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Abstract
In this work we generalize the concept of activity of continuous time signals. We define the activity of order n of a signal
and show that it allows us to estimate the number of sections of polynomials up to order n which are needed to repre-
sent that signal with a certain accuracy. Then we apply this concept to obtain a lower bound for the number of steps per-
formed by quantization-based integration algorithms in the simulation of ordinary differential equations.
We perform an exhaustive analysis over two examples, computing the activity of order n and comparing it with the number
of steps performed by different integration methods. This analysis corroborates the theoretical predictions and also allows us
to measure the suitability of the different algorithms depending on how close to the theoretical lower bound they perform.

Keywords
Activity tracking, discrete event simulation, continuous systems, quantized state systems, numerical solvers

1. Introduction

The concept of activity associated to a continuous signal

(in the following, continuous activity) was introduced by

Jammalamadaka1 in order to measure the rate of change of

a signal.

More precisely, in its original definition the continuous

activity computes the total change experienced by a sig-

nal within a given interval of time. Thus, for a monotoni-

cally increasing or decreasing signal, the activity

measures the distance between the final and the initial

values. When a signal is not monotonic, the activity is

computed as the sum of the activities of the piecewise

monotonic sections.

In either case, the formal definition of the activity for a

signal xi(t) between an initial time t0 and a final time tf is

given by

Axi(t0, tf ) =
D
Z tf

t0

dxi(t)

dt

����
���� � dt ð1Þ

According to this formulation, the activity only mea-

sures distances between final and initial values, without at

all using the information about how the signal reaches

those values. Thus, a monotonic signal that grows (or

decreases) with a straight ramp presents the same activity

as a monotonic signal that starts and ends at the same val-

ues but follows a more complex function of time.

When a continuous time signal xi(t) is the input of a

zero-order quantization function, the corresponding

output trajectory qi(t) is piecewise constant as shown in

Figure 1.

The number of discontinuities of the output trajectory

qi(t) is closely related to the activity of the input xi(t).

Notice that for each jth interval of time at which xi(t) is

monotonic, the number of quantum crossings is about Aj/

DQi, where Aj is the amplitude (i.e. the activity) of the

monotonic segment and DQi is the quantum size.

Thus, the total number of discontinuities in qi(t) can be

directly computed as

k’
Axi(t0, tf )

DQi

ð2Þ

Zero-order quantization functions like that of Figure 1

are used in some quantized state systems (QSS) numerical
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integration algorithms, such as the first-order accurate

QSS1 method,2 the backward QSS (BQSS) method,3 and

the first-order accurate linearly implicit QSS (LIQSS1)

algorithm.4

Thus, equations (1) and (2) can be used to establish a

lower bound for the number of steps needed by those meth-

ods to simulate a given system with a given quantum. That

way, the concept of activity can predict the minimal com-

putational costs required to simulate a system with a given

accuracy.

However, there exist higher-order quantization func-

tions that are also used in QSS methods of higher order.

For instance, the QSS2 method5 uses first-order quantiza-

tion functions that produce piecewise linear output trajec-

tories as shown in Figure 2.

In these cases, neither equation (1) nor equation (2) pro-

vide any help in estimating the number of discontinuities

in the output trajectory.

Firstly, as was already mentioned, the activity

definition of equation (1) obtains the same result for a

straight ramp as for a more complex (monotonic) signal,

provided that both signals have the same amplitude.

However, a straight ramp can be represented by a single

section of a piecewise linear trajectory while a more com-

plex signal, depending on the quantum, would require

more segments. Evidently, this difference is not captured

by equation (1).

Secondly, it is known that in second-order accurate

methods like QSS2 the number of steps varies with the

square root of the quantum DQi.
4,5 However, equation (2)

shows a linear dependence, which is clearly wrong.

These facts motivated the need to generalize the con-

cept of activity so that it can still be applied in presence of

higher-order quantization.

In this work we study and develop the idea of activity

of order n of a signal as a property that allows estimation

of the number of sections of polynomials up to order n that

are needed to represent said signal with a given accuracy.

Then, we apply this concept to obtain a lower bound for

the number of steps performed by quantization-based inte-

gration algorithms in the simulation of ordinary differen-

tial equations (ODEs).

The paper is organized as follows. In Section 2 we

begin with a historical perspective of activity-based mod-

eling and simulation establishing the relation between dis-

crete and continuous activity. Then in Section 3 we review

quantization schemes up to order 3, followed by Section 4

briefing how they are used in quantization-based simula-

tion of continuous systems.

In Section 5 we first derive the expression for nth-order

quantization, and building on that we present the new defini-

tion for continuous activity of order n. Then in Section 6 we

apply the new definitions in two practical example models: a

first-order non-stiff system, and a second-order stiff system.

