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Composite Retrieval of Diverse and
Complementary Bundles

Sihem Amer-Yahia, Francesco Bonchi, Carlos Castillo, Esteban Feuerstein,
Isabel Mendez-Diaz, and Paula Zabala

Abstract—Users are often faced with the problem of finding complementary items that together achieve a single common goal (e.g., a
starter kit for a novice astronomer, a collection of question/answers related to low-carb nutrition, a set of places to visit on holidays). In
this paper, we argue that for some application scenarios returning item bundles is more appropriate than ranked lists. Thus we define
composite retrieval as the problem of finding k& bundles of complementary items. Beyond complementarity of items, the bundles must
be valid w.r.t. a given budget, and the answer set of k bundles must exhibit diversity. We formally define the problem and show that in
its general form is NP-hard and that also the special cases in which each bundle is formed by only one item, or only one bundle is
sought, are hard. Our characterization however suggests how to adopt a two-phase approach (Produce-and-Choose, or PAC) in which
we first produce many valid bundles, and then we choose k among them. For the first phase we devise two ad-hoc clustering
algorithms, while for the second phase we adapt heuristics with approximation guarantees for a related problem. We also devise
another approach which is based on first finding a k-clustering and then selecting a valid bundle from each of the produced clusters
(Cluster-and-Pick, or CAP). We compare experimentally the proposed methods on two real-world data sets: the first data set is given by
a sample of touristic attractions in 10 large European cities, while the second is a large database of user-generated restaurant reviews
from Yahoo! Local. Our experiments show that when diversity is highly important, CAP is the best option, while when diversity is less
important, a PAC approach constructing bundles around randomly chosen pivots, is better.

Index Terms—Composite retrieval, maximum edge subgraph, complementarity, diversity

1 INTRODUCTION

ONLINE search has become a daily activity and a source
of a variety of valuable information, from the finest
granularity such as finding the address of a specific restau-
rant, to more complex tasks like looking for accessories
compatible with an iPhone or planning a trip. The latter typ-
ically involves running multiple search queries to gather
information about different places, reading online reviews
to find out about hotels, and checking geographic proximity
of places to visit. We refer to this information seeking activ-
ity as composite retrieval and propose to organize results into
item bundles that together constitute an improved explor-
atory experience over ranked lists.

As a first step towards composite retrieval definition, we
need to formalize intuitive desirable properties of item
bundles. We distinguish between properties of each bundle
in the answer and properties of the answer as a whole.
Given the wide applicability of composite retrieval, we pro-
pose to first explore these properties in a few application
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scenarios, then we motivate the need for a framework to
study composite retrieval complexity and develop efficient
algorithms.

1.1 Composite Retrieval Scenarios

Consider the case of a user selecting the restaurants to try
during a visit to a new city. In this scenario, the user has a
limited budget which might be either financial, or simply
the number of nights to spend in the city. Moreover the user
prefers suggested restaurants to serve different cuisines. In
this setting the validity of a bundle of restaurants is given
by the budget constraint and the complementarity of the
restaurants in the bundle w.r.t. the cuisine they serve. Other
restaurant attributes could be used for defining valid bun-
dles. For example, instead of cuisines, different dress codes
(e.g., casual, business casual, formal) could distinguish res-
taurants in a single bundle.

Moreover, in order to provide meaningful bundles, res-
taurants forming each bundle must be compatible, e.g.,
close geographically, or liked by similar reviewers. The
degree of compatibility of the items forming a bundle
defines the quality of the bundle. Intuitively, in the case geo-
graphic distance is used, the closer restaurants are from
each other, the higher the quality of the bundle they belong
to. Similarly, when common reviewers are used as the qual-
ity of a bundle, the higher the overlap in similar reviewers
within the same bundle, the higher the quality of that bun-
dle. Finally, bundles forming an answer set can be gener-
ated to cover different various geographic areas, or
different reviewers segments, thereby producing an answer
set of bundles with diversity.
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In general, browsing and searching social media, e.g., a
photo-sharing site, or a question-answering portal, might
benefit from composite retrieval. Given a query or while
browsing a category, diverse bundles of complementary
resources might provide a better experience for the user.
Complementarity of resources forming a bundle can be
expressed, e.g., using topical sub-categories in order to
ensure that no two resources in the same bundle are on the
same sub-category. Budget can simply be the number of
resources forming a bundle. Compatibility of two resources
can be expressed by their similarity, e.g., the Jaccard coeffi-
cient of their tags, or the overlap of the users that expressed
interest for the resources—thereby bundling together
resources from the same user community. In this last case,
diversity is achieved by finding multiple bundles each of
which representing the opinion of a different user
population.

Other applications include online shopping where prod-
ucts forming the same bundle have different types (e.g., a
telescope, a carrying bag, a lens kit, an astronomy book),
their total price is within budget, and they are compatible
according to their manufacturers. City tours can also be rep-
resented as a bundle with one item per attraction (e.g.,
museum, monument, market, park), budget is the total time
required to visit all items in a bundle, or the total cost of the
entrance tickets, and compatibility is an inverse of geo-
graphic distance. Here, diversity means attractions in differ-
ent areas of the city. Finally, team building for problem
solving is another application scenarios for composite
retrieval. Here we want to find experts on a topic (e.g.,
safety standards experts) to form a team. The team needs to
contain complementary members with different roles—e.g.,
a manager, an engineer, a lawyer—with an upper limit on
the team size. Compatibility requires experts to have
worked together in the past.

1.2 Atrticle Contributions and Roadmap

Our work lays the theoretical foundations for composite
retrieval, a general framework under which different var-
iants of the problem can be defined by constraining some
dimensions and optimizing others.

The above examples show the wide applicability of com-
posite retrieval beyond traditional information retrieval and
the variety of complementarity and budget constraints that
could be used. It is important to note that bundles may be
built using the most relevant items to a query thereby mak-
ing traditional relevance orthogonal to bundle construction.
That allows us to define the quality of a bundle, i.e., its
score, as a function of pair-wise similarities between its
items. As in traditional retrieval, we aim to retrieve highly
scoring and also diverse bundles. The quality of a collection
of k bundles is given by a weighted combination of the qual-
ity of each bundle and inter-bundle diversity. While we pro-
vide a proof of concept with two different data sets, for
specific future applications user studies would need to be
deployed.

