Split Partial Isometries

E. Andruchow • G. Corach • M. Mbekhta

Received: 25 February 2011 / Accepted: 13 July 2011 / Published online: 6 August 2011
© Springer Basel AG 2011

Abstract

A partial isometry V is said to be a split partial isometry if $\mathcal{H}=R(V)+$ $N(V)$, with $R(V) \cap N(V)=\{0\}(R(V)=$ range of $V, N(V)=$ null-space of $V)$. We study the topological properties of the set \mathcal{I}_{0} of such partial isometries. Denote by \mathcal{I} the set of all partial isometries of $\mathcal{B}(\mathcal{H})$, and by \mathcal{I}_{N} the set of normal partial isometries. Then

$$
\mathcal{I}_{N} \subset \mathcal{I}_{0} \subset \mathcal{I}
$$

and the inclusions are proper. It is known that \mathcal{I} is a C^{∞}-submanifold of $\mathcal{B}(\mathcal{H})$. It is shown here that \mathcal{I}_{0} is open in \mathcal{I}, therefore is has also C^{∞}-local structure.
We characterize the set \mathcal{I}_{0}, in terms of metric properties, existence of special pseudoinverses, and a property of the spectrum and the resolvent of V. The connected components of \mathcal{I}_{0} are characterized: $V_{0}, V_{1} \in \mathcal{I}_{0}$ lie in the same connected component if and only if

[^0]M. Mbekhta

UFR de Mathematiques, 59655 Villeneuve d’Ascq, France
e-mail: mostafa.mbekhta@agat.univ-lille1.fr

$$
\operatorname{dim} R\left(V_{0}\right)=\operatorname{dim} R\left(V_{1}\right) \text { and } \quad \operatorname{dim} R\left(V_{0}\right)^{\perp}=\operatorname{dim} R\left(V_{1}\right)^{\perp} .
$$

This result is known for normal partial isometries.
Keywords Partial isometries • Projections • Idempotents
Mathematics Subject Classification (2010) 47A05 • 47B15

1 Introduction

Partial isometries were first defined by John von Neumann, as the "argument"" part of the polar decomposition of closed linear operators om Hilbert spaces. Halmos and collaborators [8] studied same topological features of the set \mathcal{I} of all partial isometries of a fixed Hilbert space \mathcal{H}.

In this paper a class of partial isometries is studied. We say that v is a split partial isometry if \mathcal{H} is the direct sum of its range $R(V)$ and its null-space $N(V)$. The set \mathcal{I}_{0} of all such partial isometries is a proper subset of \mathcal{I}, which contains properly the set \mathcal{I}_{N} of normal partial isometries (i.e. $\left.R(V)=N(V)^{\perp}\right)$, and, a fortiori, contains the set \mathcal{P} of all orthogonal projections in \mathcal{H}.

Let us fix some notation. Let \mathcal{H} be a Hilbert space, $\mathcal{B}(\mathcal{H})$ the space of bounded operators acting in $\mathcal{H}, G l(\mathcal{H})$ the group of invertible operators, and $\mathcal{U}(\mathcal{H})$ the unitary group of \mathcal{H}. If $A \in \mathcal{B}(\mathcal{H})$ is an operator, we denote by $R(A)$ its range, by $N(A)$ its null-space, and by $\sigma(A)$ its spectrum. Two closed subspaces \mathcal{S}, \mathcal{T} of \mathcal{H} are said to be in direct sum if $\mathcal{S}+\mathcal{T}=\mathcal{H}$ and $\mathcal{S} \cap \mathcal{T}=\{0\}$, in symbols, $\mathcal{S} \dot{\mathcal{T}}=\mathcal{H}$ (we shall reserve the notation $\mathcal{S} \oplus \mathcal{T}=\mathcal{H}$ for the case when the subspaces are orthogonal). A direct sum splitting as above gives rise to an idempotent operator in $\mathcal{B}(\mathcal{H}): E(s+t)=s$ and $(1-E)(s+t)=t . E$ shall be called a projection when \mathcal{S} and \mathcal{T} are orthogonal, and denoted $E=P_{\mathcal{S}}$.

As said above, \mathcal{I} is the set of partial isometries of \mathcal{H}, i.e.

$$
\mathcal{I}=\left\{V \in \mathcal{B}(\mathcal{H}): V \text { is isometric between } N(V)^{\perp} \text { and } R(V)\right\} .
$$

Equivalently, $V^{*} V$ and / or $V V^{*}$ are projections. In that case $V^{*} V$ is the projection onto $N(V)^{\perp}$ (also called the initial space of V), and $V V^{*}$ is the projection onto $R(V)$ (the final space of V). There are several papers dealing with the structure of \mathcal{I}, topological or geometrical, among them [1,2,8,10,11].

We shall study here a class of partial isometries, which we shall call split isometries and denote by \mathcal{I}_{0}, namely

$$
\mathcal{I}_{0}=\{V \in \mathcal{I}: N(V) \dot{+} R(V)=\mathcal{H}\} .
$$

Examples of split isometries are selfadjoint projections, partial isometries whose range and null-spaces are mutually orthogonal (=normal partial isometries), and partial isometries which appear in the polar decomposition of an oblique projection [5]. It is apparent that this class \mathcal{I}_{0} is invariant under inner conjugation by unitary operators.

The contents of the paper are the following. Section 2 contains further notations, preliminaries, results on partial isometries and several characteristic properties of the set \mathcal{I}_{0} of split partial isometries. For instance, $V \in \mathcal{I}_{0}$ if and only if it admits a commuting pseudo-inverse, or if 0 is a pole of order one of the resolvent (Theorem 2.2). Some of these properties are based in a theorem by Buckholtz [3] on pairs of orthogonal projections P, Q such that $R(P) \dot{+} R(Q)=\mathcal{H}$. In Sect. 3 we examine the local structure of \mathcal{I}_{0}. It is shown that \mathcal{I}_{0} is a submanifold of $\mathcal{B}(\mathcal{H})$. Also it is shown that a partial isometry lying close enough to a projection, belongs to \mathcal{I}_{0} : (Theorem 3.5) if $V \in \mathcal{I}$ and P a projection with $\|V-P\|<1 / 3$, then $V \in \mathcal{I}_{0}$. In Sect. 4 we study the relationship between \mathcal{I}_{0} and the set \mathcal{I}_{N} of normal partial isometries. We prove that each $V \in \mathcal{I}_{0}$ gives rise to a unique selfadjoint operator X_{V}, with $\left\|X_{V}\right\|<\pi / 2$, which is co-diagonal with respect to the initial projection of V, such that $e^{-i X_{V}} V$ is normal. Therefore \mathcal{I}_{0} decomposes as pairs $\left(X_{V}, e^{-i X_{V}} V\right)$. This implies that the space of split partial isometries has the same homotopy type as the space of normal partial isometries. For instance, it is shown that if $V_{0}, V_{1} \in \mathcal{I}_{0}$ verify

$$
\operatorname{dim} R\left(V_{0}\right)=\operatorname{dim} R\left(V_{1}\right) \text { and } \quad \operatorname{dim} R\left(V_{0}\right)^{\perp}=\operatorname{dim} R\left(V_{1}\right)^{\perp},
$$

then they can be joined by a smooth curve in \mathcal{I}_{0}.