In both cases we analyze the correlation between theoretical

and practical results obtained through simulation.

Finally, in Section 7 we present the conclusions and

provide hints about follow-up steps stemming from the

concepts introduced in this work.

2. Historical perspective on activity-based
modeling and simulation

During the 1960s (Lackner6,7 and Kiviat8,9) and the begin-

ning of the 1970s (Fishman10) discrete event simulation

strategies started being categorized according to so-called

world views (‘Weltansicht’). World views were originally

meant to provide conceptual frameworks that can systemati-

cally guide the development of discrete event simulation

languages and simulation software. A subsequent more prac-

tical reference study is that of Balci11 in the late 1980s.

Figure 1. Zero-order quantization. Figure 2. First-order quantization.
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The ‘classical’ world views are event scheduling, activ-

ity scanning and process-oriented. The adoption of one or

several of these can be performed according to the needs

of the particular goal at hand (e.g. creating a simulation

language, a software tool or a single model).

In a nutshell, these world views can be summarized as

follows:

� Event scheduling: model dynamics are driven by

events scheduled ahead of time, on a continuous

time base, according to local rules whose logic can-

not be subjected to global state information.
� Activity scanning: model dynamics are driven by

activities, which are phases commenced and ended

by events. Such events make a model’s phase

‘active’ or ‘inactive’. The occurrence of events can

only take place on a clock-driven discrete-time

base. At each time slot, models are ‘scanned’ to

check whether conditions are satisfied for the trig-

gering events.
� Process interaction: model dynamics are driven by

processes, which can be combinations (possibly

complex) of events and/or activities (i.e. of the

event scheduling and the activity scanning

paradigms).

An updated and more in-depth description of world views

can be found in Banks et al.12

Recently in Muzy and Zeigler13 an integrative approach

was introduced aiming at combining modeling views and

time flow management under a single strategy termed

activity tracking. The activity tracking pattern merges the

three classical world views. Time flow is continuous and

dynamics are driven by events, just like in event schedul-

ing. At the same time, active and inactive phases can be

handled just like in activity scanning. Nonetheless the lat-

ter is achieved by an asynchronous tracking mechanism

(handling ‘marks’ that are propagated throughout a hierar-

chy of models), instead of the classical synchronous scan-

ning mechanism (which queries all models only at

permitted time slots).

In Muzy and Zeigler13 it was proposed that the DEVS14

(Discrete EVent System Specification) formalism is a

sound candidate for expressing and implementing the

activity tracking strategy. The authors proposed activity

tracking as a comprehensive world view for modeling and

simulation that can improve efficiency and rigorousness.

Regardless of the world view of choice, in the context

of discrete event simulations dynamic systems ultimately

get driven by trajectories of state changes on a continuous

time base. As time evolves, the occurrence of events dic-

tates state changes at given timestamps. The latter can be

counted and then interpreted quantitatively as a measure of

the ‘activity’ of the system. Within the activity tracking

realm, the word activity is linked to this quantitative count-

ing of a discrete nature, or discrete activity.

In contrast, continuous activity (as introduced by

Jammalamadaka1 and discussed in the previous section) is

a quantitative measure of a continuous nature.

Continuous activity can serve as a formal link between

inherent characteristics of a continuous signal and the min-

imum discrete activity theoretically required to approxi-

mate said signal with a desired accuracy, using a

quantized-state simulation method in a discrete event

setup.15 This idea applies for example to the particular

case where the quantized-state simulation method is one

of the QSS methods mentioned before.

Such a formal link can enable establishing a theoretical

connection between the analytical expression of a continu-

ous trajectory and the computational effort required to

simulate it. An obvious parameter that can serve as said

link is the quantum size adopted for the quantization-based

approximation.

In the context of the historical evolution of world views,

continuous activity is relevant as it can provide quantita-

tive links between the emerging activity tracking pattern

and the domain of continuous systems simulation.

Nevertheless, to achieve true generality, a formal foun-

dation must be provided that considers generalized

quantization-based numerical techniques of arbitrary order

of approximation. Such a general formal foundation is the

main result presented in this work.

2.1. State of the art in the field

Several works have recently investigated the advantages of

applying activity-driven techniques in discrete event simu-

lation. The reader is referred to the references therein for a

broader perspective.

In Jain et al.16 the activity scanning strategy is analyzed

in the context of other possible world views, new defini-

tions are introduced (e.g., qualitative and quantitative

activity) and a multi-level model life cycle is adapted to

embrace activity-aware simulations. In Muzy et al.17 the

authors applied the activity tracking paradigm to one-

dimensional partial differential equations (PDEs) solved

numerically using state quantization instead of a time-

slicing method. They showed evidence on how to use dis-

crete events as a means to track activity in a simple spatial

system, using a diffusion model with a known analytical

solution for accuracy comparison purposes. They also

emphasize that activity of systems can be ‘tracked’ (basi-

cally, dealt with) at both modeling and simulation phases.

