a ∈ Q.

(2) It follows by (1).
�


Lemma 2 Let A ∈ DPRL. If a ≤ ¬b1 ∨ · · · ∨ ¬bn, then
¬a ∈ 〈{b1, . . . , bn}〉.
Proof Assume that a ≤ ¬b1 ∨ · · · ∨ ¬bn . If ¬a /∈
〈{b1, . . . , bn}〉, by Theorem 1 there exists P ∈ Pr◦(A) such
that b1, ..., bn ∈ P , and ¬a /∈ P . By Lemma 1, there
exists Q ∈ Pr(A) such that P ⊆ Q, and a ∈ Q. So,
¬b1 ∨ · · · ∨ ¬bn ∈ Q, and as Q is prime, ¬bi ∈ Q for
some 1 ≤ i ≤ n. Then bi ,¬bi ∈ Q, and this implies
that bi ∧ ¬bi = 0 ∈ Q, which is impossible. Thus,
¬a ∈ 〈{b1, . . . , bn}〉. �


3 σ -Ideals in DPRL

Let A ∈ DPRL. For each ideal I of A we consider the
following set

σ(I ) = {a ∈ A | (¬a] ∨ I = A} ,

where we recall that (x] is the principal ideal generated by
x . We note that a ∈ σ(I ) iff there exists x ∈ I such that
¬a ∨ x = 1.

Lemma 3 Let A ∈ DPRL. Let I be an ideal of A. Then
σ(I ) is an ideal such that σ(I ) ⊆ I .

Proof It is clear that σ(I ) is a decreasing subset of A such
that 0 ∈ σ(I ). Let a, b ∈ σ(I ), i.e., (¬a] ∨ I = A and
(¬b] ∨ I = A. As 1 ∈ A, there exists x, y ∈ I such that
¬a ∨ x = 1 and ¬b ∨ y = 1. We prove that a ∨ b ∈ σ(I ).
Suppose that a∨b /∈ σ(I ), i.e., (¬(a ∨ b)]∨ I �= A. So, there
exists c ∈ A such that c /∈ (¬(a ∨ b)] ∨ I . From Theorem 1
there exists P ∈ Pr (A) such that ((¬(a ∨ b)] ∨ I )∩ P = ∅,
and c ∈ P . So, ¬(a ∨ b) /∈ P and I ∩ P = ∅. By Lemma
1 there exists Q ∈ Pr (A) such that P ⊆ Q and a ∨ b ∈ Q.
As I ∩ P = ∅, we have that x, y /∈ P . Then, ¬a,¬b ∈ P .
As a ∨ b ∈ Q and Q is prime, a ∈ Q or b ∈ Q. In the
first case we obtain that ¬a, a ∈ Q, and as Q is a filter,
¬a ∧ a = 0 ∈ Q, which is impossible. If b ∈ Q, then we
obtain also a contradiction. Thus, (¬(a ∨ b)] ∨ I = A, i.e.,
a ∨ b ∈ σ(I ).

We prove that σ(I ) ⊆ I . If a ∈ σ(I ) but a /∈ I , there
exists P ∈ Pr (A) such that P ∩ I = ∅ and a ∈ P . As

¬a ∨ x = 1 for some x ∈ I , we get that ¬a ∈ P , which is a
contradiction. Thus, σ(I ) ⊆ I .

Definition 3 Let A ∈ DPRL. Let I be an ideal of A. We
shall say that I is a σ -ideal if I = σ(I ).

Now we prove that each σ -ideal is generated by a set
¬(F) = {¬ f : f ∈ F}, where F is an i-filter.

Proposition 3 Let A ∈ DPRL. For each ideal I there exists
F ∈ Fi◦(A) such that σ(I ) = I (¬(F)).

Proof Let I be an ideal. Consider the set

F = {a ∈ A | (¬¬a] ∨ I = A} .

We prove that F is an i-filter. It is clear that F is increasing.
Let a, b ∈ F . Then there exists x, y ∈ I such that¬¬a∨x =
¬¬b∨y = 1. Let z = x∨y ∈ I . Then¬¬a∨z = ¬¬b∨z =
1. So,

(¬¬a ∨ z) ◦ (¬¬b ∨ z) = z ∨ (¬¬a ◦ ¬¬b) = 1,

and as¬¬a◦¬¬b ≤ ¬¬(a◦b), we have that z∨(¬¬(a◦b))
= 1, i.e., a ◦ b ∈ F . Therefore, F ∈ Fi◦ (A).