2 Split Partial Isometries

The following result is known, and will be useful below. We transcribe as it was stated by Buckholtz in [3]

Lemma 2.1 Let \mathcal{R}, \mathcal{K} be closed subspaces in \mathcal{H}. Then

$$
\mathcal{R} \dot{+} \mathcal{K}=\mathcal{H}
$$

if and only if

$$
P_{\mathcal{R}}-P_{\mathcal{K}} \in G l(\mathcal{H})
$$

if and only if

$$
\left\|P_{\mathcal{R}}+P_{\mathcal{K}}-1\right\|<1
$$

In that case, the idempotent onto \mathcal{R} induced by the decomposition is $E=P_{\mathcal{R}}\left(P_{\mathcal{R}}-\right.$ $\left.P_{\mathcal{K}}\right)^{-1} Q$.

See, for instance, [3] and [4].
The next result gives several characterizations of the class of split isometries.
Theorem 2.2 Let $V \in \mathcal{I}$, a non invertible partial isometry. Then the following are equivalent:

1. $V \in \mathcal{I}_{0}$.
2. $\left\|V^{*} V-V V^{*}\right\|<1$.
3. $V^{*} V+V V^{*}-1 \in G l(\mathcal{H})$.
4. There exists $W \in \mathcal{B}(\mathcal{H})$ such that

$$
W V W=W, V W V=V, \text { and } W V=V W .
$$

Such W is unique with these properties.
5. There exist $S, R \in \mathcal{B}(\mathcal{H})$ with S invertible and R an idempotent, such that $V=$ $S R=R S$.
6. There exists an invertible operator T which commutes with V, such that $V=$ VTV.
7. $0 \in \sigma(V)$ is isolated, and it is a pole of order 1 of the resolvent of V.

Proof Let us first prove the equivalences, then the additional property. (1) is equivalent to (2) or (3) by the Lemma above: put $\mathcal{R}=R(V)$ and $\mathcal{K}=N(V)$.

Suppose (3), i.e. $V^{*} V+V V^{*}-1 \in G l(\mathcal{H})$, and let $C=\left(V^{*} V+V V^{*}-1\right)^{-1}$. Using that $V V^{*} V=V$ and $V^{*} V V^{*}=V^{*}$, one has that

$$
V=V\left(V^{*} V+V V^{*}-1\right) C=V^{2} V^{*} C,
$$

and that

$$
V=C\left(V^{*} V+V V^{*}-1\right) V=C V^{*} V^{2} .
$$

Note that this implies that

$$
\begin{equation*}
V V^{*} C=C V^{*} V \tag{1}
\end{equation*}
$$

Indeed, $V V^{*} C=C V^{*} V^{2} V^{*} C=C V^{*}\left(V^{2} V^{*} C\right)=C V^{*} V$. This intertwining property of C and the two formulas above imply the identities

$$
\begin{equation*}
V=V^{2} V^{*} C=V C V^{*} V \text { and } V=C V^{*} V^{2}=V V^{*} C V \tag{2}
\end{equation*}
$$

Multiplying the first identity in (2) on the right by V^{*} gives

$$
\begin{equation*}
V V^{*}=V C V^{*} V V^{*}=V C V^{*} \tag{3}
\end{equation*}
$$

Multiplying the second identity in (2) on the left by V^{*} gives

$$
\begin{equation*}
V^{*} V=V^{*} V V^{*} C V=V^{*} C V \tag{4}
\end{equation*}
$$

$$
\begin{aligned}
& \text { Put } W=C V^{*} C=C V^{*} V V^{*} C \text {. Then, by (3) and (4), } \\
& \qquad V W V=V C V^{*} C V=V V^{*} C V=V V^{*} V=V
\end{aligned}
$$

and

$$
W V W=C V^{*} C V C V^{*} C=C V^{*} V C V^{*} C=C V^{*} V V^{*} C=C V^{*} C .
$$

Finally, using again also (1)

$$
V W=V C V^{*} C=V V^{*} C=C V^{*} V=C V^{*} C V=W V
$$

Let us prove now that this last property (that V has a commuting pseudoinverse W) implies that $V \in \mathcal{I}_{0}$. Note that $Q=W V=V W$ is an idempotent operator, with $N(Q)=N(W V)=N(V)$ and $R(Q)=R(V W)=R(V)$, and the proof follows.

Suppose (4) holds. Let $R=V W$ and $S=V+1-V W$. Then $R^{2}=R$ and S is invertible with $S^{-1}=W+1-W V$. Clearly,

$$
V=S R=R S
$$

This proves (5).
Suppose (5) holds. Then (6) follows with $T=S^{-1}$. In fact, $V T=T V$ and

$$
V T V=V S^{-1} V=V S^{-1} S R=V R=S R^{2}=S R=V
$$

Suppose (6) holds. Then (4) follows with $W=T^{2} V$. Indeed, $V W=W V$ and
$V W V=V T^{2} V^{2}=V T V T V=V T V=V ; \quad W V W=T^{2} V^{2} T^{2} V=T^{2} V=W$.
(4) $\Longrightarrow(1)$. Since, $V W=W V$, the identity $1=V W+(1-V W)=V W+(1-$ $V W$), show (1) holds.
(1) is equivalent to (7) (see [14], Theorems 10.1 and 10.2)

That the commuting pseudoinverse, when it exists, is unique, is known (see, for instance, [9]).

As it was noted in the introduction, a partial isometry V is normal if and only if $N(V) \oplus R(V)=\mathcal{H}$.

Remark 2.3 1. Let $T \in \mathcal{B}(\mathcal{H})$ with Moore-Penrose inverse T^{\dagger}. Then

$$
T T^{\dagger}=T^{\dagger} T \Longleftrightarrow \mathcal{H}=N(T) \oplus R(T)
$$

Indeed, suppose $T T^{\dagger}=T^{\dagger} T$. Then $R(T)=R\left(T T^{\dagger}\right)$ and $N(T)=N\left(T^{\dagger} T\right)=$ $N\left(T T^{\dagger}\right)$. Since $T T^{\dagger}$ is a orthogonal projection, we have $\mathcal{H}=N(T) \oplus R(T)$. Conversely, suppose $\mathcal{H}=N(T) \oplus R(T)$; then the orthogonal complement of $N(T)$ is $R(T)$ and therefore $T T^{\dagger}=P_{R(T)}=P_{N(T)^{\perp}}=T^{\dagger} T$.
2. Using the Lemma above, note that if $V \in \mathcal{I}_{0}$, then the idempotent onto $R(V)$ given by the decomposition $R(V) \dot{+} N(V)=\mathcal{H}$ is

$$
V V^{*} C V^{*} V=V V^{*} C=C V^{*} V
$$

3. By the theorem above (for instance, condition 2), it is clear that $V \in \mathcal{I}_{0}$ if and only if $V^{*} \in \mathcal{I}_{0}$.
4. Denote by \mathcal{Q} the set of idempotents in $\mathcal{B}(\mathcal{H})$. If $T \in \mathcal{B}(\mathcal{H})$, let V_{T} be the (unique) partial isometry in the polar decomposition of $T, T=V_{T}|T|$ (with initial space $R(T)^{\perp}$ and final space $\left.\overline{R(T)}\right)$. It is easy to prove that the map $\alpha: \mathcal{I}_{0} \rightarrow \mathcal{Q}$, defined by $\alpha(V)=V V^{*} C=C V^{*} V$ is surjective, and that the map $\beta: \mathcal{Q} \rightarrow \mathcal{I}_{0}$ defined by $\beta(E)=V_{E}$ is a right inverse of α, i.e., $\alpha(\beta(E))=E$ for every $E \in \mathcal{Q}$. It is apparent that α is continuous. Continuity of the map β was proved in [5].