A recent work by Hu and Zeigler18 introduces an activity-

based framework that links information and energy, and

applies it to support energy-aware information processing

in wireless sensor nodes that detect and monitor wildfires.

Also recently Santucci and Capocchi19 provided a detailed

analysis for a practical implementation of the activity

Castro and Kofman 339
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tracking paradigm in the context of the object-oriented

DEVSimPy simulation framework. Muzy et al.20 explore

the activity concept in varied modeling domains, and

based on them identify a general three-level architecture

for guiding the construction of component-based systems.

3. Signal quantization schemes

In this section we review a particular family of quantiza-

tion functions which are used in the context of

quantization-based integration of ODEs.

These quantization functions approximate a continuous

time input signal xi(t) by a piecewise polynomial output

signal qi(t) so that they do not differ more than the quan-

tum DQi. That is, they ensure that

jxi(t)� qi(t)j4DQi ð3Þ

3.1. Zero-order quantization

In zero-order quantization2,21 the approximating polyno-

mial segments are of order zero, in other words, the quan-

tized signal qi(t) is piecewise constant.

Formally, given an input signal xi(t) and a piecewise

constant output signal qi(t), we say that they are related by

a zero-order quantization function Q0 with quantum DQi if

they satisfy

qi(t)= qi(tj) for tj 4 t \ tj+ 1 ð4aÞ

with the sequence tj defined by

tj+ 1 = min
t . tj

t subject to jqi(tj)� xi(t)j=DQi ð4bÞ

Notice that qi(t) follows a piecewise constant trajectory

that only changes its value when the difference between

qi(t) and xi(t) becomes equal to the quantum. After each

recalculation of the quantized variable, qi(t) = xi(t) results.

This behavior is depicted in Figure 1.

One consequence of this approach is that a regular grid

of evenly spaced quantization thresholds can be imagined

superimposed on the input and output trajectories offering

an intuitive visual perception of the quantization process:

new values of qi(t) are produced as xi(t) hits the thresholds

that verify jqi(tj) 2 xi(t)j = DQi.

Unfortunately, as we shall shortly see, this grid-oriented

hint is only possible in the zero-order case; such an evenly

spaced set of adjacent thresholds will lack any meaning in

higher-order schemes, starting already with the first-order

quantization case.

3.2. First- and second-order quantization

The same idea presented for zero-order quantization is fol-

lowed in first-order quantization,5 but this time around

resorting to piecewise linear segments for constructing

qi(t) rather than piecewise constant as in the preceding

case.

Formally, given an input signal xi(t) and a piecewise

linear output signal qi(t), we say that they are related by a

first-order quantization function Q1 with quantum DQi if

they satisfy

qi(t)= qi(tj)+ c1, j � (t � tj) for tj 4 t \ tj+ 1 ð5aÞ

with the sequence tj defined by

tj+ 1 = min
t . tj

t subject to

jqi(tj)+ c1, j � (t � tj)� xi(t)j=DQi

ð5bÞ

and c1,j computed as

c1, j =
dxi

dt
(tj) ð5cÞ

The result of this approach is that qi(t) follows a piecewise

linear trajectory that experiences discontinuities at time

instants t = tj when the difference between qi(tj) and xi(tj)

is equal to the quantum DQi.

Along the same lines, given an input signal xi(t) and a

piecewise parabolic output signal qi(t), we say that they are

related by a second-order quantization function22 Q1 with

quantum DQi if they satisfy

qi(t)= qi(tj)+ c1, j � (t � tj)

+ c2, j � (t � tj)
2 for tj 4 t \ tj+ 1

ð6aÞ

with the sequence tj defined by

tj+ 1 = min
t . tj

t subject to jqi(tj)

+ c1, j � (t � tj)+ c2, j � (t � tj)
2 � xi(t)j=DQi

ð6bÞ

and c1,j, c2,j computed as

c1, j =
dxi

dt
(tj); c2, j =

1

2!

d2xi

dt2
(tj) ð6cÞ

which results in qi(t) following a piecewise parabolic tra-

jectory, changing their polynomial coefficients only at

time instants t = tj when the difference between qi and xi

becomes equal to the quantum DQi.

The behavior of a second-order quantization function is

depicted in Figure 3.

4. Quantization-based integration

Continuous time systems are typically represented by

ODEs. Except for very simple cases, these ODEs lack ana-

lytical solutions and they must be approximated by
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numerical integration algorithms in order to be solved.

Classic numerical integration algorithms are based on the

discretization of the time variable.21

In recent years, a new class of ODE solvers has been

developed that replaces the time discretization by state

quantization.21 These algorithms, based on Zeigler’s idea

of representing quantized system as DEVS models,14,23

are called QSS methods.