We prove that I (¬(F)) ⊆ σ(I ). Let x ∈ I (¬(F)). Then
there are elements f1, f2, ..., fn ∈ A such that x ≤ ¬ f1 ∨
· · · ∨ ¬ fn and (¬¬ fi ] ∨ I = A, for each 1 ≤ i ≤ n. Then
there exist y1, . . . , yn ∈ I such that

1 = ¬¬ f1 ∨ y1 = · · · = ¬¬ fn ∨ yn .

We prove that ¬x ∨ y1 ∨ · · ·∨ yn = 1. Suppose the contrary.
Then there exists P ∈ Pr (A) such that ¬x /∈ P and y1 ∨
· · · ∨ yn /∈ P . By Lemma 1 there exists Q ∈ Pr (A) such
that P ⊆ Q and x ∈ Q. So, ¬¬ fi ∈ P , for all 1 ≤ i ≤ n.
So, ¬ f1 ∨ · · · ∨ ¬ fn ∈ Q, and Q is prime, ¬ fi ∈ Q for
some 1 ≤ i ≤ n. From ¬ fi , ¬¬ fi ∈ Q we obtain that
¬ fi ∧ ¬¬ fi = 0 ∈ Q, which is impossible. Therefore,
¬x ∨ y1 ∨ · · · ∨ yn = 1. As y1 ∨ · · · ∨ yn ∈ I , we have that
x ∈ σ(I ).

We prove that σ(I ) ⊆ I (¬(F)). Let x ∈ σ(I ). Then
¬x∨ y = 1 for some y ∈ I . So,¬¬(¬x)∨ y = ¬x∨ y = 1.
Then ¬x ∈ F , and thus ¬¬x ∈ ¬(F). Since x ≤ ¬¬x , we
get that x ∈ I (¬(F)). �


A stonean residuated lattice is a distributive bounded
residuated lattice A satisfying the Stone equation

¬x ∨ ¬¬x = 1. (1)

The variety of distributive stonean residuated lattices is
denoted byDSRL. Now we give different characterizations
of distributive stonean residuated lattices.

We recall that in a stonean residuated lattice A is valid the
following equation

¬¬(x ◦ y) = ¬¬x ∧ ¬¬y.
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(see Cignoli 2008). By this equation we deduce that ¬¬(xn)
= ¬¬(x ◦ · · · ◦ x) = ¬¬x , and consequently we get that

¬(xn) = ¬x .

This equation will be used in the following results.

Lemma 4 Let A ∈ DSRL. Let P ∈ Fi◦(A).Then P is max-
imal iff ¬a ∈ P, when a /∈ P.

Proof Assume that P ∈ Fi◦(A) ismaximal. Let a /∈ P . Then
0 ∈ 〈P ∪ {a}〉. So there exists p ∈ P and n ∈ N such that
p ◦ an = 0. So, p ≤ ¬an = ¬a ∈ P .

Let G ∈ Fi◦(A) such that P ⊆ G. If there exists a ∈
G − P , then ¬a ∈ P . So, a,¬a ∈ G, and as G is an i-filter,
0 = a ◦ ¬a ∈ G, and thus G = A. �

Proposition 4 Let A ∈ DSRL. For each proper σ -ideal I
there exists a maximal i-filter U such that I ∩U = ∅.
Proof Let I be a σ -ideal. By Proposition 3 there exists a i-
filter F such that I (¬(F)) = I . We prove that I (¬(F)) ∩
F = ∅. Suppose that there exists a ∈ I (¬(F)) ∩ F . Then
there exist f1, . . . , fn ∈ F such that a ≤ ¬ f1 ∨ · · · ∨ ¬ fn .
By Lemma 2, ¬a ∈ 〈{ f1, . . . , fn}〉 ⊆ F . As a ∈ F , we
have that 0 = a ∧ ¬a ∈ F , which is a contradiction. Then,
I (¬(F)) ∩ F = ∅. By Theorem 1 there exists P ∈ Pr◦ (A)

such that F ⊆ P and I (¬(F)) ∩ P = ∅. We prove that P is
maximal filter. Let a /∈ P . By Lemma 4we need to prove that
¬a ∈ P . As 〈P ∪ {a}〉 ∩ I (¬(F)) �= ∅, there exists b ∈ A
and there exist f1, . . . , fn ∈ F such that

b ≤ ¬ f1 ∨ · · · ∨ ¬ fn and p ◦ an ≤ b.