Our contributions can be summarized as follows:

e We define and study the problem of retrieving k
diverse bundles of complementary items under a
per-bundle budget. In Section 2 we formally define
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the problem and we provide two different proofs of
NP-hardness, highlighting two different aspects of
the complexity of the problem. Both proofs reduce
the well known NP-complete MaxiMuM EDGE Sus-
GRAPH problem to ours.

e Given that our problem is NP-hard, we turn our
attention to approximation algorithms. Following
the hint of our NP-hardness proofs, in Section 3 we
describe a two-phase approach (Produce-and-Choose,
or PAC) in which we first produce many valid bun-
dles, and then we choose k among them. For the
choosing phase we show an approximation-preserv-
ing reduction from MaxiMuM EDGE SuBGRAPH which
enables us to adopt heuristics that have been devel-
oped in the literature for that problem.

e For the task of producing good bundles we observe
the similarity between the objective function of our
problem, and that of clustering. Following this obser-
vation, in Section 4 we devise two ad-hoc clustering
algorithms: the first one based on constrained hierar-
chical clustering, and the second one inspired by
k-nn clustering. In Section 5 we introduce a different
approach which is based on first finding a k-cluster-
ing and then selecting a valid bundle from each of
the produced clusters and in Section 6 we present an
integer programming (IP) formulation of our prob-
lem, which may be used to obtain the exact solution.

e In Section 7 we compare experimentally the pro-
posed methods on two real-world data sets. The first
is given by a sample of 20 touristic attractions in
10 large European cities, while the second is a large
database of user-generated restaurant reviews from
Yahoo! Local. We assess both quality and efficiency.
We show that our heuristics produce good results
according to our optimization objective, comparing
them with the results of the IP implementation
within a Branch-and-Cut framework. Our main find-
ing is that the performance of these methods
depends basically on a parameter controlling the
tradeoff between the average score of the bundles
and the diversity of the set of bundles. When diver-
sity is highly important, we obtained the best perfor-
mance using algorithms based on creating a global
clustering of the items first, and then choosing bun-
dles that respect those clustering boundaries. When
diversity is less important, we show that “local”
methods that construct good bundles around ran-
domly chosen pivots produce better results.

2 PROBLEM DEFINITION AND COMPLEXITY

We are given a set of items Z. Each item in Z is uniquely
identified and has a set of attributes. We assume a similarity
value s(u, v) for each pair of items (u,v) € Z x Z. The simi-
larity values s(u,v) may be provided explicitly in the input,
or computed implicitly from the representation of the items.
For instance, if items are documents, s(u,v) may be defined
as the cosine between the vectors that represent the docu-
ments u and v; if items are restaurants, s(u,v) may be
defined as the fraction of reviewers that like both « and v;
etc. Hereinafter, we simply consider the values s(u,v) as
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input to our problem and we do not make any assumption
on how to obtain those values.

Sometimes it is useful to think of our input as a complete,
undirected and weighted graph G = (Z, E,s), where each
edge (u,v) has a weight s(u,v). For sake of clarity of presenta-
tion, we consider that the similarity function s takes values in
the interval [0, 1] (this is always achievable by normalization).

For convenience we also refer to the distance function
between item pairs, defined as d(u,v) = 1 — s(u, v), that also
takes values in the interval [0, 1] (although by definition we
cannot warrant that d(u, v) defined this way is really a met-
ric, i.e., it obeys triangular inequality).

Our goal is to retrieve a set of bundles § = {51, ..., S},
where a bundle S; € 27 is a set of items that satisfy con-
straints of complementarity and budget as expressed in the fol-
lowing definition.

Definition 1 (Valid Bundle). Given a set of items
T = {i1,...,in},abundle S € 2% is said to be valid iff it satis-
fies the following two constraints:

o  Complementarity. Given a property o of the items (e.g.,
an attribute), no two items in S; € S exhibit the same
value for that property: i.e., Vu,v € S;, u.o0 # v.ct.

e Budget. Given a set-valued non-negative and monotone
function f : 2V — RT, and given a budget threshold B,
we require that ¥S; € S, f(S;) < B. Typical examples
of budget are simply the number of items forming a bun-
dle or an upper-bound on the sum of the costs of items
forming the bundle, given a cost attribute.

For example, in the case of restaurants, the property o
could be cuisine type (e.g., Chinese, American) or geo-
graphic area (e.g., East Village, Greenwich Village, Lower
East side) or a combination thereof.

The budget function f could be the sum of the average
price of a meal at all restaurants forming the bundle. In a
travel application, items are specific attractions, « their type
(e.g., Museum, Park), and f can be the time required to visit
each place.

We are now ready to define the problem of composite
retrieval.

Problem 1 (Composite Retrieval). Given a set of items
T ={ir,...,in}, a pair-wise similarity function s(u,v) for
each (u,v) € T x I, a complementarity attribute o, a budget
function f : 27 L R*,a budget threshold B, and an integer k,
findaset S ={S,...,Si} of valid bundles that maximizes:

D> vswuy+ Y A== max_ s(uv)),

1<i<k u,ves; 1<i < j<k

where y is a user-defined scaling parameter.

The objective function resembles a typical clustering
objective, where the total quality of the clustering is
expressed as a weighted combination of the quality of single
clusters (which in turn is defined as their intra-cluster cohe-
sion) and inter-cluster separation. The latter can be defined
as the minimum distance between an item in one bundle
and an item in another one. Intra-cluster cohesion reflects
cluster quality as a function of the similarity or cohesion
between items forming the cluster. Inter-cluster separation
reflects answer diversity.
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Unlike standard clustering, our problem does not seek a
total partitioning of items, instead it aims at finding £ good
groups, that might potentially be small as they are bounded
by the budget constraint. Therefore, some items in 7 might
not belong to any bundle or belong to more than one. It is
worth noting that our problem definition, by summing over
all elements in a bundle, favors larger bundles: as large as
possible given the budget constraint.

The complementarity requirement, requiring no more
than one single element of a given kind to belong to a bun-
dle, can be seen as a set of many cannot-link constraints typi-
cal to constrained clustering [5]. In particular, given the
complementarity property o, each item cannot-link with all
the other items in 7 that have the same value for «. These
observations will be used later in Section 4 to devise algo-
rithms for composite retrieval.

Finally, it is important to note that bundles are built
using the most relevant items to a query thereby making tra-
ditional relevance orthogonal to bundle construction. That
allows us to define the quality of a bundle, i.e., its score, as a
function of pair-wise compatibilities between its items. Sim-
ilarly to traditional retrieval, we aim to retrieve highly scor-
ing and also diverse bundles. The quality of a collection of
k bundles is given by a weighted combination of the quality
of each bundle and inter-bundle diversity.