A QSS numerical solver operates naturally in an asyn-

chronous mode, in other words, the instants tj belong to the

set of positive real numbers and are not confined to any

synchronized pattern of time instants.

Each state variable carries its own simulation clock. If

the states of a subsystem change very little, the model

equations capturing the dynamics of that subsystem will

be executed rarely (or equivalently, their activity will be

very low).

In the context of QSS-based simulations a dormant

model does not slow down the simulation, as its equations

will not get executed (i.e. it will experience null activity).

The quantization schemes presented above are those

employed within QSS methods that will be described in

the next section.

4.1. First-order QSS1 method

Given the system

_xa(t)= f(xa(t), t) ð7Þ

with analytical solution xa(t), the first-order QSS1 method

approximates it by

_x(t)= f(q(t), t) ð8Þ

Here, q is the quantized state vector. Its entries qi(t) are

component-wise related to those of the state vector xi(t)

by a hysteretic quantization function, defined as in

equation (4).

4.2. Other first-order QSS methods

Besides QSS1, BQSS,3 centered QSS (CQSS)3 and

LIQSS14 perform first-order approximations. They differ

from QSS1 in the definition of the quantization function

given by equation (4), however, in all these methods the

quantized variables qi(t) follow piecewise constant

trajectories.

BQSS and LIQSS1 were conceived to efficiently simu-

late stiff systems, while CQSS was proposed to simulate

marginally stable systems.

4.3. Higher-order QSS methods

The accuracy of the simulation is directly related to the

quantum DQi.
5 Thus, if we want to improve the accuracy

by a factor of for example 100, the quantum must be

reduced 100 times. Then, any first-order QSS method will

perform 100 times more steps. This is a serious limitation

of first-order schemes, since accurate results require per-

forming lots of steps with the corresponding increment in

the computational costs.

To overcome this difficulty, higher-order methods were

developed like the second-order QSS (QSS2)5 and the

third-order QSS (QSS3).22

The QSS2 method is based on the same principles as

QSS1, approximating equation (7) by equation (8).

However, it replaces the zero-order quantization function

of equation (4) and Figure 1 by the first-order quantization

function of equation (5) and Figure 2.

Consequently, the quantized state trajectories qi(t) are

piecewise linear and each segment starts with a value and

slope equal to that of the corresponding state xi(t). When

both trajectories differ by DQj, a new segment of qi(t)

starts.

It was shown that in QSS2 the number of steps grows

with the square root of the accuracy. Thus, if we want to

improve the accuracy by a factor of 100, QSS2 performs

only 10 times more steps.

The third-order QSS3 method is identical to QSS2,

except that it replaces the first-order quantization function

by the second-order quantization function of equation (6)

and Figure 3.

A second-order quantization function generates an out-

put piecewise parabolic trajectory whose value, slope and

second slope change when the difference between the out-

put and input of the function becomes bigger than the

quantum. Each output segment starts with the same value,

slope and quadratic slope as the input.

It was shown that in QSS3 the number of steps grows

with the cubic root of the accuracy. Thus, if we want to

improve the accuracy by a factor of 1000, QSS3 performs

only 10 times more steps.

Besides QSS2 and QSS3, there exist linearly implicit

QSS methods of orders two (LIQSS2) and three (LIQSS3)

Figure 3. Second-order quantization.

Castro and Kofman 341

 at UBA on December 15, 2015sim.sagepub.comDownloaded from 

http://sim.sagepub.com/


which are particularly suitable for simulating stiff sys-

tems,4 while having definitions very similar to those of

QSS2 and QSS3.

5. Activity of order n

In this section we generalize the concept of activity so that

it can be applied in the context of higher-order quantiza-

tion functions like those used in QSS2 and QSS3 methods.

Before introducing the new definition of activity of

order n, we present a definition of nth-order quantization.

5.1. nth-order quantization

The ideas behind first- and second-order quantization func-

tions presented in Section 3.2 can be generalized to define

the nth-order quantization function Qn(t).

Given an input signal xi(t) and a piecewise polynomial

output signal qi(t), we say that they are related by an nth-

order quantization function Qn with quantum DQi if they

satisfy

qi(t)= qi(tj)+ c1, j � (t � tj)+ c2, j � (t � tj)
2

+ . . . + cn, tj :(t � tj)
ngtfor tj 4 t \ tj+ 1

ð9aÞ

with the sequence tj defined by

tj+ 1 = min
t . tj

t subject to jqi(tj)+ c1, j � (t � tj)

+ c2, j � (t � tj)
2 + . . . + cn, tj :(t � tj)

n

� xi(t)j=DQi

ð9bÞ

and the coefficients cm,j computed as

cm, j =
1

m!

dmxi

dtm
(tj) ð9cÞ

The latter requires all derivatives of xi(t) to exist at least

up to the order of the quantization scheme, that is, n.

