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Abstract A partial isometry V is said to be a split partial isometry if H = R(V )+
N (V ), with R(V )∩ N (V ) = {0} (R(V ) = range of V, N (V ) = null-space of V ). We
study the topological properties of the set I0 of such partial isometries. Denote by I
the set of all partial isometries of B(H), and by IN the set of normal partial isometries.
Then

IN ⊂ I0 ⊂ I,

and the inclusions are proper. It is known that I is a C∞-submanifold of B(H). It is
shown here that I0 is open in I, therefore is has also C∞-local structure.
We characterize the set I0, in terms of metric properties, existence of special pseudo-
inverses, and a property of the spectrum and the resolvent of V . The connected com-
ponents of I0 are characterized: V0, V1 ∈ I0 lie in the same connected component if
and only if
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dim R(V0) = dim R(V1) and dim R(V0)
⊥ = dim R(V1)

⊥.

This result is known for normal partial isometries.
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1 Introduction

Partial isometries were first defined by John von Neumann, as the “argument”’ part
of the polar decomposition of closed linear operators om Hilbert spaces. Halmos and
collaborators [8] studied same topological features of the set I of all partial isometries
of a fixed Hilbert space H.

In this paper a class of partial isometries is studied. We say that v is a split partial
isometry if H is the direct sum of its range R(V ) and its null-space N (V ). The set I0
of all such partial isometries is a proper subset of I, which contains properly the set
IN of normal partial isometries (i.e. R(V ) = N (V )⊥), and, a fortiori, contains the set
P of all orthogonal projections in H.

Let us fix some notation. Let H be a Hilbert space, B(H) the space of bounded
operators acting in H,Gl(H) the group of invertible operators, and U(H) the unitary
group of H. If A ∈ B(H) is an operator, we denote by R(A) its range, by N (A) its
null-space, and by σ(A) its spectrum. Two closed subspaces S, T of H are said to be
in direct sum if S+T = H and S∩T = {0}, in symbols, S+̇T = H (we shall reserve
the notation S ⊕ T = H for the case when the subspaces are orthogonal). A direct
sum splitting as above gives rise to an idempotent operator in B(H): E(s + t) = s and
(1 − E)(s + t) = t . E shall be called a projection when S and T are orthogonal, and
denoted E = PS .

As said above, I is the set of partial isometries of H, i.e.

I = {V ∈ B(H) : V is isometric between N (V )⊥ and R(V )}.

Equivalently, V ∗V and / or V V ∗ are projections. In that case V ∗V is the projec-
tion onto N (V )⊥ (also called the initial space of V ), and V V ∗ is the projection onto
R(V ) (the final space of V ). There are several papers dealing with the structure of I,
topological or geometrical, among them [1,2,8,10,11].

We shall study here a class of partial isometries, which we shall call split isometries
and denote by I0, namely

I0 = {V ∈ I : N (V )+̇R(V ) = H}.

Examples of split isometries are selfadjoint projections, partial isometries whose range
and null-spaces are mutually orthogonal (=normal partial isometries), and partial isom-
etries which appear in the polar decomposition of an oblique projection [5]. It is
apparent that this class I0 is invariant under inner conjugation by unitary operators.
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The contents of the paper are the following. Section 2 contains further notations,
preliminaries, results on partial isometries and several characteristic properties of the
set I0 of split partial isometries. For instance, V ∈ I0 if and only if it admits a com-
muting pseudo-inverse, or if 0 is a pole of order one of the resolvent (Theorem 2.2).
Some of these properties are based in a theorem by Buckholtz [3] on pairs of orthog-
onal projections P ,Q such that R(P)+̇R(Q) = H. In Sect. 3 we examine the local
structure of I0. It is shown that I0 is a submanifold of B(H). Also it is shown that a
partial isometry lying close enough to a projection, belongs to I0: (Theorem 3.5) if
V ∈ I and P a projection with ‖V − P‖ < 1/3, then V ∈ I0. In Sect. 4 we study
the relationship between I0 and the set IN of normal partial isometries. We prove
that each V ∈ I0 gives rise to a unique selfadjoint operator XV , with ‖XV ‖ < π/2,
which is co-diagonal with respect to the initial projection of V , such that e−i XV V is
normal. Therefore I0 decomposes as pairs (XV , e−i XV V ). This implies that the space
of split partial isometries has the same homotopy type as the space of normal partial
isometries. For instance, it is shown that if V0, V1 ∈ I0 verify

dim R(V0) = dim R(V1) and dim R(V0)
⊥ = dim R(V1)

⊥,

then they can be joined by a smooth curve in I0.