Theorem 2.4 Let $V \in \mathcal{I}_{0}$. Then $V^{2} \in \mathcal{I}$ if and only if V is normal.
Proof Clearly, V normal implies $V^{2} \in \mathcal{I}$. Suppose $V^{2} \in \mathcal{I}$. Let us first prove that $V V^{* 2} V$ is orthogonal projection. Indeed, $\left(V V^{* 2} V\right)^{2}=V V^{* 2} V V V^{* 2} V=$ $V V^{* 2} V^{2} V^{* 2} V=V V^{* 2} V$. And, since $\left\|V V^{* 2} V\right\| \leq 1, V V^{* 2} V$ is an orthogonal projection. Thus, in particular $V V^{* 2} V=\left(V V^{* 2} V\right)^{*}=V^{*} V^{2} V^{*}$. We claim that $N(V)=N\left(V^{*}\right)$. Let $x \in N(V)$. Then, $V^{*} V^{2} V^{*} x=V V^{* 2} V x=0$. Thus, $V^{2} V^{*} x \in N\left(V^{*}\right) \cap R\left(V^{2}\right)=N\left(V^{*}\right) \cap R(V)=\{0\}$ (since $V \in \mathcal{I}_{0}$). Therefore, $V^{2} V^{*} x=0$ and thus, $V^{*} x \in N\left(V^{2}\right) \cap R\left(V^{*}\right)=N(V) \cap R\left(V^{*}\right)=\{0\}$. That is $x \in N\left(V^{*}\right)$ and $N(V) \subseteq N\left(V^{*}\right)$. The other inclusion follows by symmetry. Finally, we have, $N(V)=N\left(V^{*}\right)=R(V)^{\perp}$ and thus $\mathcal{H}=N(V) \oplus R(V)$, i.e. V is normal.

The next result characterizes the operators $T \in \mathcal{B}(\mathcal{H})$ such that the partial isometry in the polar decomposition belongs to \mathcal{I}_{0}. Recall that the polar decomposition of $T \in \mathcal{B}(\mathcal{H})$ is the factorization $T=V|T|$, where V is a partial isometry such that $N(V)=N(T)$ and $|T|=\left(T^{*} T\right)^{1 / 2}$. It can be shown that V is uniquely determined by these properties, and it will be denoted V_{T}. Moreover, it holds that $R\left(V_{T}\right)=\overline{R(T)}$ and $T=\left|T^{*}\right| V_{T}$.

Proposition 2.5 Given $T \in \mathcal{B}(\mathcal{H}), V_{T}$ belongs to \mathcal{I}_{0} if and only if $\mathcal{H}=\overline{R(T)} \dot{+} N(T)$.
Proof By the definition of \mathcal{I}_{0}, if $V_{T} \in \mathcal{I}_{0}$ then $\mathcal{H}=R\left(V_{T}\right) \dot{+} N\left(V_{T}\right)=\overline{R(T)} \dot{+} N(T)$. The converse is evident.

As remarked in Sect. 1, one has the strict inclusions

$$
\mathcal{P} \subset \mathcal{I}_{N} \subset \mathcal{I}_{0} \subset \mathcal{I}
$$

It is apparent that the first inclusion is strict. Let us write a simple example of a non normal partial isometry in \mathcal{I}_{0}. Let \mathcal{S}, \mathcal{T} be two non orthogonal subspaces such that $\mathcal{S} \dot{+} \mathcal{T}=\mathcal{H}$. Then $\operatorname{dim} \mathcal{S}=\operatorname{dim} \mathcal{T}^{\perp}$. Pick $\left\{\xi_{i}: i \in I\right\}$ and $\left\{\eta_{i}: i \in I\right\}$ orthonormal bases of \mathcal{S} and \mathcal{T}^{\perp}, respectively. Define $V \eta_{i}=\xi_{i}$ and $\left.V\right|_{\mathcal{T}}=0$. Then $V \in \mathcal{I}_{0} \backslash \mathcal{I}_{N}$. Finally, let $\mathcal{S} \subset \mathcal{H}$ be an infinite dimensional closed subspace such that \mathcal{S}^{\perp} is also infinite dimensional, and let W be isometric between \mathcal{S} and \mathcal{S}^{\perp}. Then $W \in \mathcal{I} \backslash \mathcal{I}_{0}$.

3 Local Structure of $\mathcal{I}_{\mathbf{0}}$

In this section we examine the local structure of \mathcal{I}_{0}. First we note that \mathcal{I}_{0} is a differentiable manifold. In [2] it was shown the set \mathcal{I} is a C^{∞}-submanifold of $\mathcal{B}(\mathcal{H})$. Then the following is apparent:

Corollary 3.1 The set \mathcal{I}_{0} is a C^{∞}-submanifold of $\mathcal{B}(\mathcal{H})$
Proof By the characterization of \mathcal{I}_{0} in the Theorem of the previous section, it is clear that \mathcal{I}_{0} is open in \mathcal{I}, which is a complemented C^{∞}-submanifold of $\mathcal{B}(\mathcal{H})$ (see [1]).

The following Lemma will be useful. First recall the basic fact that unitary operators close enough to the identity have unique logarithms, in the following sense: if $U \in \mathcal{U}(\mathcal{H})$ and $\|U-1\|<2$, then there exists a unique $X \in \mathcal{B}(\mathcal{H})$ with $X^{*}=X$ and $\|X\|<\pi$ such that $U=e^{i X}$.

Lemma 3.2 Let $A, X \in \mathcal{B}(\mathcal{H})$ with $X^{*}=X$ and $\|X\| \leq \pi$. If $\left\|e^{i X} A-A\right\|<R$, then

$$
\left\|e^{i t X} A-A\right\|<R
$$

for all t with $|t| \leq 1$
Proof First note that $\left\|e^{i X} A-A\right\|<R$ implies that

$$
\left\|e^{-i X} A-A\right\|=\left\|e^{-i X}\left(A-e^{i X} A\right)\right\|=\left\|e^{i X} A-A\right\|<R
$$

Let $\xi \in \mathcal{H}, \xi \neq 0$, and consider $f_{\xi}(t)=\left\|e^{i t X} \xi-\xi\right\|^{2}$. Apparently,

$$
\dot{f}_{\xi}(t)=-2 \operatorname{Re}\left(i\left\langle X e^{i t X} \xi, \xi\right\rangle\right) .
$$

We claim that $\dot{f}_{\xi}(t) \geq 0$ for $0 \leq t \leq 1$ and $\dot{f}_{\xi}(t) \leq 0$ for $-1 \leq t \leq 0$. Suppose first that X has finite spectrum, i.e.

$$
X=\sum_{j=1}^{n} \alpha_{j} P_{j}
$$

with P_{j} mutually orthogonal selfadjoint projections, and $\alpha_{j} \in \mathbb{R}$ with $\left|\alpha_{j}\right| \leq \pi$. Put $\xi_{j}=P_{j} \xi_{\text {. Then } X} \xi_{j}=\alpha_{j} \xi_{j}$ and $e^{i t X} \xi_{j}=e^{i t \alpha_{j}} \xi_{j}$. Then

$$
\dot{f}_{\xi}(t)=-2 \operatorname{Re}\left(i\left\langle\sum_{j=1}^{n} \alpha_{j} e^{i t \alpha_{j}} \xi_{j}, \sum_{k=1}^{n} \xi_{k}\right\rangle\right)=-2 \operatorname{Re}\left(i \sum_{j=1}^{n} \alpha_{j} e^{i t \alpha_{j}}\left\|\xi_{j}\right\|^{2}\right)
$$

Note that

$$
-2 \operatorname{Re}\left(i \alpha_{j} e^{i t \alpha_{j}}\right)=\alpha_{j} \sin \left(t \alpha_{j}\right)=\left|\alpha_{j}\right| \sin \left(t\left|\alpha_{j}\right|\right)
$$

Since $\left|\alpha_{j}\right| \leq \pi$ for all $j=1, \ldots, n, \dot{f}_{\xi}(t) \geq 0$, if $0 \leq t \leq 1$, and $\dot{f}_{\xi}(t) \geq 0$, if $-1 \leq t \leq 0$. Thus the assertion is true in this case.