5.2. Analytical derivation of activity of order n

In this section we define an analytical expression for activ-

ity of order n.

The original definition of activity1 given by equation

(1) integrates the rate of change dxi(t)
dt

��� ��� experienced by a

continuous time signal xi(t) in a given interval of time.

When qi(t) is a piecewise constant approximation of

xi(t) (i.e. the result of a quantization function of order

zero), the rate of change dxi(t)
dt

��� ��� coincides with the rate at

which the difference Dxi = jqi(t) 2 xi(t)j grows (while qi(t)

remains constant). Consequently, as soon as a quantum

DQi is chosen, the number of constant sections required to

approximate the signal immediately gets determined by

the division of the activity by the quantum size. We refer

to this activity as activity of order zero.

However, if qi(t) is obtained from a quantization func-

tion of order n 2 1 with n 5 2, the rate at which the dif-

ference jqi(t) 2 xi(t)j grows follows a different law:

Dxi(t)= xi(t)� qi(t)= xi(t)

� xi(tj)+
dxi(tj)

dt
� (t � tj)+ . . . +

dn�1xi(tj)

dtn�1 � (t � tj)
n�1

(n� 1)!

� �

ð10Þ

where tj is the time of the last discontinuity of qi(t).

Evidently, for the same given accuracy, the number of

sections of polynomials up to order n 2 1 required to

approximate the signal requires a reformulation.

We proceed as follows. Replacing xi(t) in equation (10)

by its Taylor series expansion,

xi(t)= xi(tj)+
dxi(tj)

dt
� (t � tj)

+ . . . +
dnxi(tj)

dtn
� (t � tj)

n

n!
+ . . .

we obtain

Dxi(t)=
dnxi(tj)

dtn
� (t � tj)

n

n!
+

dn+ 1xi(tj)

dtn+ 1
� (t � tj)

n+ 1

(n+ 1)!
+ . . .

When the difference t 2 tj is small or when the nth deriva-

tive of x(t) is constant (as happens in QSSn methods), the

difference between qi(t) and xi(t) results:

Dxi(t)’
dnxi(tj)

dtn
� (t � tj)

n

n!
ð11Þ

After t = tj, the next discontinuity in qi(t) occurs at t =

tj+ 1, where jDxi(t)j = DQi. Then from equation (11) it

results that

DQi’
dnxi(tj)

dtn

����
���� � (tj+ 1 � tj)

n

n!

Dividing the latter by DQi and computing the (1/n)th

power on both sides, we get

1’

dnxi(tj)
dtn

n!

������
������
1=n

� 1

DQi

� �1=n

�(tj+ 1 � tj)

This equation holds for j = 0,.,k21 in the interval

(t0,tk). Then, we can compute the summation for j on both

sides:

Xk�1
j= 0

1’
Xk�1
j= 0

dnxi(tj)
dtn

n!

������
������
1=n

� 1

DQi

� �1=n

�(tj+ 1 � tj)
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and approximating the summation by the integral we

finally obtain

k’
1

DQi

� �1=nZ tk

t0

dnxi(t)
dtn

n!

�����
�����
1=n

dt

which provides an expression for the number of disconti-

nuities in qi(t) on the interval (t0, tk).

From this last expression, it makes sense to define the

nth-order activity of the signal xi(t) on the interval (t0, tf)

as

A
(n)
xi(t0, tf )

¼D
Z tf

t0

dnxi(t)

dtn

n!

�������

�������

1=n

dt ð12Þ

In that way, given a continuous time signal xi(t) we can

estimate the number of discontinuities for an approxima-

tion of order n using a quantum DQi as

k
(n)
xi(t0, tf )

(DQi)’
A
(n)
xi(t0, tf )

(DQi)
1=n

ð13Þ

The following is a list of considerations about equation

(12) and some of its relevant implications:

� When n = 1 equation (12) coincides with the

original definition of activity of equation (1) and

the formulae for estimating the number of discon-

tinuities given by equations (13) and (2) become

identical.
� With equation (12) we also extended to the nth

order the concept that the activity measure is a

property inherent to a signal, in contrast to equation

(13), which calculates a number depending on an

arbitrary choice of the quantum size.
� While the activity of order 1 measures the rate of

change of the continuous signal, the activity of nth

order takes into account the rate of change of the

signal’s derivatives.
� Equation (12) generalizes the original definitions

and results found by Zeigler et al.15 that foresee

applications of continuous activity beyond the effi-

cient simulation of differential equations, for exam-

ple to improvements in techniques of data sensing,

data compression, communication in multi-stage

computations, or spatial quantization.