2 Split Partial Isometries

The following result is known, and will be useful below. We transcribe as it was stated
by Buckholtz in [3]

Lemma 2.1 Let R,K be closed subspaces in H. Then

R +̇ K = H

if and only if

PR − PK ∈ Gl(H).

if and only if

‖PR + PK − 1‖ < 1.

In that case, the idempotent onto R induced by the decomposition is E = PR(PR −
PK)−1 Q.

See, for instance, [3] and [4].
The next result gives several characterizations of the class of split isometries.

Theorem 2.2 Let V ∈ I, a non invertible partial isometry. Then the following are
equivalent:

1. V ∈ I0.
2. ‖V ∗V − V V ∗‖ < 1.
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3. V ∗V + V V ∗ − 1 ∈ Gl(H).
4. There exists W ∈ B(H) such that

W V W = W, V W V = V, and W V = V W.

Such W is unique with these properties.
5. There exist S, R ∈ B(H) with S invertible and R an idempotent, such that V =

S R = RS.
6. There exists an invertible operator T which commutes with V , such that V =

V T V .
7. 0 ∈ σ(V ) is isolated, and it is a pole of order 1 of the resolvent of V .

Proof Let us first prove the equivalences, then the additional property. (1) is equivalent
to (2) or (3) by the Lemma above: put R = R(V ) and K = N (V ).

Suppose (3), i.e. V ∗V + V V ∗ − 1 ∈ Gl(H), and let C = (V ∗V + V V ∗ − 1)−1.
Using that V V ∗V = V and V ∗V V ∗ = V ∗, one has that

V = V (V ∗V + V V ∗ − 1)C = V 2V ∗C,

and that

V = C(V ∗V + V V ∗ − 1)V = CV ∗V 2.

Note that this implies that

V V ∗C = CV ∗V . (1)

Indeed,V V ∗C = CV ∗V 2V ∗C = CV ∗(V 2V ∗C) = CV ∗V . This intertwining prop-
erty of C and the two formulas above imply the identities

V = V 2V ∗C = V CV ∗V and V = CV ∗V 2 = V V ∗CV . (2)

Multiplying the first identity in (2) on the right by V ∗ gives

V V ∗ = V CV ∗V V ∗ = V CV ∗. (3)

Multiplying the second identity in (2) on the left by V ∗ gives

V ∗V = V ∗V V ∗CV = V ∗CV . (4)

Put W = CV ∗C = CV ∗V V ∗C . Then, by (3) and (4),

V W V = V CV ∗CV = V V ∗CV = V V ∗V = V

and

W V W = CV ∗CV CV ∗C = CV ∗V CV ∗C = CV ∗V V ∗C = CV ∗C.
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Finally, using again also (1)

V W = V CV ∗C = V V ∗C = CV ∗V = CV ∗CV = W V .

Let us prove now that this last property (that V has a commuting pseudoinverse W )
implies that V ∈ I0. Note that Q = W V = V W is an idempotent operator, with
N (Q) = N (W V ) = N (V ) and R(Q) = R(V W ) = R(V ), and the proof follows.

Suppose (4) holds. Let R = V W and S = V + 1 − V W . Then R2 = R and S is
invertible with S−1 = W + 1 − W V . Clearly,

V = S R = RS.

This proves (5).
Suppose (5) holds. Then (6) follows with T = S−1. In fact, V T = T V and

V T V = V S−1V = V S−1S R = V R = S R2 = S R = V .

Suppose (6) holds. Then (4) follows with W = T 2V . Indeed, V W = W V and

V W V = V T 2V 2 = V T V T V = V T V = V ; W V W = T 2V 2T 2V = T 2V = W.