For an arbitrary $X=X^{*}$, there exists a sequence $X_{k}=X_{k}^{*}$ with X_{k} of finite spectrum and $\left\|X_{k}\right\| \leq \pi$, such that $\left\|X_{k}-X\right\| \rightarrow 0$. Since for each X_{k} it holds that $-\operatorname{Re}\left(i\left\langle X_{k} e^{i t X_{k}} \xi, \xi\right\rangle\right) \geq 0$ for $0 \leq t \leq 1$, then also

$$
-\operatorname{Re}\left(i\left\langle X e^{i t X} \xi, \xi\right\rangle\right) \geq 0, \quad \text { for } 0 \leq t \leq 1
$$

It follows that $f_{\xi}(t)=\left\|e^{i t X} \xi-\xi\right\|$ is non decreasing for $t \in[0,1]$. Analogously, $f_{\xi}(t)$ is non increasing in $[-1,0]$. If $\eta \in \mathcal{H}$, put $\xi=A \eta$. Then $\left\|e^{i t X} A \eta-A \eta\right\|$ is non decreasing in $[0,1]$, and non increasing in $[-1,0]$. By hypothesis, $\left\|e^{i X} A-A\right\|<R$, thus there exists $\delta>0$ such that $\left\|e^{i X} A-A\right\|<R-\delta$. Then

$$
\left\|e^{i X} A \eta-A \eta\right\|<(R-\delta)\|\eta\|
$$

Therefore

$$
\left\|e^{i t X} A \eta-A \eta\right\|<(R-\delta)\|\eta\|, \quad \text { for } t \in[-1,1] \text {, }
$$

and thus $\left\|e^{i t X} A-A\right\| \leq R-\delta<R$, for $t \in[-1,1]$.
Lemma 3.3 Let P be a selfadjoint projection and U a unitary operator. Then if

$$
\|U P-P\|<1
$$

it holds that

$$
U R(P) \dot{+} N(P)=\mathcal{H} .
$$

Proof Suppose that U verifies the condition above. Let us check first that $U(R(P)) \cap$ $N(P)=\{0\}$. Suppose otherwise, that there exists $\xi \in \mathcal{H}$ such that $\|P \xi\|=1$ and $U P \xi \in N(P)$, i.e. $P U P \xi=0$. Then

$$
\begin{aligned}
& 1>\|U P-P\|^{2} \geq\|U P \xi-P \xi\|^{2}=\|U P \xi\|^{2}+\|P \xi\|^{2}-2 \operatorname{Re}\langle U P \xi, P \xi\rangle \\
& =2-2 \operatorname{Re}\langle P U P \xi, \xi\rangle=2
\end{aligned}
$$

a contradiction.
Let us check now that $U(R(P))+N(P)=\mathcal{H}$. Suppose that there exists a unitary vector η orthogonal to both subspaces. Then $\eta \perp U P \xi$ for all $\xi \in \mathcal{H}$ and $\eta \perp N(P)$. The latter condition means that $P \eta=\eta$, and putting $\xi=\eta$ in the former means that $0=\langle U P \eta, \eta\rangle=\langle U P \eta, P \eta\rangle$. This leads to a contradiction with the same computation as above. This implies that the sum is dense in \mathcal{H}. Let us check that it is closed. Let $\xi_{n} \in \mathcal{H}$ be a sequence in $U(R(P))+N(P)$ which converges to ξ. Then there exist $\eta_{n}, \psi_{n} \in \mathcal{H}$ such that $\xi_{n}=U P \eta_{n}+(1-P) \psi_{n}$. Then $P U P \eta_{n} \rightarrow P \xi$. Note that

$$
\|P U P-P\|=\|P(U P-P)\| \leq\|U P-P\|<1
$$

This implies that $P U P$ is an invertible operator in $\mathcal{B}(R(P))$. In particular, this implies that the sequence $P \eta_{n}$ is convergent, and therefore also the sequence $U P \eta_{n}$. Thus also the sequence $(1-P) \psi_{n}$ is convergent, and this implies that the sum is closed.

The next result estimates how close a partial isometry V must be to $P_{N(V)^{\perp}}$, in order to belong to \mathcal{I}_{0}. Note that $\left\|V-P_{N(V)^{\perp}}\right\|=\left\|V-P_{R(V)}\right\|$. Indeed,

$$
\begin{aligned}
& \left\|V-P_{N(V)^{\perp}\left\|^{2}=\right\| V-V^{*} V \|^{2}}=\right\|\left(V-V^{*} V\right)\left(V^{*}-V^{*} V\right)\|=\| V V^{*}-V^{*}-V+V^{*} V \|,
\end{aligned}
$$

and

$$
\begin{aligned}
& \left\|V-P_{R(V)}\right\|^{2}=\left\|V-V V^{*}\right\|^{2}=\left\|\left(V^{*}-V V^{*}\right)\left(V-V V^{*}\right)\right\| \\
& =\left\|V^{*} V-V-V^{*}+V V^{*}\right\| .
\end{aligned}
$$

Corollary 3.4 Let V be a partial isometry. If

$$
\left\|V-P_{N(V)^{\perp}}\right\|<1
$$

(or equivalently $\left\|V-P_{R(V)}\right\|<1$) then $V \in \mathcal{I}_{0}$. Moreover, in this case there exists a smooth curve $V(t)$ in $\mathcal{I}_{0}, t \in[0,1]$ of the form $V(t)=e^{i t X} P_{N(V)} \perp$, such that $V(0)=P_{N(V)^{\perp}}$ and $V(1)=V$. Analogously, one can find a curve of the form $V^{\prime}(t)=P_{R(V)} e^{i t Y}$ joining V and $P_{R(V)}$.

Proof The hypothesis that $\left\|V-P_{N(V)^{\perp}}\right\|<1$ implies the existence of a unitary operator U such that $V=U P_{N(V)^{\perp}}$. Indeed, in Prop. 3.1 of [2], it was proved that if two partial isometries V_{1}, V_{2} verify $\left\|V_{1}-V_{2}\right\|<1$, then there exist unitaries U_{1}, U_{2} such that $V_{2}=U_{1} V_{1} U_{2}^{*}$. We may apply this result to $V_{1}=P_{N(V)^{\perp}}$ and $V_{2}=V$:

$$
V=U_{1} P_{N(V)^{\perp}} U_{2}^{*} .
$$

Note that

$$
V^{*} V=U_{2} P_{N(V)^{\perp}} U_{1}^{*} U_{1} P_{N(V)^{\perp}} U_{2}^{*}=U_{2} P_{N(V)^{\perp}} U_{2}^{*},
$$

i.e. U_{2} commutes with $P_{N(V)^{\perp}}$. Therefore $V=U_{1} U_{2}^{*} P_{N(V)^{\perp}}$.