2.1 Problem Complexity

Not surprisingly our problem is hard. We provide two dif-
ferent proofs of NP-hardness, where the first one highlights
the complexity of the first argument of the objective func-
tion, and the second one the complexity of the second argu-
ment. Both proofs reduce the well known NP-complete
problem MaxmvuMm EDGE SUBGRAPH (also known as Dense k-
subgraph) to our problem. The Maximum EDGE SUBGRAPH
problem requires to find a set of m nodes, such that the
induced subgraph has maximum sum of edge weights.

Theorem 1. Composite retrieval is NP-hard.

Proof. We prove the hardness by reducing Maxmum EDGE
SUBGRAPH to our problem. Given an instance £ of Maxi-
MUM EDGE SUBGRAPH, consisting of a graph G = (V, E), a
weight function w: E — N, and an integer m < |V, we
create an instance J of composite retrieval as follows.
For each node v € V we create an item v € Z. Moreover
we give the same value of complementarity attribute « to
all items v € Z, so that no bundle of size larger than one
qualifies. Similarly we set the budget function to be the
cardinality of a bundle and the budget threshold to be 1.
The required number £ of bundles is m. Finally, for each
pair of items w,v€Z, we set s(u,v) =1—w(u,v) if
(u,v) € E, and s(u,v) =1 otherwise. The reduction can
clearly be carried out in polynomial time. Under that
reduction, the left summation in the objective function of
composite retrieval is null, as each bundle is formed only
by one item. Therefore, the objective becomes to maximize

1- 1- :
1=» > ( ax s(wv))

i<j<k

The term (1 — y) can be removed. Moreover we can iden-
tify each bundle with the unique element forming it.
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Thus, we can rewrite the objective function as

i<j<m

Therefore a set S={51,...,5:} CV is a solution in
instance £ of MaxiMuM EDGE SUBGRAPH iff it is a solution in
instance J of composite retrieval. O

While the proof above exploits a reduction where each
bundle can contain at most a single item, the next proof
uses a reduction where a unique bundle is sought.

Proof. Given an instance £ of MaxiMvuMm EDGE SUBGRAPH, con-
sisting of a graph G =(V,E), a weight function
w: E'— N, and an integer m < |V|, we create an instance
J of composite retrieval as follows. For each node v € V
we create an item v € Z. The parameter £ of our problem
is set to 1, i.e., we ask for a single bundle. We now assign
a different value of the complementarity attribute « to all
items v € Z, so that any two items can be part of the same
bundle. Similarly to the previous proof, we set budget
function to be the cardinality of a bundle, but now the
budget threshold is set to be m, i.e., we ask for a single
bundle of size m. Finally, for each pair of items u,v € Z,
we set s(u,v) = w(u,v) if (u,v) € E. Clearly, this reduc-
tion can be carried out in polynomial time.

With this reduction, the right summation in the objec-
tive function of composite retrieval is null, as there is just
one bundle in the answer. The objective function to maxi-
mize is

S wstwe) = 3 ys(wo) = Y yuluu),

1<i<1 uwesS; u,vES] u,veS]

which is exactly the same as maximizing the objective
function of MaxiMuMm EDGE SUBGRAPH. O

Given that our problem is NP-hard, we turn our atten-
tion to heuristics and approximation algorithms. Going in
that direction, it becomes crucial to see what is known about
the Maxmvum EDGE SubGraPH that we used in our reduction.
In fact, in both reductions the number of nodes and edges
remain equal, as well as the edges” weights. Then we con-
clude that all negative approximability results for Maximum
EDGE SuBGRAPH apply to Composite Retrieval.

The bad news is that Maximum EDGE SUBGRAPH cannot
be approximated within constant factors unless P=NP
[6]. Moreover, it is believed that it is hard to approximate
within a polylogarithmic factor, and the same non-
approximability results apply to our problem. We will
however direct our effort to heuristics that try to
use some known non-constant approximation-guaranteed
algorithms. In the following, m denotes the parameter of
the MaxiMum EDGE SUBGRAPH problem. Asahiro et al. [4]
propose a simple heuristic that consists in repeatedly
removing a vertex with the minimum weighted-degree
in the currently remaining graph, until exactly m
vertices are left. The approximation ratio is O(n/m). Feige
et al. [12] and very recently, Bhaskara et al. [6] give
more complex heuristics improving the approximation
ratios up to O(n'/*+¢). In the significant particular
case in which the weights obey the triangular inequality,
a 2-approximation exists [16]. Note that, even if the max-
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dense-subgraph (i.e., where no bound on the size of
the subgraph is given) is polinomialy solvable [14], our
double NP-hardness proof shows that even if we
removed the budget or complementarity constraints the
problem would still NP-hard, as the complexity would be
attached to the sub-problem of finding the most diverse
set of k bundles.

Also note that, as it may be seen from the above
NP-hardness proofs, even the particular problem of finding
just one (the best) bundle is hard, whenever there are bud-
get constraints. However, in some particular cases the prob-
lem can be solved in polynomial time. These are the cases in
which the bundle size is bounded by some constant. That
happens, for example, whenever the number of different
values of the complementarity attribute « is bounded by a
constant, so in O(n/*) time we can solve the problem by con-
sidering all possible item combinations that fulfill the com-
plementarity constraints. A similar approach can be taken
when the cardinality of the bundles is limited by a constant
upper-bound. In all these cases a brute force approach could
be feasible.

3 PRODUCE BUNDLES AND CHOOSE

In the previous section, we showed the complexity of our
problem by means of two different reductions from Maxi-
MUM EDGE SuBGrAPH. The first of the two reductions suggests
a possible approach for composite retrieval. In fact, if we
generate candidate bundles and we consider each candidate
bundle as a node of a bundle-graph, where inter-bundle dis-
tances are the edge weights, then we are again in front of
the Maximum EDGE SUBGRAPH problem.

This suggests that composite retrieval can be solved by
generating a set of candidate bundles and then selecting the
best possible subset. We call this approach Produce-and-
Choose (Algorithm 1).

Algorithm 1 Produce — and — Choose

Input: Z, o, f, 5, k, v as in Problem 1
Output: A set S of k valid bundles.
1: Cand < produce_bundles(Z, a, f, §);
2: G + build_bundle_graph(Cand);
3: return ChooseBundles(k,~,G);

The more bundles we generate in the Produce phase, the
better the result we can expect to have. If the set of candi-
dates Cand contains all possible bundles we can obtain the
exact solution (but we cannot do that polynomial time) or
an approximate one (in polynomial time).