(4) 
⇒ (1). Since, V W = W V , the identity 1 = V W + (1 − V W ) = V W + (1 −
V W ), show (1) holds.

(1) is equivalent to (7) (see [14], Theorems 10.1 and 10.2)
That the commuting pseudoinverse, when it exists, is unique, is known (see, for

instance, [9]). �

As it was noted in the introduction, a partial isometry V is normal if and only if

N (V )⊕ R(V ) = H.

Remark 2.3 1. Let T ∈ B(H) with Moore–Penrose inverse T †. Then

T T † = T †T ⇐⇒ H = N (T )⊕ R(T ).

Indeed, suppose T T † = T †T . Then R(T ) = R(T T †) and N (T ) = N (T †T ) =
N (T T †). Since T T † is a orthogonal projection, we have H = N (T ) ⊕ R(T ).
Conversely, suppose H = N (T ) ⊕ R(T ); then the orthogonal complement of
N (T ) is R(T ) and therefore T T † = PR(T ) = PN (T )⊥ = T †T .

2. Using the Lemma above, note that if V ∈ I0, then the idempotent onto R(V )
given by the decomposition R(V )+̇N (V ) = H is

V V ∗CV ∗V = V V ∗C = CV ∗V .

3. By the theorem above (for instance, condition 2), it is clear that V ∈ I0 if and
only if V ∗ ∈ I0.
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4. Denote by Q the set of idempotents in B(H). If T ∈ B(H), let VT be the (unique)
partial isometry in the polar decomposition of T, T = VT |T | (with initial space
R(T )⊥ and final space R(T )). It is easy to prove that the map α : I0 → Q, defined
by α(V ) = V V ∗C = CV ∗V is surjective, and that the map β : Q → I0 defined
by β(E) = VE is a right inverse of α, i.e., α(β(E)) = E for every E ∈ Q. It is
apparent that α is continuous. Continuity of the map β was proved in [5].

Theorem 2.4 Let V ∈ I0. Then V 2 ∈ I if and only if V is normal.

Proof Clearly, V normal implies V 2 ∈ I. Suppose V 2 ∈ I. Let us first prove
that V V ∗2V is orthogonal projection. Indeed, (V V ∗2V )2 = V V ∗2V V V ∗2V =
V V ∗2V 2V ∗2V = V V ∗2V . And, since ‖V V ∗2V ‖ ≤ 1, V V ∗2V is an orthogo-
nal projection. Thus, in particular V V ∗2V = (V V ∗2V )∗ = V ∗V 2V ∗. We claim
that N (V ) = N (V ∗). Let x ∈ N (V ). Then, V ∗V 2V ∗x = V V ∗2V x = 0. Thus,
V 2V ∗x ∈ N (V ∗) ∩ R(V 2) = N (V ∗) ∩ R(V ) = {0} (since V ∈ I0). There-
fore, V 2V ∗x = 0 and thus, V ∗x ∈ N (V 2) ∩ R(V ∗) = N (V ) ∩ R(V ∗) = {0}.
That is x ∈ N (V ∗) and N (V ) ⊆ N (V ∗). The other inclusion follows by symmetry.
Finally, we have, N (V ) = N (V ∗) = R(V )⊥ and thus H = N (V )⊕ R(V ), i.e. V is
normal. �


The next result characterizes the operators T ∈ B(H) such that the partial isome-
try in the polar decomposition belongs to I0. Recall that the polar decomposition of
T ∈ B(H) is the factorization T = V |T |, where V is a partial isometry such that
N (V ) = N (T ) and |T | = (T ∗T )1/2. It can be shown that V is uniquely determined
by these properties, and it will be denoted VT . Moreover, it holds that R(VT ) = R(T )
and T = |T ∗|VT .

Proposition 2.5 Given T ∈ B(H), VT belongs to I0 if and only if H = R(T )+̇N (T ).

Proof By the definition of I0, if VT ∈ I0 then H = R(VT )+̇N (VT ) = R(T )+̇N (T ).
The converse is evident. �

As remarked in Sect. 1, one has the strict inclusions

P ⊂ IN ⊂ I0 ⊂ I.