There exists $X^{*}=X$ with $\|X\| \leq \pi$ such that $U=e^{i X}$. Put $V(t)=e^{i t X} P_{N(V)^{\perp}}$. Clearly $V(t)$ is smooth, $V(0)=P_{N(V)^{\perp}}$ and $V(1)=V$. Moreover, by the above lemmas, $e^{i t X}(R(P)) \dot{+} N(P)=\mathcal{H}$. Since $e^{i t X}(R(P))=R\left(e^{i t X} P\right)=R(V(t))$ and $N(P)=N\left(e^{i t X} P\right)=N(V(t))$, this shows that $V(t) \in \mathcal{I}_{0}$.

Since also V lies in the same connected component of $P=P_{R(V)}$, then there exists a unitary operator W such that $V=P_{R(V)} W^{*}$. Thus $\left\|P W^{*}-P\right\|=\|W P-P\|<1$. Then, by the lemma,

$$
W R(P) \dot{+} N(P)=R\left(V^{*}\right) \dot{+} N\left(V^{*}\right)=\mathcal{H},
$$

i.e. $V^{*} \in \mathcal{I}_{0}$, and thus $V \in \mathcal{I}_{0}$. The construction of $V(t)$ is similar as in the previous case.

The next result shows that if V is close enough to an arbitrary projection, then V lies in \mathcal{I}_{0}.

We shall use results from [2], concerning the structure of \mathcal{I} as a homogeneous space of $\mathcal{U}(\mathcal{H}) \times \mathcal{U}(\mathcal{H})$, by means of the action

$$
(U, W) \cdot V=U V W^{*}, \quad U, W \in \mathcal{U}(\mathcal{H}), \quad V \in \mathcal{I}_{0}
$$

For instance, it holds that if $V_{0}, V_{1} \in \mathcal{I}$ verify that $\left\|V_{1}-V_{2}\right\|<1$, then there exist unitary operators γ, ν, which are polynomials in V_{i}, V_{j}^{*}, such that $V_{2}=\gamma V_{1} v^{*}$.
Theorem 3.5 If V is a partial isometry and P is a projection such that $\|V-P\|<1 / 3$, then $V \in \mathcal{I}_{0}$. Moreover, there is smooth curve $V(t) \in \mathcal{I}_{0}$ such that $V(0)=P$ and $V(1)=V$.

Proof We recall the construction of the alluded γ and ν, for the case $V_{1}=P$ and $V_{2}=V$, simpler than in [2], because V_{1} is a projection, and the distance between the partial isometries is less than $1 / 2$ (rather than less than 1). Put

$$
P^{\prime}=V^{*} V \quad \text { and } \quad Q^{\prime}=V V^{*}
$$

Note that

$$
\left\|P-P^{\prime}\right\| \leq\left\|V^{*} V-V^{*} P\right\|+\left\|V^{*} P-P\right\| \leq\|V-P\|+\left\|V^{*}-P\right\|<\frac{2}{3}<1
$$

Analogously $\left\|Q^{\prime}-P\right\|<1$. Projections at norm distance less that 1 are unitarily equivalent, and the unitaries can be chosen as smooth functions in terms of the projections (see for instance [13]). In this case, there are unitaries v and σ such that

$$
v P v^{*}=P^{\prime} \quad \text { and } \quad \sigma P \sigma^{*}=Q^{\prime}
$$

The cross section $\mu_{P}(V)$ in [2] performing $\mu_{P}(V) \cdot P=V$ is given by $\mu_{P}(V)=$ (γ, ν), where γ is

$$
\gamma=V \nu P+\sigma(1-P) .
$$

Then

$$
\left\|v^{*} \gamma P-P\right\|=\|\gamma P-v P\|=\|V v P-v P\| .
$$

Note that $v P=P^{\prime} v$, so that $V v P=V P^{\prime} v=V V^{*} V v=V \nu$. Thus the term above equals

$$
\begin{aligned}
\|V v-v P\| & \leq\|V v-p v\|+\|P v-v P\|=\|V-P\|+\left\|P-v P v^{*}\right\| \\
& \leq 3\|V-P\|<1
\end{aligned}
$$

Then $\left\|\nu^{*} \gamma P-P\right\|<1$, which by the above Lemma implies that

$$
\mathcal{H}=v^{*} \gamma R(P) \dot{+} N(P)=\gamma R(P) \dot{+} v N(P) .
$$

Note that $\gamma R(P)=R\left(\gamma P \nu^{*}\right)=R(V)$ and $\nu N(P)=N\left(\gamma P \nu^{*}\right)=N(V)$, and then $V \in \mathcal{I}_{0}$.

Moreover

$$
\left\|V-P_{N(V)}\right\|=\left\|\gamma P \nu^{*}-v P \nu^{*}\right\|=\left\|\nu^{*} \gamma P-P\right\|<1
$$

which by the above result implies that V and $P_{N(V)}$ can be joined by a smooth curve inside \mathcal{I}_{0}. On the other hand, P and $P_{N(V)}=\nu P \nu^{*}$ can also be joined by a smooth curve inside the manifold of selfadjoint projections [13], which is a submanifold of \mathcal{I}_{0}.

Corollary 3.6 Let V_{1}, V_{2} be partial isometries with $\operatorname{dim} N\left(V_{1}\right)=\operatorname{dim} N\left(V_{2}\right)=$ $\operatorname{codim} R\left(V_{1}\right)=\operatorname{codim} R\left(V_{2}\right)$, and let P_{1} and P_{2} be projections such that $\left\|V_{i}-P_{i}\right\| \leq$ $1 / 3$ for $i=1,2$. Then V_{i} lie in the same connected component of \mathcal{I}_{0}

Proof Both V_{1} and V_{2} lie in \mathcal{I}_{0} by the above Proposition. Clearly the projections P_{1} and P_{2} are unitarily equivalent, therefore they can be joined by a continuous curve. On the other hand, the above Proposition also states that V_{1} can be joined to P_{1} by means of a continuous curve inside \mathcal{I}_{0}, and the same holds for V_{2} and P_{2}. Thus V_{1} and V_{2} can be joined by a continuous curve inside \mathcal{I}_{0}.