Then ¬b ∈ 〈{ f1, . . . , fn}〉 ⊆ F ⊆ P and

p ≤ an → b ≤ ¬b → ¬an = ¬b → ¬a ∈ P.

As P is an i-filter, we have that¬a ∈ P . Thus, P is maximal.
�


Theorem 2 Let A ∈ DPRL. Then A is stonean iff I (¬(F))

is a σ -ideal, for each F ∈ Fi(A).

Proof Let a ∈ A. Consider the ideal I (¬¬a). It is easy to
see that I (¬¬a) = I (¬([¬a)). By hypothesis, I (¬([¬a))

is a σ -ideal. As a ∈ I (¬¬a) then there exists x ∈ I (¬¬a)

such that ¬a ∨ x = 1. But this implies that ¬a ∨ ¬¬a = 1,
i.e., A is stonean.

Let F ∈ Fi(A). Let I = I (¬(F)). By Lemma 3,
σ(I ) ⊆ I . We need to prove the inclusion I ⊆ σ(I ). Let
a ∈ I . Then there are elements f1, f2, . . . , fn ∈ F such
that a ≤ ¬ f1 ∨ · · · ∨ ¬ fn . From Lemma 2 we have ¬a ∈
〈{ f1, f2, . . . , fn}〉 ⊆ F . Then, ¬¬a ∈ ¬(F) ⊆ I (¬(F)).
So, 1 = ¬a ∨ ¬¬a ∈ (¬a] ∨ I . Thus, (¬a] ∨ I = A, i.e.,
a ∈ σ(I ). �

Corollary 2 Let A ∈ DSRL. An ideal I is a σ -ideal if and
only if there exists F ∈ Fi(A) such that I = I (¬(F)).

Proof If I is a σ -ideal, then by Proposition 3 there exists a
filter F such that I = σ(I ) = I (¬(F)). Conversely, if there
exists a filter F such that I = I (¬(F)), then by Theorem 2,
I is a σ -ideal.

Recall that a proper ideal I of a bounded distributive lattice
A is minimal iff I c = A − I is a maximal filter.

Theorem 3 Let A ∈ DPRL. Then A is stonean iff each
minimal prime is a σ -ideal.

Proof Assume that A is stonean. Let I be a minimal prime
ideal. We prove that I ⊆ σ(I ). Let a ∈ I . Then a /∈ I c, and
by Lemma 4, ¬a /∈ I . As ¬a ∧ ¬¬a = 0 ∈ I , and I is
prime, ¬¬a ∈ I . As ¬a ∨ ¬¬a = 1, we get that a ∈ σ(I ).

Assume that there exists a ∈ A such that ¬a ∨ ¬¬a �= 1.
Then by the prime filter theorem, there exists P ∈ Pr (A)

such that¬a∨¬¬a /∈ P . Since every primefilter is contained
in amaximal filter, we have that there exists a propermaximal
filterU such that P ⊆ U . If¬a ∈ U , then a /∈ U . As I = Uc

is a proper minimal ideal, and by hypothesis I is a σ -ideal,
we have that there exists x ∈ I such that ¬a ∨ x = 1. Since
P is prime and ¬a /∈ P , we get that x ∈ P ⊆ U , which is a
contradiction. Thus, ¬a /∈ U , i.e., ¬a ∈ Uc = σ(Uc). Then
there exists x /∈ U such that¬a∨x = 1. But¬a∨x = 1 ∈ U
and as it is prime, ¬a ∈ U or x ∈ U , which is impossible.
Thus, ¬a ∨ ¬¬a = 1, and A is stonean. �

Definition 4 Let A ∈ DSRL. Let I be an ideal of A. We
shall say that I is an α-ideal if ¬¬a ∈ I , whenever a ∈ I .

We note that as a ≤ ¬¬a, for all a ∈ A, an ideal I of A
is an α-ideal iff ∀a ∈ A (a ∈ I iff ¬¬a ∈ I ).