Thus we tackle our problem by generating proper sub-
sets of candidate bundles and trying to smartly select
among them.

In the rest of this section we focus on the Choose phase
(algorithm ChooseBundles) and show that we can exploit
the known results for Maximum EDGE SUBGRAPH, discussed in
the previous section, while preserving approximation guar-
antees. For this, we need to define an intermediate problem,
in which both edges and nodes are weighted, and where we
need to find a maximum weight (considering edges AND
nodes) k-node induced subgraph.
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Formally, the Maximum EDGE-NODE SUBGRAPH problem is
the following: the input consists in a graph G = (V,E), a
weight function ¢ : £ — N, a weight functionw : V' — N, an
integer k < |V| and a real value y € [0, 1]. The output is a set
V' C V such that |V’| = k that maximizes the total weight of
the edges and the nodes in the subgraph induced by V7,
denoted G' = (V', E'), weighted by the parameter y, as fol-
lows:

yS o+ 1-y) Y wluo).

ueV’ (uv)eE!

It is straightforward to see the direct relation between
our PAC approach to composite retrieval (i.e., first pro-
duce bundles and then choose those maximizing the
objective function), and the Maximum EDGE-NODE SUBGRAPH
problem defined above. In particular bundles are nodes,
quality of a bundle (i.e., cohesion) is the node’s weight,
and inter-bundle distances are edge weights. We next
show an approximation-preserving reduction from
instances of MaxiMum EDGE-NODE SUBGRAPH to MAXiMUM
EDGE SuBGrRAPH that will allow us to apply any of the
approximated algorithms for the Maximum EDGE SUBGRAPH
problem and maintain the same approximation guaran-
tee. Note that if Cand is not complete, we loose all
approximation guarantees. Intuitively, however, the bet-
ter approximation ratios we have for the Choose phase,
the better results we can expect.

Consider an instance of MaxiMum EDGE-NODE SUBGRAPH:
G=(V,E),¥(u,v),w(u),k and y. We transform it to an
instance of the MaxmvuM EDGE SusGraPH where G = (V, E)
and k are the same, and the edges weight function is:

w(u,0) = 555 (@) + o) + (1= V) (w,0)

We can see that a solution V' (and its induced subgraph
G’ = (V',F')) maximizing the instance of Maxmum EDGE
SUBGRAPH is also maximizing the corresponding instance of
Maxmmum EDGE-NODE SUBGRAPH:

w(u, v)
(u,w)eE!
= Y o(u) + w(v — w. v
~5 2, el (=) 3 vlu)

14
=g (D2 e+ k=13 ew)

+(1=y) Y ¥l(uv)
(up)eE!

Y .
~5-n 2k ; w(u) +(1-y) (X);E ¥(u,v)
S ewri-9 Y o).

ueV’ (u,)eE!

The best approximation guarantee for Maxmvum EDGE
SUBGRAPH is given for the case that edge weights, i.e.,
inter-bundle distance, is a metric [16]. Unfortunately, in
our problem where inter-bundle distance is defined as
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(1 — maxyes, ves;s(u,v)), or equivalently as the minimum
distance d(u,v) =1 — s(u,v), triangular inequality does
not hold. This can be seen through the following family
of counter-examples, that can be present whenever bun-
dles are of size greater than one. Consider three bundles
A, B and C. There may be an item b € B that has maxi-
mum similarity with an item a € 4, and another item
b € B with maximum similarity with an item ceC,
while there does not exist an item in A with maximum
similarity with any item in C. In this setting the distance
between bundles A and C' would be larger than zero,
while distances between A and B, and between B and C
would be both null, i.e., triangular inequality does not
hold. Thus, we cannot borrow the two-approximation of
[16], and will need to refer to some of the heuristics that
have been proposed in [4], [6], [12]. The first of them
may be applied to the weighted version of the problem,
while the other two were developed for the unweighted
version and can be extended to the weighted version
incurring an additional O(logn) factor in the approxima-
tion ratio [12]. This is done by first scaling edge weights
to n* and then applying a procedure that consists in
dividing the edges into 2logn buckets according to their
weights, then solving separately the 2logn instances of
the unweighted problem obtained by including only the
edges in each bucket, and finally selecting the best of the
2logn solutions obtained.

Among the three heuristics just mentioned, we choose to
implement the one in [4], due to its simplicity and applica-
bility to the weighted case.

Algorithm 2 ChooseBundles

Input: k£, v, and the bundle weighted graph G =
(V.E) where VS € V : w(S) = 3_, ,c55(u,v), and
V(Si,S5) € E:9(S;,S;) = 1 —maxycs, ves; 5(u,v).

Output: A set S of k valid bundles. '

: Define w(u,v) = ﬁ(w(u) + w) + (1 —

) (u,v).

285« V

3: while |S| > k do

4w argminpes) Y ,es w(u, v);

5

6

—_

Remove u from S
. return S

Algorithm 2 provides the pseudocode for the Choose
phase of our method. It receives in input a set of
valid bundles according to Definition 1. This set of bun-
dles is represented as a complete weighted graph,
where nodes are bundles. Nodes and edges are
weighted with intra-bundle cohesion and inter-bundle
separation respectively.

Given this graph and the parameters y and k, this is
an instance of Maximum EDGE-NODE SuGrRAPH that can be
educed to an instance of MaximuM EDGE SUBGRAPH by set-
ting the edges’ weight as in line 1. Then we can
apply the heuristic of [4] greedily removing at each itera-
tion the vertex with minimum weighted-degree (lines
4-5) in the currently remaining graph, until exactly k ver-
tices are left (line 3).
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4 CREATING GOoOD BUNDLES

In this section we devise methods for the produce_bundles
phase of our method. As we discussed in Section 2, our
objective function resembles a typical clustering objective
function, where the total quality of the clustering is
expressed as a weighted combination of the quality of single
clusters and the inter-cluster separation. Additionally, com-
plementarity within each bundle can be enforced by means
of a set of cannot-link constraints.

Following these observation we propose two alternative
algorithms for the task of producing a set of good valid bun-
dles Cand, with given cardinality |Cand| = ¢ > k. The first
method is based on constrained hierarchical clustering [10],
while the second takes inspiration from k-nn clustering.