4 The Relationship with Normal Partial Isometries

In this section we study topologic properties of \mathcal{I}_{0}, for instance, we characterize the connected components. It will be useful to recall how the connected components of \mathcal{I} [10] and \mathcal{I}_{N} [2] are parametrized. The connected components of \mathcal{I} are identified by three numbers $\iota, \kappa, \nu \in \mathbb{N}_{0} \cup\{\infty\}$:

$$
\mathcal{I}_{l, \kappa}^{v}=\left\{V \in \mathcal{I}: \operatorname{dim} R(V)=\iota, \operatorname{dim} N(V)=\kappa, \operatorname{dim} R(V)^{\perp}=v\right\},
$$

with the obvious restrictions (for instance, if $\iota<\infty$, then $v=\infty$, etc.). If V lies in \mathcal{I}_{N} or in \mathcal{I}_{0}, apparently $\kappa=v$, therefore

$$
\mathcal{I}_{N} \subset \mathcal{I}_{0} \subset \cup_{\iota, \kappa} \mathcal{I}_{l, \kappa}^{\kappa} .
$$

These balanced connected components $\mathcal{I}_{\iota, \kappa}^{\kappa}$, are characterized by the fact that they contain projections [2]: for each pair ι, κ, there is an orthogonal projection $P_{\iota, \kappa}$ (in fact, a whole connected component of projections) such that

$$
\mathcal{I}_{\iota, \kappa}^{\kappa}=\left\{U P_{\iota, \kappa} W^{*}: U, W \in \mathcal{U}(\mathcal{H})\right\} .
$$

An example of a non balanced isometry is the unilateral shift, or any isometry. In [2] it was shown that these numbers ι, κ parametrize the connected components of \mathcal{I}_{N}, more precisely, the connected components $\left(\mathcal{I}_{N}\right)_{\iota, \kappa}$ are:

$$
\left(\mathcal{I}_{N}\right)_{\iota, \kappa}=\mathcal{I}_{N} \cap \mathcal{I}_{\iota, \kappa}^{\kappa} .
$$

We shall see below that the same happens for \mathcal{I}_{0}.
In a previous work [1], the first two authors studied the geometry of the set \mathcal{I}_{N} of normal partial isometries, i.e., partial isometries such that the initial space $V^{*} V$ and the final space $V V^{*}$ coincide. As remarked above, $\mathcal{I}_{N} \subset \mathcal{I}_{0}$ is a smooth submanifold. In this section we shall study the topological properties of \mathcal{I}_{0} relating it to \mathcal{I}_{N}

Let us recall the following fact from the differential geometry of the space of projections, or Grassmannian of \mathcal{H}, denoted by \mathcal{P}, as developed by Corach, Porta and Recht [6,13]:

Remark 4.1 1. The tangent space $(T \mathcal{P})_{\mathcal{P}}$ of \mathcal{P} at P consists of selfadjoint operators X which are co-diagonal with respect to $P: P X P=(1-P) X(1-P)=0$.
2. The manifold \mathcal{P} is a homogeneous space of $\mathcal{U}(\mathcal{H})$, by means of the action $U \cdot P=$ $U P U^{*}$. If $P(t)$ is a curve of projections, the parallel transport $X(t)$ of a tangent vector X along $P(t)$, with $X\left(t_{0}\right)=X$, is given by

$$
X(t)=\Gamma(t) X \Gamma(t)^{*}
$$

where $\Gamma(t)$ is the curve of unitaries obtained as the unique solution of the linear equation

$$
\left\{\begin{array}{l}
\dot{\Gamma}(t)=(\dot{P}(t) P(t)-P(t) \dot{P}(t)) \Gamma(t) \tag{5}\\
\Gamma\left(t_{0}\right)=1
\end{array}\right.
$$

Additionally, the curve $\Gamma(t)$ lifts $P(t)$:

$$
\Gamma(t) P(0) \Gamma(t)^{*}=P(t)
$$

3. If P_{0}, P_{1} are selfadjoint projections such that $\left\|P_{0}-P_{1}\right\|<1$ then there exists a unique $X \in \mathcal{B}(\mathcal{H})$ with $X^{*}=X,\|X\|<\pi / 2$, which is P_{0}-codiagonal

$$
P_{0} X P_{0}=\left(1-P_{0}\right) X\left(1-P_{0}\right)=0
$$

such that
(a) $e^{i X} P_{0} e^{-i X}=P_{1}$.
(b) The curve $\rho(t)=e^{i t X} P_{0} e^{-i t X}, t \in[0,1]$ is the shortest curve of projections joining P_{0} and P_{1} (among rectifiable curves).
(c) If we fix P_{0}, the map which sends $P_{1} \mapsto X$ is smooth. It is in fact the inverse of the exponential map of the Grassmann manifold.

Note that the second equivalent condition established in Theorem 2.2 states that if $V \in \mathcal{I}_{0}$ then

$$
\left\|V^{*} V-V V^{*}\right\|<1
$$

Therefore, by the above cited result, there exists a unique selfadjoint operator $X_{V} \in$ $\mathcal{B}(\mathcal{H})$ such that

1. $\left\|X_{V}\right\|<\pi / 2$.
2. X_{V} is $V^{*} V$-codiagonal.
3. $e^{i X_{V}} V^{*} V e^{-i X_{V}}=V V^{*}$.
4. The map $V \mapsto X_{V}$ is smooth.

In particular, these conditions imply that the unitary $e^{i X_{V}}$ maps $N(V)^{\perp}$ onto $R(V)$. It follows that $e^{-i X_{V}} V$ is a partial isometry with initial and final space $N(V)^{\perp}$, i.e. $e^{-i X_{V}} V \in \mathcal{I}_{N}$. If $A \in \mathcal{I}_{N}$, put $P_{A}=A^{*} A=A A^{*}$. Let us denote by
$\mathcal{E}=\left\{(X, A): A \in \mathcal{I}_{N}, X^{*}=X,\|X\|<\pi / 2, X\right.$ is co-diagonal with respect to $\left.P_{A}\right\}$.
Consider \mathcal{E} with the topology induced by the norm in $\mathcal{B}(\mathcal{H}) \times \mathcal{B}(\mathcal{H})$. Therefore the following map is defined

$$
\begin{equation*}
\Delta: \mathcal{I}_{0} \rightarrow \mathcal{E}, \quad \Delta(V)=\left(X_{V}, e^{-i X_{V}} V\right) \tag{6}
\end{equation*}
$$

Theorem 4.2 The map Δ is a homeomorphism.
Proof Note that Δ is clearly continuous. We claim that its inverse is the map Π

$$
\Pi: \mathcal{E} \rightarrow \mathcal{I}_{0}, \quad \Pi(X, A)=e^{i X} A
$$

Apparently Π is the restriction to \mathcal{E} of a continuous map defined in $\mathcal{B}(\mathcal{H}) \times \mathcal{B}(\mathcal{H})$ with an identical formula. We must check first that Π takes values in \mathcal{I}_{0}. Put $V=$ $\Pi(X, A)=e^{i X} A$. Then, using that $A A^{*}=A^{*} A=P_{A}$,

$$
V^{*} V-V V^{*}=A^{*} A-e^{i X} A A^{*} e^{-i X}=\frac{1}{2}\left\{\left(2 p_{A}-1\right)-e^{i X}\left(2 P_{A}-1\right) e^{-i X}\right\}
$$

Since X is P_{A} co-diagonal, it is elementary to verify that X anti-commutes with $2 P_{A}-1$:

$$
X\left(2 P_{A}-1\right)=-\left(2 P_{A}-1\right) X
$$

Thus $e^{i X}\left(2 P_{A}-1\right) e^{-i X}=e^{2 i X}\left(2 P_{A}-1\right)$. It follows that

$$
\left\|V^{*} V-V V^{*}\right\|=\frac{1}{2}\left\|\left(2 P_{A}-1\right)\left(1-e^{2 i X}\right)\right\|=\frac{1}{2}\left\|1-e^{2 i X}\right\|
$$

where the last equality follows because $2 P_{A}-1$ is a unitary operator. As remarked at the beginning of Sect. 2, since $\|2 X\|<\pi,\left\|1-e^{2 i X}\right\|<2$ and thus $\left\|V^{*} V-V V^{*}\right\|<1$,
i.e. $V \in \mathcal{I}_{0}$. If $V \in \mathcal{I}_{0}$, it is apparent that $\Pi(\Delta(V))=V$. Let $(X, A) \in \mathcal{E}$ and put $V=e^{i X} A$. Then $V^{*} V=A^{*} A$ and

$$
V V^{*}=e^{i X} A A^{*} e^{-i X}=e^{i X} A^{*} A e^{-i X}=e^{i X} V^{*} V e^{-i X}
$$

Since X is $P_{A}=V^{*} V$-co-diagonal, and $\|X\|<\pi / 2$, by the uniqueness property of the logarithm remarked above, it follows that $X_{V}=X$, and therefore $\Delta \Pi(X, A)=$ $\Delta(V)=\left(X, e^{-i X} V\right)=(X, A)$.