6. Examples

In this section we apply the new concept of activity of

order n to two simple linear systems.

6.1. A first-order linear system

The first-order linear system

_x(t)= a � x(t)

has solution x(t) = x(0) �ea�t.

The nth-order activity of the solution x(t) is, according

to equation (12),

A
(n)
x(0, tf )

= n � j1� ea�tf =nj � x0

n!

��� ���1=n

ð14Þ

When a is negative and ja�tfj . . n we get

A
(n)
x(0, tf )

’n � x(0)

n!

����
����
1=n

Notice that the activity in this case is independent on the

eigenvalue a.

Using the parameter a = 21, initial condition x(0) = 1

and a final time tf = 5, the activities of orders one, two and

three, according to equation (14), result:

A
(1)
x(0, tf )

= 0:993262; A
(2)
x(0, tf )

= 1:298128;

A
(3)
x(0, tf )

= 1:339137
ð15Þ

We simulated the system with QSS1, QSS2 and QSS3

methods using in each case quanta DQ = 1022,

DQ = 1024 and DQ = 1026. Then, we compared the num-

ber of steps performed by each method with the number of

steps predicted by equation (13). The results are shown in

Table 1.

6.1.1. Analysis of the results. The results agree with the the-

oretical predictions. There are only two cases in which the

results do not coincide: the QSS1 simulation with a small

quantum and the QSS3 simulation with a large quantum.

In the first case, the steps are very small (there are more

than 980,000 steps in 5 s). As a consequence, the round-

off errors become significant.

In the second case, the difference is due to the fact that

QSS3 starts with a first-order approximation (in the first

step it does not have information about the first derivative)

and then it follows with a second-order one. Only after the

third step does it really perform a third-order

approximation.

It is also important to recall that QSS methods may

introduce some spurious oscillations which provoke addi-

tional steps that are not predicted by the activity of the ana-

lytical solution. These oscillations appear in the numeric

solution of the system when it is approximated via quanti-

zation, and represent an artifact that is not present in the

analytical solution of the original system.
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6.2. A second-order stiff system

Stiff systems are a class of dynamical systems where slow

and fast dynamics coexist. For stability reasons, stiffness

poses particular difficulties for non-stiff classic numerical

solvers. Provided that the step size is adjusted so that the

numerical solutions remain stable, they invariably end up

performing an excessive number of computation steps for

coping with spurious high-frequency oscillations which

are numerical artifacts introduced by the (non-stiff aware)

numerical techniques.

Unfortunately, non-stiff quantization-based algorithms,

such as QSS methods, experience similar difficulties.

When a stiff system is solved by a QSS method, spurious

high-frequency oscillations appear in the numerical solu-

tion (which are not present in the analytical solution).3,4,21

Due to these oscillations, the activity of the numerical

solution is much higher than the activity of the analytical

solution. Thus, the number of steps performed by non-stiff

QSS methods lose any relation to the theoretical figure pre-

dicted by (13).

However, a special branch of state-quantization-based

methods has recently been developed that efficiently simu-

lates many stiff systems. BQSS and LIQSS methods3,4

tend to eliminate the spurious oscillations, yielding a num-

ber of practical quantum crossings that more closely match

the theoretical activity figures.

In this example, we consider the following second-order

system that illustrates these facts:

_x1 = 0:01 � x2(t)
_x2 = � 100 � x1(t)� 100 � x2(t)+ u

ð16Þ

The system above has eigenvalues l1’20.01 and

l2’299.99, which implies that it is a stiff system. Its ana-

lytical solution has the following structure:

x1(t)= c1 � el1�t + c2 � el2�t + c3

x2(t)= c4 � el1�t + c5 � el2�t + c6
ð17Þ

with coefficients ci (i = 1,.,6) depending on the initial

conditions x1(0), x2(0) and the constant input term u.

The nth-order activity of the solutions x1(t) and x2(t)

results, according to equation (12), as follows:

A
(n)
1 (tf )=A

(n)
x1(0, tf )

= n � 1� el1�tf =n
�� �� � c1

n!

��� ���1=n

+ n � 1� el2�tf =n
�� �� � c2

n!

��� ���1=n

A
(n)
2 (tf )=A

(n)
x2(0, tf )

= n � 1� el1�tf =n
�� �� � c4

n!

��� ���1=n

+ n � 1� el2�tf =n
�� �� � c5

n!