4.1 Constrained Clustering

The first option we consider is to perform a constrained
hierarchical agglomerative clustering (C-HAC, Algorithm 3)
using d(u,v) = 1 — s(u,v) as distance among items « and v.
C-HAC starts with a number of clusters equal to the number
of input elements, and then iteratively merges the closest
clusters until a stop condition (e.g., number of clusters) is
met. Two clusters S;, Sy such that the resulting bundle
S1 U S, is not valid, i.e., if it does not honor budget or com-
plementarity constraints, cannot be merged.

Algorithm 3 C-HAC

Input: Z, o, f, 8, and number of bundles ¢
Output: a set of ¢ valid candidate bundles

1: Cand + Uiel’{i}

2: while [Cand| > ¢ do

3:  bestscore < —o0

4 bestcandidate <+ ()

5. for (each S; € Cand) do

6

7

for (each S; € Cand; S; # S;) do
if (validMerge(S;, S, a, f,3)) then // S; U
S; form a valid bundle

8: if (score(S; U S;) > bestscore) then
9: bestscore < score(S; U Sj)
10: bestcandidate < {S;, S;}

11:  if (bestcandidate = () then // no more merging
is possible

12: break

13:  Cand + Cand — S VS € bestcandidate

14:  Cand < clusters U bestcandidate

15: return Cand

The verification of whether two bundles can be merged into a
valid bundle (validMerge in line 7) can be made faster by
observing that if S;US; is not a valid bundle, then
(S1UT)U (S, UV) is not a valid bundle either for any
T,V C Z. This means that a graph of “incompatibility” (con-
necting clusters that cannot be merged) can be kept, and after
every merge in the algorithm, this graph can be updated sim-
ply by lumping the nodes corresponding to the merged clus-
ters and keeping all their non-redundant edges. Note that in
this algorithm each cluster is always a valid bundle, so when
it reaches the stopping condition |Cand| = ¢ we can immedi-
ately return Cand without the need for any further check.
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4.2 Bundles One-by-One (BOBO)

The second method for producing a good set of candidate
bundles is inspired by k-nn clustering. At each step an item
is chosen as pivot, and a valid bundle is built around that
pivot. If the bundle generated has a good internal cohesion
it is kept, otherwise it is discarded. We call this method
BOBO and we report its pseudo-code in Algorithm 4.

BOBO starts with an empty set of candidate bundles (line 1),
and considers each item as a possible pivot (line 2). At each itera-
tion an item is picked from the set Pivots. Line 4 determines the
way in which pivots are chosen. We can pick pivots uniformly
at random among the candidates pivots, or with a certain bias to
particular candidate pivots, or do a more sophisticated
approach such as picking at each step the furthest pivot to the
previous one. Once a pivot is selected we build a bundle S
around it. This is done by the routine pick_bundle described
in Algorithm 5. The routine greedily keeps picking the closest
element to the pivot w (line 3), as far as the complementarity
constraint (line 4) and the budget constraint (line 5) are satisfied.

Algorithm 4 BOBO

Input: Z, o, f, 5, minimum bundle score u, and
number of bundles ¢
Output: a set of ¢ valid candidate bundles
1: Cand + ()
2. Pivots <1
3: while Pivots # () and |Cand| < ¢ do
w <« pick an element from Pivots
Pivots < Pivots \ {w}
S ¢+ pickBundle(w,Z,q, f, 3)
if score(S) > u then
Pivots < Pivots \ S
9: Cand < Cand U {S}
10: return Cand

® N 9o

Other greedy objectives for pick_bundle can be used. For
instance, instead of choosing the element ¢ that maximizes
s(i,w) one can pick the element that maximizes s(i,j) for
j € s, or the one that maximizes ). s(i,j). We experi-
mented with these more complex objectives and the results
were not substantially better than with the simpler one we
report, while the running times were definitively worse.

Let us go back to BOBO’s main loop. Once a candidate bun-
dle is created we check (line 7) whether its internal cohesion
score(S) = >, g 5(u,v) is larger than an input given thresh-
old p. If also this check is passed then the bundle enters in
Cand and its elements are removed from Z and Pivots so that
they are no longer used. Instead if the bundle S has a score
lower than p then it is discarded. In both cases the pivot w is
removed from Pivots so that it is no longer considered.

The algorithm might end without having produced c
valid bundles due to a too restrictive w. In this case we
might keep the cand set we have produced, if its size is > F,
or we can re-run BOBO with a smaller u.

5 CLUSTER-AND-PICK

We next introduce a totally different method, suggested by
the observation that the objective function of composite
retrieval has various similarities with a clustering problem.
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In a first phase items are clustered based on their compa-
tibilities, to form k clusters with good internal cohesion and
external separation. This can be done by means of any stan-
dard clustering algorithm. Then in a second phase we pick
a good bundle from each cluster (subroutine BestBundle,
Algorithm 7, which in turn calls subroutine PickBundle,
Algorithm 5). We refer to this method as CAP (Cluster-and-
Pick, Algorithm 6). Note that contrary to the algorithms of
the previous sections, none of the steps of this approach
gives us any kind of approximation guarantee.

Algorithm 5 pick_bundle

Input: pivot w, set of items 7, parameters «, f, 3
1: s < {w}; covered + {w.C}
2: active < I \ {w}; finish + false
3: while not finish do
i ¢ argmaX(icactive] S(i,w)
if i.a ¢ covered then
if f(suU{i} <) then
$ <= s+ i; covered < covered U {i.a}
else
finish < true
10:  active < active \ {i}
11: return s

o PN Ao

Algorithm 6 CAP: Cluster-And-Pick
Input: Z, o, f, B,k;
Output A set S of k valid bundles.
. clusters < clustering(I, k)
S+ 0
for each cluster € clusters do
S < S U bestBundle(cluster, a, f, B);

return S

Algorithm 7 BestBundle Routine

Input: set of items C, «, f, 5;
Output: one valid bundle
best < 0
for each w € C do
s + pickBundle(w,C,a, f, 3)
if score(s) > best then
best < s

return best

AL A N

6 INTEGER PROGRAMMING

Like many combinatorial problems, COMPOSITE RETRIEVAL can
be tackled with an integer programming approach. Let us
consider the following variables:

’ 1, ifuef;, wel,j=1,...,k
Pui = { 0, otherwise,
1, ifuels;
Yuvj = v €S, u,ve€L,u < v
0, otherwise,
zij= max s(u,v) Li=1,....k i <]

u€S;,veS;
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Using these definitions, the objective function of our prob-
lem may be rewritten as:

k
vy D s(uv)+(1-y)

j=1 uwes;
u<v

(1-
1<i < j<k

k
)R

J=1 uwel
u<v

Z Z zij+ (1 —y)@.