As recalled above, the connected components of \mathcal{I}_{N} are parametrized by the projections: two normal partial isometries lie in the same connected component of \mathcal{I}_{N} if and only if their final (=initial) projections are unitarily equivalent. Moreover, one has the following fact:

Proposition 4.3 Let $P(t), t \in[0,1]$ be a smooth curve of projections. Let $A_{0}, A_{1} \in$ \mathcal{I}_{N} such that $A_{i}^{*} A_{i}=P(i)$ for $i=0$, 1 . Then there exists a continuous curve $A(t) \in$ \mathcal{I}_{N} such that $A^{*}(t) A(t)=A(t) A^{*}(t)=P(t), A(0)=A_{0}$ and $A(1)=A_{1}$.

Proof Let us construct a continuous (in fact it will be smooth) curve $A(t) \in \mathcal{I}_{N}, t \in$ [0, 1/2] with

$$
A(0)=P(0), A(1 / 2)=P(1 / 2) \text { and } A^{*}(t) A(t)=A(t) A^{*}(t)=P(t), t \in[0,1 / 2] .
$$

Let $\Gamma(t)$ be the solution of Eq. (5) with $\Gamma(0)=1$. Then $\Gamma(t)$ lifts $P(t): \Gamma(t) P(0)$ $\Gamma^{*}(t)=P(t)$. The operator A_{0} is a unitary operator in $R(P(0))$, thus there exists a selfadjoint operator X_{0} which acts in $R(P(0))$, i.e. $P(0) X_{0} P(0)=X_{0}$, such that $A_{0}=e^{i X_{0}}$. Since $\Gamma(t)$ lifts $P(t)$, it follows that $X_{t}=\Gamma(t) X_{0} \Gamma(t)^{*}$ acts in $R(P(t))$:

$$
P(t) X_{t} P(t)=\Gamma(t) P(0) X_{0} P(0) \Gamma^{*}(t)=\Gamma(t) X_{0} \Gamma^{*}(t)=X_{t} .
$$

It follows that $A(t)=P(t) e^{i(1-2 t) X_{t}}$ is a smooth curve, such that for each $t \in[0,1 / 2], A(t)$ is a unitary in $R(P(t))$, or in other words, $A(t) \in \mathcal{I}_{N}$, with $A^{*}(t) A(t)=A(t) A^{*}(t)=P(t)$, such that $A(0)=A_{0}$ and $A(1 / 2)=P(1 / 2)$. Analogously, one constructs a smooth curve $A(t)$ for $y \in[1 / 2,1]$ such that $A(t) \in$ $\mathcal{I}_{N}, A^{*}(t) A(t)=A(t) A^{*}(t)=P(t), A(1 / 2)=P(1 / 2)$ and $A(1)=A_{1}$. Adjoining both paths, one obtains a continuous path as required (in fact smooth, except eventually at $t=1 / 2$).

The next result shows that each connected component of \mathcal{I}_{0} is the intersection of \mathcal{I}_{0} with a component of \mathcal{I}.

Theorem 4.4 If $V_{0}, V_{1} \in \mathcal{I}_{0}$ lie in the same connected component of \mathcal{I}, then there is a smooth curve in \mathcal{I}_{0} joining them.

Proof Since \mathcal{I} is a smooth submanifold of $\mathcal{B}(\mathcal{H})$ (see for instance [1]), if V_{0}, V_{1} lie in the same connected component of \mathcal{I}, then there exists a smooth curve $V(t)$ in \mathcal{I} with $V(0)=V_{0}$ and $V(1)=V_{1}$. Let $P(t)=V^{*}(t) V(t)$, which is a smooth curve in the Grassmannian \mathcal{P}. By the above theorem, to V_{0} and V_{1} correspond selfadjoint
operators $X_{V_{0}}$ and $X_{V_{1}}$ and normal partial isometries A_{0} and A_{1}. In particular, as seen above, $X_{V_{0}}$, being $V_{0}^{*} V_{0}=P(0)$ co-diagonal, is a tangent vector in $(T \mathcal{P})_{P(0)}$. Let $X(t)$ be the parallel transport of $X_{V_{0}}$ along the smooth curve $P(t)$, which consists of $P(t)$ co-diagonal selfadjoint operators. Note that since $X(t)=\Gamma(t) X_{V_{0}} \Gamma(t)^{*}$ and $\Gamma(t)$ are unitary operators,

$$
\|X(t)\|=\left\|X_{V_{0}}\right\|<\pi / 2
$$

Also note that $A_{i}^{*} A_{i}=A_{i} A_{i}^{*}=P(i)$, for $i=0,1$. By the above result on \mathcal{I}_{N}, there exists a smooth curve $A(t) \in \mathcal{I}_{N}$, with $A(0)=A_{0}, A(1)=A_{1}$ and

$$
A(t)^{*} A(t)=A(t) A(t)^{*}=P(t)
$$

Then the pairs $\alpha(t)=(X(t), A(t))$ form a continuous curve in \mathcal{E}, with initial point $\left(X_{V_{0}}, A_{0}\right)$. At $t=1, X(1)$ may be different than $X_{V_{1}}$, however both selfadjoint operators are $P(1)$ co-diagonal, and have norms less than $\pi / 2$. Consider then the curve $\beta(t)=\left(t X_{V_{1}}+(1-t) X(1), A_{1}\right), t \in[0,1]$. The selfadjoint operators $t X_{V_{1}}+(1-$ t) $X(1)$ are $P(1)$ co-diagonal, because $X_{V_{1}}$ and X_{1} are. Moreover,

$$
\left\|t X_{V_{1}}+(1-t) X(1)\right\| \leq t\left\|X_{V_{1}}\right\|+(1-t)\|X(1)\|<\pi / 2
$$

Therefore this curve $\beta(t)$ also lies in \mathcal{E}. Adjoining α and β one obtains a continuous curve in \mathcal{E} which joins $\left(X_{V_{0}}, A_{0}\right)$ and $\left(X_{V_{1}}, A_{1}\right)$. By the above theorem, this induces a continuous curve in \mathcal{I}_{0}, joining V_{0} and V_{1}. Since \mathcal{I}_{0} is a submanifold of $\mathcal{B}(\mathcal{H})$, this implies the existence of a smooth curve joining them.

In Corollary 3.4 it was shown that if $V \in \mathcal{I}$ and $\left\|V-P_{R(V)}\right\|<1$, then $V \in \mathcal{I}_{0}$. The following corollary is related to his property.

Corollary 4.5 If $V \in \mathcal{I}_{0}$, then V lies in the same component of \mathcal{I}_{0} as $P_{R(V)}$. The same holds for $P_{N(V)^{\perp}}$.