��� ���1=n

ð18Þ

Selecting initial conditions x1(0) = 0, x2(0) = 20 and

the input u = 2000+ 200/9 we obtain c1 = 0.0000224287,

c2 = 20.2222, c3 = 0, c4 = 20.224265, c5 = 20.2243,

c6 = 0. (The input value u was chosen so that it is not a

multiple of the quantum DQi. Otherwise, under certain

conditions, the first-order accurate QSS1 may not exhibit

spurious oscillations, as analyzed by Cellier and

Kofman.21)

Finally, for a final simulation time of tf = 500, the theo-

retical activity for orders of approximation n = 1 to 3 is as

follows:

A
(1)
1 ’21; A

(2)
1 ’5:8; A

(3)
1 ’3:7 ð19Þ

for variable x1(t), and

A
(1)
2 ’20:3; A

(2)
2 ’6:5; A

(3)
2 ’4:6 ð20Þ

for variable x2(t).

As in the previous example, we simulated the system

with quantization-based methods of orders n = 1 to 3. This

time around, besides using QSS methods, we simulated the

system using the LIQSS family for stiff systems.

We grouped the experiments according to the order n,

adopting an initial quantum of DQi = 1 and a final quan-

tum of DQi = 1023�n with decrements by one order of

magnitude.

Finally, we compared the number of steps performed by

QSS and LIQSS methods with that predicted by (13). The

results are shown in Tables 2, 3 and 4 and analyzed below.

Table 1. Theoretical and real numbers of quantum crossings.

QSS1 QSS2 QSS3

k(1) = A(1)

�Q

Steps
k(2) = A(2)ffiffiffiffiffiffiffi

�Q
p

Steps
k(3) = A(3)

(�Q)1=3

Steps

DQ = 10− 2 99.3262 100 12.981 13 6.2157 12
DQ = 10− 4 9932.62 9933 129.81 130 28.8508 28
DQ = 10− 6 993,262 983,881 1298.1 1298 133.914 133
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6.2.1. Analysis of results. We analyze the behavior of the

quantized state variables q1 and q2 present in the quantized

version of system (16):

_x1 = 0:01 � q2(t)

_x2 = � 100 � q1(t)� 100 � q2(t)+ u
ð21Þ

First-order methods. In Table 2, for the quantized state

variable q1 we can observe how, as expected, as DQ

decreases the QSS1 steps grow approximately linearly

with the growth in the precision demand.

In contrast, the QSS1 steps for the quantized variable q2
appear unrelated to the precision increments and are domi-

nated by large numbers produced by spurious oscillations,

evidencing the stiff nature of the model.

Figure 4 sharply evidences this difference for the beha-

vior of q1 and q2 as they evolve in time resulting from a

QSS1 approximation.

The congruence between the theoretical activity and the

practical number of QSS1 steps is therefore very good for

q1, though unrecognizable for q2.

Meanwhile, also from Table 2, the LIQSS1

method presents a different picture, retaining for both

quantized variables the congruence between theoretical

activity and number of LIQSS1 steps as the precision

grows.

Figure 5 shows similar behavior (number of quantum

crossings) for q1 and q2 as they evolve in time resulting

from a LIQSS approximation.

The analysis above evidences how activity acts as a

theoretical baseline (in fact, as a lower bound) with which

the performance of quantization-based methods can be

compared.

Second- and third-order methods. The considerations

stated before for first-order methods are applicable to

higher-order ones.

Tables 3 and 4 show the expected evolution of QSS2

steps and QSS3 steps for q1 as the precision grows, respec-

tively. As expected, in the QSS2 case steps grow with the

square root of the increment in the precision, and in the

QSS3 case, with the cubic root. For q2 the number of prac-

tical steps again does not adhere to any relation with the

Table 2. First-order non-stiff (QSS1) and stiff (LIQSS1) methods. Theoretical and real numbers of steps.

Number of steps at q1 Number of steps at q2

k(1) = A(1)

�Qi

QSS1 LIQSS1
k(1) = A(1)

�Qi

QSS1 LIQSS1

DQi = 1 21 21 20 20.3 17,279 24
DQi = 10− 1 200.1 202 201 203.1 17,224 206
DQi = 10− 2 2008.6 2010 2009 2031.2 16,256 2032
DQi = 10− 3 20,086 20,087 20,086 20,312.4 26,657 20,287
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Figure 4. QSS1 solution of the stiff system of equation (16)
with DQi = 1 showing spurious oscillations on q2(t).

0 50 100 150 200 250 300 350 400 450 500

−5

0

5

10

15

20

25

t

q
1(

t)
; x

1(
t)

; q
2(

t)
; x

2(
t)

x1(t); q1(t)

x2(t); q2(t)

Figure 5. LIQSS1 solution of the stiff system of equation (16)
with DQi = 1.
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precision or the theoretical activity, presenting very high

figures as a consequence of spurious oscillations.

On the other hand, the stiff solvers LIQSS2 and

LIQSS3 do not exhibit spurious oscillations and the num-

ber of steps they perform is consistent with what is pre-

dicted by the theoretical activity.