Then the problem can be formulated as maximizing this
function subject to:

max
u € S;, € Sl

s(u, U))

(1-v)

Zcu-rujSﬂ jzla--'akv (1)
uel
Z zy; <1 j=1,...,k Vapossiblevalueof o, (2)
uwfT
u.o=a
yungw .j:]-a"'ak7 u,v €T, (3)

zij = s(u,v)(wyi + 0y — 1), 1<i < j<kuvel, (4)

z,; € {0,1}, Yunj € {0, 1}, 0<2z(j5) < 1.

Constraints (1) assert that the budget does not exceed the
threshold for each bundle. Constraints (2) guarantee com-
plementarity (two items with the same value for property o
may not be assigned to the same bundle). Constraints (3)
ensure that y,,; is equal to 0 if items u, v are not in the same
bundle j. Finally, constraints (4) give to z;; the maximum
similarity between items in bundles ¢ and j.

For solving the integer programming formulation we
implemented a Branch-and-Cut algorithm using CPLEX
12.1. We added to the standard CPLEX algorithm a primal
heuristic and valid cutting planes specifically derivated for
the problem. The heuristic is a simple fast greedy procedure
that is applied on every node of the tree and is capable of
finding good solutions in the first stages. The cutting planes,
like >, 7000 Yuvj < Zy;Vv € T and a possible value of «, are
very useful to close the initial gap relaxation. These custom-
ized components have an important impact on the compu-
tational performance of the algorithm, but due to lack of
space we cannot extend furtherly on this matter.

7 EXPERIMENTS

In this section we test the effectiveness and efficiency of our
algorithms on two real-world data sets. The first data set
corresponds to 10 problem instances of 20 items each. The
second data set corresponds to around 150 problem instan-
ces of 300-500 items each.
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Data set 1 (Attractions in European Cities). A sample of 20
touristic attractions in 10 large European cities (London,
Berlin, Madrid, Rome, Paris, Bucharest, Budapest,
Hamburg, Vienna, and Warsaw), as listed in their respective
pages in Wikipedia. Each of the 200 attractions can belong to
one of the three following types: (i) park, zoo, or other open
space; (ii) museum or library; (iii) other notable landmark.
Each attraction also has a ticket price, obtained by using
crowdsourcing via provider Crowdflower,' aggregating
responses from 60 annotators, with three independent anno-
tators checking on the webpage of each attraction the full
ticket price for an adult. The average price was close to €6,
with only four attractions costing more than €30. The cost of
the 118 free attractions was set to €0.001.

Each query is the name of a city and the candidate items
T are the attractions in that city. For each city, we generate
k = 3 bundles of recommended attractions. The compatibil-
ity between two attractions u, v was computed based on
their distance in kilometers d(u,v), approximated using
their geographical coordinates as provided in their respec-
tive Wikipedia pages. In each city, the maximum distance D
was computed and then the compatibility used was
1 —d(u,v)/D + e. This means the two attractions that are
farther apart have compatibility e. The cost of each city tour
is the sum of the costs of each attraction on it, which must
not exceed the budget .

Data set 2 (Restaurants in US Cities). A sample of Yahoo!
Local® containing user-contributed restaurant reviews. We
picked all cities for which there are at least 100 restaurants
with reviews. This left us with 38,530 restaurants distrib-
uted over 149 US cities, with the largest cities being New
York (over 2,000 restaurants) and Los Angeles (over 1,000
restaurants). Most cities in our sample have between 300
and 500 restaurants. Each restaurant has one of the follow-
ing three average meal prices: cheap ($10), moderate ($20)
or expensive ($30). Each restaurant has multiple values for
cuisine, drawn from 291 possible cuisine values, including
American, Italian, Cajun, Omelets, Contemporary, Sandwiches,
etc. The restaurant with the highest number of cuisine types
has 34 cuisines ranging from Californian to Spanish.

Each query is the name of a city and the candidate items
T are the restaurants in that city. For each city, we generate
k = 10 bundles of recommended restaurants. The compati-
bility between two restaurants u, v is the number of
reviewers that have given both restaurants a positive
review. The complementarity attribute « is the cuisine type,
meaning that on each bundle we do not want two restau-
rants having a cuisine type in common. The cost of each
bundle is the sum of the costs of having a meal at each of
the restaurants in the bundle.

Budgets. We set the budget S in three values: small,
medium and large. In the case of data set 1 (EU attractions),
these correspond to €1, €20, and €50. The small budget basi-
cally limits the budget to only the free attractions. In the
case of the data set 2 (US restaurants), we used the following
three values: $50, $100, and $200. The small budget does not
allow many choices in each bundle, while the large budget

1. http:/ /www.crowdflower.com/.
2. http:/ /local.yahoo.com/.
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is often equivalent to an unlimited budget given the distri-
bution of cuisine types and meal prices.

7.1 Implementation

Bundles one-by-one. We implemented the BOBO method
described in Algorithm 4, varying the number of bundles
that are generated before ChooseBundles is invoked to
select the k that will be returned. BOBO-1 is our baseline
and it just picks k bundles at random (so ChooseBundles
becomes trivial). In the case of the large data set, we
included BOBO-5, that generates 5k bundles, BOBO-10, that
generates 10k bundles, and BOBO-E (Exhaustive), that picks
as pivots all of the items exhaustively and generates ¢ = |Z|
candidate bundles with the routine pick_bundle
described in Algorithm 5. In all but the exhaustive case, an
item that has already been picked as a member of a bundle
cannot be picked as a pivot, as specified by Algorithm 4. In
the case of the small data set, we included BOBO-E’, that
does discard previously-used bundle members as future
pivots, as otherwise bundles tend to be often duplicate. The
minimum score of a bundle p is determined by generating
five bundles at random and then picking the median score.

Constrained clustering. The C-HAC method described in
Algorithm 3 is implemented to stop at k clusters, or when
no further merge operations can be executed. Typically, the
latter happens much earlier. We experimented with gener-
ating more than k clusters and then using ChooseBundles;
but the results are basically the same as the ones we report
here, because anyway the algorithm generates a number of
clusters larger than k, typically around £|Z|.