Proof Clearly V and $P_{R(V)}$ have the same range. They also have the same nullity. Indeed, the null-space of $P_{R(V)}$ is $R(V)^{\perp}=N\left(V^{*}\right)$. Since also $V^{*} \in \mathcal{I}_{0}, R\left(V^{*}\right)=$ $N(V)^{\perp}$ is a supplement for this space. It follows that $N(V)$ and $N\left(V^{*}\right)$ have a common supplement, namely $N(V)^{\perp}$. Therefore $\operatorname{dim} N(V)=\operatorname{dim} N\left(V^{*}\right)=\operatorname{dim} R(V)^{\perp}$. It follows that V and $P_{R(V)}$ lie in the same connected component of \mathcal{I}. Therefore, by the above theorem, they lie in the same connected component of \mathcal{I}_{0}. The proof for $P_{N(V)^{\perp}}$ is analogous.

Consider the map

$$
\rho: \mathcal{I}_{0} \rightarrow \mathcal{I}_{N}, \quad \rho(V)=e^{-i X_{V}} V
$$

Note that, via the homeomorphism Δ, it corresponds to the projection onto the second coordinate:

$$
\mathcal{E} \rightarrow \mathcal{I}_{N}, \quad(X, A) \mapsto A .
$$

It is clearly a retraction. Therefore one may use it to compare the homotopy groups of \mathcal{I}_{0} and \mathcal{I}_{N}. Note that the fibre over each element $A \in \mathcal{I}_{N}$ is contractible, it identifies with the open ball of radius $\pi / 2$ of the Banach space

$$
\left\{X \in \mathcal{B}(\mathcal{H}): X^{*}=X, P_{A} X P_{A}=\left(1-P_{A}\right) X\left(1-P_{A}\right)=0\right\} .
$$

In [2] it was shown that if $A \in \mathcal{I}_{N}$, then

$$
\pi_{1}\left(\mathcal{I}_{N}, A\right) \simeq \pi_{1}(\mathcal{U}(R(A)))
$$

which is trivial if $\operatorname{dim} R(A)>1$, and equal to \mathbb{Z} if $\operatorname{dim} R(A)=1$. Therefore:
Corollary 4.6 If $V \in \mathcal{I}_{0}$, then

$$
\pi_{1}\left(\mathcal{I}_{0}, V\right)=0 \quad \text { if } \operatorname{dim} R(V)>1,
$$

and

$$
\pi_{1}\left(\mathcal{I}_{0}, V\right)=\mathbb{Z} \quad \text { if } \operatorname{dim} R(V)=1 .
$$

In the case when both the range and the kernel are infinite dimensional, one can prove that \mathcal{I}_{0} is contractible. In order to do so, let us recall from [2] the fibre bundle μ_{P}. If P is a projection, denote by

$$
H_{P}=\mathcal{U}(R(P)) \times \mathcal{U}(N(P))
$$

regarded as a subgroup of $\mathcal{U}(\mathcal{H})$ (i.e., the group of unitaries which commute with P). Note that each connected component of \mathcal{I}_{N} (and therefore also of \mathcal{I}_{0}) contains selfadjoint projections. Let \mathcal{I}_{N}^{P} be the connected component of \mathcal{I}_{N} which contains P. Then

$$
\mu_{P}: \mathcal{U}(\mathcal{H}) \times H_{P} \rightarrow \mathcal{I}_{N}^{P}, \quad \mu_{P}(U, \Omega)=U \Omega P U^{*}
$$

is a locally trivial fiber bundle (Proposition 4.3 of [2]). The fibre is

$$
\mathcal{F}=H_{P} \times \mathcal{U}(N(P))
$$

If both $N(P)$ and $R(P)$ are infinite dimensional, by Kuiper's theorem [7], $\mathcal{U}(\mathcal{H}), \mathcal{U}(N(P)), \mathcal{U}(R(P))$ (and therefore also H_{P}) are contractible. Therefore \mathcal{I}_{N}^{P} has trivial homotopy group of all orders. By the remarks, the same happens for the connected component of P in \mathcal{I}_{0}. Then:

Corollary 4.7 Let $V \in \mathcal{I}_{0}$ such that $R(V)$ and $R(V)^{\perp}$ (equivalently, $N(V)$ and $\left.N(V)^{\perp}\right)$ are infinite dimensional. Then the connected component of \mathcal{I}_{0} containing V is contractible.

Proof By Corollary 4.5, the connected component of \mathcal{I}_{0} containing V, contains also $P_{R(V)}$. By the above remark, this connected component of \mathcal{I}_{0} is homotopically equivalent to \mathcal{I}_{N}^{P} for $P=P_{R(V)}$, which has infinite dimensional rank and nullity. Therefore this component \mathcal{I}_{0} has trivial homotopy of all orders. Since it is a differentiable manifold, it is contractible by Palais's theorem [12].

References

1. Andruchow, E., Corach, G.: Differential geometry of partial isometries and partial unitaries. Ill. J. Math. 48(1), 97-120 (2004)
2. Andruchow, E., Corach, G., Mbekhta, M.: On the geometry of generalized inverses. Math. Nachr. 278(7-8), 756-770 (2005)
3. Buckholtz, D.: Hilbert space idempotents and involutions. Proc. Am. Math. Soc. 128(5), 1415-1418 (2000)
4. Chen, Y.-N., Du, H.-K., Pang, Y.-F.: A simplification of the Kovarik formula. J. Math. Anal. Appl. 331, 13-20 (2007)
5. Corach, G., Maestripieri, A.: Polar decompositions of oblique projections. Linear Algebra Appl. 433, 511-519 (2010)
6. Corach, G., Porta, H., Recht, L.: The geometry of spaces of projections in C^{*}-algebras. Adv. Math. 101, 59-77 (1993)
7. Kuiper, N.: The homotopy type of the unitary group of Hilbert space. Topology 3, 19-30 (1965)
8. Halmos, P.R., McLaughlin, J.E.: Partial isometries. Pacif. J. Math. 13, 585-596 (1963)
9. Harte, R., Mbekhta, M.: Generalized inverses in C^{*}-algebras. II. Studia Math. 106, 129-138 (1993)
10. Mbekhta, M., Skhiri, H.: Partial isometries: factorization and connected components. Integral Equ. Oper. Theory 38, 334-349 (2000)
11. Mbekhta, M., Stratila, S.: Homotopy classes of partial isometries in von Neumann algebras. Acta Sci. Math. (Szeged) 68(1-2), 271-277 (2002)
12. Palais, R.S.: Homotopy theory of infinite dimensional manifolds. Topology 5, 1-16 (1966)
13. Porta, H., Recht, L.: Minimality of geodesics in Grassmann manifolds. Proc. Am. Math. Soc. 100, 464-466 (1987)
14. Taylor, A.E., Lay, D.C.: Introduction to functional analysis. Reprint of the second edition. Robert E. Krieger Publishing Co., Inc., Melbourne (1986)

[^0]: Communicated by Leiba Rodman.
 E. Andruchow (\boxtimes)

 Instituto de Ciencias, Universidad Nacional de Gral. Sarmiento,
 J.M. Gutierrez 1150, 1613 Los Polvorines, Argentina
 e-mail: eandruch@ungs.edu.ar
 E. Andruchow • G. Corach

 Instituto Argentino de Matemática, Saavedra 15, 3er. piso, 1083 Buenos Aires, Argentina
 G. Corach
 e-mail: gcorach@fi.uba.ar