7. Conclusions and open issues

We have presented a generalization of the concept of

activity for continuous time signals. While the original

definition of activity1 measures the rate of change of the

signal, the new definition of activity of nth order takes into

account the rate of change of its higher-order derivatives.

By so doing, this new concept allows us to estimate not

only the number of steps performed by first-order quanti-

zation-based numerical integration algorithms such as

QSS1, but also the number of steps performed by higher-

order methods.

This fact was analyzed with two simple examples,

where the number of steps performed by the QSSn and

LIQSSn algorithms and the theoretical estimations based

on the activity of order n agreed in most cases for different

orders and accuracy settings.

The second example also evidenced that, when trying

to simulate a stiff system with non-stiff solvers like QSSn,

spurious oscillations appear and the activities of the analy-

tical and numerical solutions are far away from each other.

Consequently, the number of steps performed by the sol-

ver is higher than what the activity predicts.

For this reason, the theoretical estimation provided by

the activity of order n is in fact a lower bound for the num-

ber of steps performed by an algorithm of order n. This

lower bound can be compared with the actual number of

steps given by an algorithm, measuring how suitable that

algorithm is for simulating the system.

We remark that the results presented in this work are,

in principle, of theoretical value. The exact computation

of the activity of order n (including the original case of

n = 1) requires knowing the analytical solution of the sys-

tem, which is impossible to obtain except for very simple

cases.

However, the new concept formalizes the relationship

between activity and quantization-based simulation of

Table 4. Third-order stiff and non-stiff methods. Theoretical and real numbers of quantum crossings.

Number of steps at q1 Number of steps at q2

k(3) = A(3)

(�Qi)
1=3

QSS3 LIQSS3
k(3) = A(3)

(�Qi)
1=3

QSS3 LIQSS3

DQi = 1 3.7 412 9 4.6 92,391 11
DQi = 10− 1 8 412 12 10 92,395 16
DQi = 10− 2 17.1 412 17 21.6 92,397 27
DQi = 10− 3 36.5 413 36 46.5 92,384 50
DQi = 10− 4 79.6 409 79 100.2 92,393 101
DQi = 10− 5 171.5 394 171 215.9 92,415 212
DQi = 10− 6 369.5 439 369 465.2 92,458 461
DQi = 10− 7 796.1 783 795 1002.2 92,511 996
DQi = 10− 8 1715.1 1715 1713 2159.1 92,721 2154
DQi = 10− 9 3695.1 3693 3692 4651.7 93,169 4651

Table 3. Second-order stiff and non-stiff methods. Theoretical and real numbers of steps.

Number of steps at q1 Number of steps at q2

k(2) = A(2)ffiffiffiffiffiffiffiffi
�Qi

p QSS2 LIQSS2
k(2) = A(2)ffiffiffiffiffiffiffiffi

�Qi

p QSS2 LIQSS2

DQi = 1 5.8 10 7 6.5 65,453 10
DQi = 10− 1 18.5 19 19 20.6 65,443 21
DQi = 10− 2 58.4 58 59 65 65,440 65
DQi = 10− 3 184.9 184 184 205.8 65,412 207
DQi = 10− 4 584.4 585 585 650.8 65,379 650
DQi = 10− 5 1848.1 1848 1848 2058 65,257 2095
DQi = 10− 6 5844.4 5842 5843 6507.7 64,056 7506
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continuous systems for higher-order algorithms. It also

establishes a formal proof regarding the relationship

between computational costs (which depend on the num-

ber of steps performed) and the accuracy of a simulation

(which depends linearly on the quantum DQi) for a method

of order n (see equation (13)).

Some possible next steps arise from the results pre-

sented in this work, which are open issues for future

research to be carried out in the activity area:

� Explore how the knowledge of the activity for each

variable in a given system can be exploited to

derive optimal model partitioning and mapping to

multiple parallel processing nodes (cores, proces-

sors, servers) in order to maximize speed-ups as

compared to a serial (single node) simulation.
� Derive a possible definition for a vector activity

that measures the complete activity of multidimen-

sional signals. This measure should estimate the

number of steps needed by classic discrete-time

numerical algorithms. Then, a comparison between

the vector activity and the scalar activity in a sys-

tem could be used to decide on the convenience of

using discrete-time or quantization-based numerical

algorithms.
� As we mentioned above, computing the activity

requires knowing the analytical solution of a sys-

tem. Work is needed on establishing conditions

under which the activity can be directly computed

from a numerical solution.
� As suggested by a reviewer, it would be useful to

study how nth-order activity can be estimated from

observations of a system’s behavior as early or eas-

ily as possible, for instance determining (or approx-

imating) bounds on the system’s nth derivative,

which would in turn determine a bound on the theo-

retical minimum number of steps required to simu-

late the system in a given time interval.

We are currently exploring some of these research lines.
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