Cluster-and-pick. The CAP method described in Algorithm
6 is implemented using METIS [17] as the clustering
method, with £ clusters. Procedure BestBundle in Algo-
rithm 7 is invoked once for each of the k clusters, returning
one bundle per cluster.

Integer programming. We used the branch-and-cut imple-
mentation described in Section 6. In the case of the large
data set, it is run for a maximum time of 1 minute for each
instance.

7.2 Results

Objective function. Experimentally we observe that the perfor-
mance of the methods w.r.t. the objective function, highly depends
on y. Figs. 1 and 2 show the distribution of the value of the
objective value of the solutions for y € {0.1,0.5,0.9}. Results
with intermediate values of y lie between those we show
here and are thus omitted. We observe the following;:

e The best results are obtained by IP. However, due to
the high running times, this algorithm may be seen
more as a benchmark than as a really feasible
approach.

e For small y, i.e, when inter-bundle separation is
important, the clustering-based methods are better
than the variants of bundles one-by-one.

e For large y, i.e,, when intra-bundle cohesiveness is
important, the BOBO methods are better than the
clustering ones.

With the BOBO methods, for the small data set

the exhaustive method is better (but comparable) to the
BOBO-1 method. For the large data set the difference is
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more substantial. Additionally there is a large advantage of
BOBO-5 over BOBO-1 in the large data set.

When comparing different clustering methods, in the
small data set we see a clear advantage for C-HAC, while on
the large data set we see that they are comparable except for
cases of large y and large budget.

Complementarity, score, diversity, and size. To further
understand the differences among methods, we can look at
some properties of the bundles: number of covered values
of the complementarity attribute, bundle score (left-hand
side of our objective function in Problem 1), diversity (right-
hand side of objective function), and size. A comparison of
these quantities is shown in Fig. 3 for y = 0.5 (and g =20
for data set 1, B = 100 for data set 2).

The variations among different methods depending on y
can be summarized as follows. Clustering-based methods
tend to produce bundles whose elements are not compatible
with items from other bundles; this can be seen by the
higher diversity of C-HAC in data set 1, and the higher
diversity of C-HAC and CAP in data set 2. On the other
hand, bundles one-by-one methods tend to produce bun-
dles composed of items that are highly compatible among
them, as evidenced by the higher bundle score.

Running time. We ran our experiments on a mid-range
Linux server (8 x2.6 GHz 64-bit Intel processors). The

average and median time (over all problem instances and
all parameters settings discussed above) for the different
methods is shown on Table 1.

For data set 1, for all methods the mean and median run-
ning time across instances were below one second, except
for the IP method, which had a mean of 1.94 seconds. For
data set 2, the running time of all methods was around 2 to
6 seconds, except for C-HAC, where the average running
time is dominated by the larger problem instances.
Something similar, but not as pronounced, is observed for
BOBO-E in data set 2. The IP method, in the small data set,
is on average four times slower, despite many instances in
which is quite fast—its median is smaller than those of the
other methods in this data set. In the large data set instead,
the IP method is one order of magnitude slower than our
heuristics. Note that the table excludes 94 problem instances
(5.2 percent of them) where the IP formulation was unable
to find a solution in 1 minute.

A plot of running time versus instance size for the larger
data set (US restaurants) is shown on Fig. 4. The IP method
is in general unable to find a solution in under 1 minute for
the larger problem instances, and the C-HAC and BOBO-E
rapidly increase in running time as problem instances grow
(note the logarithmic scale of the y-axis). BOBO-1 and CAP
can solve larger problem instances faster.
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Comparison with the TP benchmark. Fig. 5 compares IP ver- specially when the budget is large. In those experiments, IP
sus BOBO-E, the heuristic that performs best in most cases, found the optimal solution in 387 out of 1,815 instances
in the case of data set 2. We use a different color for each (=20 percent of the total) with an average running time of
B €{50,100,200}. As it may be seen, IP yields a larger 11 seconds, showing a better performance for high budget
value for the objective function in the majority of the cases, and for high y values. However, for 94 instances
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TABLE 1
Running Time in Seconds
Dataset 1 Dataset 2
Method Mean Median Mean Median
CAP 0.47 0.48 2.0 2.0
C—-HAC 0.45 0.45 19.8 2.9
BOBO 1 0.44 0.44 1.7 1.7
BOBO E . . 6.4 2.8
BOBO E’ 0.46 0.46 - -
Ip 1.94 0.38 49 60

(=5 percent) it failed to produce any solution, this being
more notorious for instances with high budget.

The Choose Phase. To evaluate how important the Choose
phase is, we compared the densest-subgraph heuristic
ChooseBundles in Algorithm 2 with a simpler method, in
which we simply pick the top £ = 10 bundles by score. The
results are shown in Fig. 6 and correspond to data set 2.
There are significant gains ranging from about 30 percent to
almost 300 percent (in terms of the median of the objective
function) of using the densest-subgraph heuristic.

Comparison with Xie et al. [20]. Finally, we compared our
method with the package-recommendation method
described in [20]. This method requires a notion of
“importance” for each item, which we create by joining our
data set 1 (attractions in European cities) with user ratings
in tripadvisor.com.

The algorithm of [20] does not attempt to enforce diver-
sity. As a consequence, the bundles it produces naturally
tend to lack it. To quantify this, we measured for each pair
of bundles generated by a run of the algorithm its Jaccard
coefficient J (size of the intersection divided by size of the
union), and plot the average of 1 —.J. The mode of this
value for [20] is 0.5, which comes from having bundles of
three elements that share two of them (the union has four
elements and the intersection has two elements, 2/4 = 0.5).
Fig. 7 reports this value of our optimal solution in several
instances of the problem, indicating that in almost all cases
the method in [20] yields less diversity in the bundle ele-
ments than ours. If we measure diversity as the right-hand-
side of our objective function, we get values of zero for
almost all solutions provided by [20].