It is not hard to prove this adaptation of the prime ideal
theorem.

Proposition 5 Let A ∈ DPRL. Let F ∈ Fi(A) and I be
an α-ideal such that F ∩ I = ∅. Then there exists a prime
α-ideal J such that F ∩ J = ∅ and I ⊆ J .

Lemma 5 Let A ∈ DSRL. If I is a prime α-ideal I , then
(¬(I c)

]
is a prime ideal.

Proof Let I be a primeα-ideal.Wefirst prove that (¬(I c)
] ⊆

I . Let a ∈ A and x /∈ I such that a ≤ ¬x . Then x ≤ ¬¬x ≤
¬a. So, ¬a /∈ I , and since ¬a ∧ ¬¬a = 0 ∈ I and I is
prime, ¬¬a ∈ I . So, a ∈ I , because I is decreasing.

Since 1 ∈ I c, we have that 0 = ¬1 ∈ (¬(I c)
]
. Let a, b ∈

(¬(I c)
]
. Then there are elements x, y /∈ I such that a ≤ ¬x

and b ≤ ¬y. Let z = x ∨ y. As I is an ideal, z /∈ I , and since
a ≤ ¬z and b ≤ ¬z, we get that a ∨ b ≤ ¬z. Thus, (¬(I c)

]

is an ideal.
We prove that (¬(I c)

]
is prime. Let a∧b ∈ (¬(I c)

]
. Then

a∧b ∈ I . As I is prime,we can assume that a ∈ I , and taking
into account that I is an α-ideal, we get that ¬¬a ∈ I . Since
¬a ∨ ¬¬a = 1 /∈ I , ¬a /∈ I . So, ¬¬a ∈ ¬(I c) ⊆ (¬(I c)

]
.

Thus, (¬(I c)
]
is a prime ideal.
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Theorem 4 Let A ∈ DPRL. Then the following conditions
are equivalent:

1. A is stonean,
2. (¬(I c)

]
is a prime ideal for each prime α-ideal I .

Proof The direction (1) ⇒ (2) follows by the previous
lemma. We prove (2) ⇒ (1). Suppose that there exists
a ∈ A such that ¬a ∨ ¬¬a �= 1. Let us consider the
ideal (¬a ∨ ¬¬a]. As ¬¬(¬a ∨ ¬¬a) = ¬a ∨ ¬¬a, we
have that I is a proper α-ideal. Then by Proposition 5 there
exists a prime α-ideal J such that I ⊆ J . We note that ¬a,

¬¬a ∈ J . By hypothesis the ideal (¬(J c)
]
is a prime ideal.

It is clear that (¬(J c)
] ⊆ J . We prove that a,¬a /∈ (¬(J c)

]
.

If a ∈ (¬(J c)
]
, then there exists d /∈ J such that a ≤ ¬d.

So, d ≤ ¬¬d ≤ ¬a, and as ¬a ∈ J and J is decreas-
ing, we obtain that d ∈ J , which is a contradiction. If
¬a ∈ (¬(J c)

]
, then there exists g /∈ J such that ¬a ≤ ¬g.

So, g ≤ ¬¬g ≤ ¬¬a, and as ¬¬a ∈ J , we obtain that
g ∈ J , which is an absurd. Thus, a,¬a /∈ (¬(J c)

]
. Since

(¬(J c)
]
is prime, a ∧ ¬a = 0 /∈ (¬(J c)

]
, which is impossi-

ble, because (¬(J c)
]
is an ideal. Therefore, ¬a ∨ ¬¬a = 1,

for all a ∈ A. �

Theorem 5 Let A ∈ DPRL. Then A is stonean iff I = σ(I )
for every α-ideal I .

Proof ⇒) Let I be an α-ideal. Let a ∈ I . Then¬¬a ∈ I . As
A is stonean,¬a∨¬¬a = 1. So, a ∈ σ(I ). Thus, I = σ(I ).

⇐) Let a ∈ A. Consider the principal ideal (¬¬a] = I .
It is clear that I is an α-ideal. As a ≤ ¬¬a, we get that a ∈
I = σ(I ). Then there exists x ≤ ¬¬a such that¬a∨ x = 1.
Thus, ¬a ∨ ¬¬a = 1, and consequently A is stonean. �
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