If we go for a more qualitative analysis, we find more evi-
dence of the benefit of our approach against those purely

CAP
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Fig. 4. Average running time for varying instance sizes in data set 2
(US restaurants).
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based on the individual quality of the items like [20]. Table 2
shows the optimal solution of our approach when queried
for three bundles with different values of diversity factor y
and a budget g =€20 in the city of Rome. We observe many
interesting things. The output of [20] consists of three bun-
dles that differ in one attraction, as if the algorithm had cho-
sen the best two attractions in town, and complete with a
third one. This is the typical output of that algorithm, with
some minor variations depending on the budget. As a
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Fig. 7. Average pair-wise score (one minus Jaccard coefficient) com-
puted on data set 1 for different values of y and B, comparing our algo-
rithm with Xie et al. [20].

consequence of that, it’s clear that for a user that has already
been to St. Peter’s area, the output is almost useless, i.e.,
there’s no useful bundle for his needs. In general, if a user
has already been to one of the best attractions in town, no
bundle will be good for him. A typical behavior of tourists
is to go to the most relevant spots in their first day in the
city, so having alternatives not including them for the fol-
lowing days is clearly a benefit. Moreover we observe that
many landmarks with rankings almost as high as those that
appear in the solution of [20] (like, for example, the Vatican
Museums, Villa Giulia or the Colosseum) do not appear at
all in that solution. In ours, however, they tend to appear in
one or more bundles. In general, if there are many places
with high ratings, and ratings are “similar”, some very well
ranked places disappear completely. Finally, [20] includes
in the same bundle places that are very far away from each
other, like the Capitoline Museums, St. John Lateran and St.
Peter’s (second bundle) or Capitoline Museums, Lateran’s
Palace and St. Peter’s (third bundle). Our bundles are rather
coherent in that sense. For the sake of justice, [20] proposed
to include a distance restriction in their model, which would
made disappear that difference between the two algorithms.

8 RELATED WORK

Composite retrieval. The notion of composite retrieval was
proposed with different semantics in recent work [3], [7],
[9], [18], [20]. CARD [7] is a framework for finding top-k rec-
ommendations of packages of products or services. A

TABLE 2
Bundles Produced by Our Approach and [20] for Different
Values of y and g =€20, in the City of Rome

Villa_Giulia Basilica_St._John_Lateran Vatican_Museum
St._Peter’s_Basilica
St._Peter’s_Square
St._Peter’s_Basilica
Castel_Sant’ Angelo
St._Peter’s_Square
St._Peter’s_Basilica
Castel_Sant’Angelo
St._Peter’s_Square
Capitoline_Museums
Lateran_Palace

St._Peter’s_Square

Forum_Romanum
Via_Veneto
Villa_Borghese_gardens
Forum_Romanum
Via_Veneto

Vatican_Museum
St._Peter’s_Basilica
St._Peter’s_Square
Vatican_Museum
St._Peter’s_Basilica
St._Peter’s_Square  Villa_Borghese_gardens
St._Peter’s_Basilica Capitoline_Museums
Capitoline_Museums Basilica_St._John_Lateran
St._Peter’s_Square St._Peter’s_Square

[200 p=d5ph=3np="1
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language similar to SQL is proposed to specify user require-
ments an the combination of atomic costs. Recommended
packages are of fixed size. In [3], the problem is to query
documents and build packages formed by multiple entities
such as a city, a hotel or an airline. A package in that case is
of fixed size (as a simple case of our notion of budget).

In [18], the authors explore retrieving bundles of items in
the form of a star (e.g., an iPhone and all its accessories). A
bundle is subject to budget and item compatibility con-
straints (e.g., co-purchasing and co-browsing). In [18], the
authors design a graph traversal algorithm that retrieves
itineraries in a city. An itinerary is an ordering of a set of
points of interest (e.g., landmarks in a city), subject to time
constraints. The ordering imposes a different relationship
between points of interest in the form of a chain, and makes
the retrieval problem significantly different from the model
developed in [18]. The solution relies on an adaptation of
graph traversal for the orienteering problem. Finally, in
[20], the authors explore returning approximate solutions to
composite retrieval. The focus of the work is on using a
Fagin-style algorithm for variable size bundles and proving
its optimality. The same authors, further develop the idea
into a prototype of recommender system for travel planning
[21].

None of these works accounts for diversity across bun-
dles and formalizes retrieval as a clustering problem that
accounts for intra-bundle compatibilities and complemen-
tarity as well as a general notion of budget that goes beyond
bundle size.

Diversity. Diversifying web search results and recom-
mendations aims to achieve a compromise between rele-
vance and result heterogeneity. In [15], the authors adopt an
axiomatic approach to diversity that aims to address user
intent. They show that no diversification function can sat-
isfy all axioms together and illustrate that with concrete
examples. In [2], taxonomies are used to sample search
results in order to reduce homogeneity. In the database con-
text, Chen and Li [8] propose to post-process structured
query results, organizing them in a decision tree for easier
navigation. In [19], a hierarchical notion of diversity in data-
bases is introduced, and efficient top-k processing algo-
rithms are developed.

In recommendations [23], [11], results are typically post-
processed using pairwise item similarity in order to gener-
ate a list that achieves a balance between accuracy and
diversity. For example, in the recommender systems world,
the approach in [23] defines an intra-list similarity which
relies on mapping items to taxonomies to determine topics
or using item features such as author and genre. The
method is based on an exhaustive post-processing algo-
rithm which operates on a top-/V list to compute the top-K
results (N > K). In contrast, in [11], diversity is formulated
as a set-coverage problem. These approaches do not retrieve
item bundles under validity, diversity and compatibility
constraints. In [22] a method based on structural support
vector machines is introduced for the learning task of pre-
dicting diverse subsets.

Finally, [13] introduces diversity in the framework of
sponsored search ads, proposing algorithms for the selec-
tion of ads that intend to increase heterogeneity while not
significantly reducing revenue and maintaining an
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incentive for advertisers to keep their bids as high as possi-
ble. Heterogeneity is aimed at as a notion that spans various
occurrences of the same query, and not just a single one.

A two-pages preliminary version of this work was pre-
sented as a poster in [1].

9 CONCLUSIONS AND FUTURE WORK

In many complex search and browsing applications return-
ing item bundles is more appropriate than ranked lists. In
this paper, we present composite retrieval as an alternative
to ranked lists and formalize the problem as finding the k
highest scoring item bundles. Our formulation ensures com-
plementarity among items in the bundles and diversity
between retrieved bundles.

In our future work, we plan to investigate variants of the
basic definition we provided in this work, e.g., retrieve item
bundles that are most compatible with my interests (person-
alized composite retrieval), find the best item bundles
including a specific item, find the best bundle compatible
with a given item. These new problems bare similarities
with item recommendation that account for a user profile,
with the added flexibility of querying those recommenda-
tions in a stylized fashion. We conjecture that such queries
will simplify retrieval complexity while raising an addi-
tional challenge of returning results as fast as possible.
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