It is apparent that the first inclusion is strict. Let us write a simple example of a non
normal partial isometry in I0. Let S, T be two non orthogonal subspaces such that
S+̇T = H. Then dim S = dim T ⊥. Pick {ξi : i ∈ I } and {ηi : i ∈ I } orthonormal
bases of S and T ⊥, respectively. Define Vηi = ξi and V |T = 0. Then V ∈ I0 \ IN .
Finally, let S ⊂ H be an infinite dimensional closed subspace such that S⊥ is also
infinite dimensional, and let W be isometric between S and S⊥. Then W ∈ I \ I0.

3 Local Structure of I0

In this section we examine the local structure of I0. First we note that I0 is a differ-
entiable manifold. In [2] it was shown the set I is a C∞-submanifold of B(H). Then
the following is apparent:
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Corollary 3.1 The set I0 is a C∞-submanifold of B(H)

Proof By the characterization of I0 in the Theorem of the previous section, it is clear
that I0 is open in I, which is a complemented C∞-submanifold of B(H) (see [1]). �


The following Lemma will be useful. First recall the basic fact that unitary oper-
ators close enough to the identity have unique logarithms, in the following sense: if
U ∈ U(H) and ‖U − 1‖ < 2, then there exists a unique X ∈ B(H) with X∗ = X and
‖X‖ < π such that U = ei X .

Lemma 3.2 Let A, X ∈ B(H) with X∗ = X and ‖X‖ ≤ π . If ‖ei X A− A‖ < R, then

‖eit X A − A‖ < R,

for all t with |t | ≤ 1

Proof First note that ‖ei X A − A‖ < R implies that

‖e−i X A − A‖ = ‖e−i X (A − ei X A)‖ = ‖ei X A − A‖ < R.

Let ξ ∈ H, ξ �= 0, and consider fξ (t) = ‖eit X ξ − ξ‖2. Apparently,

ḟξ (t) = −2 Re
(

i〈Xeit X ξ, ξ 〉
)
.

We claim that ḟξ (t) ≥ 0 for 0 ≤ t ≤ 1 and ḟξ (t) ≤ 0 for −1 ≤ t ≤ 0. Suppose first
that X has finite spectrum, i.e.

X =
n∑

j=1

α j Pj ,

with Pj mutually orthogonal selfadjoint projections, and α j ∈ R with |α j | ≤ π . Put
ξ j = Pjξ . Then Xξ j = α jξ j and eit X ξ j = eitα j ξ j . Then

ḟξ (t) = −2Re

⎛
⎝i

〈
n∑

j=1

α j e
i tα j ξ j ,

n∑
k=1

ξk

〉⎞
⎠ = −2 Re

⎛
⎝i

n∑
j=1

α j e
i tα j ‖ξ j‖2

⎞
⎠ .

Note that

−2 Re(iα j e
i tα j ) = α j sin(tα j ) = |α j | sin(t |α j |).

Since |α j | ≤ π for all j = 1, . . . , n, ḟξ (t) ≥ 0, if 0 ≤ t ≤ 1, and ḟξ (t) ≥ 0, if
−1 ≤ t ≤ 0. Thus the assertion is true in this case.
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For an arbitrary X = X∗, there exists a sequence Xk = X∗
k with Xk of finite

spectrum and ‖Xk‖ ≤ π , such that ‖Xk − X‖ → 0. Since for each Xk it holds that
−Re(i〈Xkeit Xk ξ, ξ 〉) ≥ 0 for 0 ≤ t ≤ 1, then also

−Re
(

i〈Xeit X ξ, ξ 〉
)

≥ 0, for 0 ≤ t ≤ 1.

It follows that fξ (t) = ‖eit X ξ − ξ‖ is non decreasing for t ∈ [0, 1]. Analogously,
fξ (t) is non increasing in [−1, 0]. If η ∈ H, put ξ = Aη. Then ‖eit X Aη− Aη‖ is non
decreasing in [0, 1], and non increasing in [−1, 0]. By hypothesis, ‖ei X A − A‖ < R,
thus there exists δ > 0 such that ‖ei X A − A‖ < R − δ. Then

‖ei X Aη − Aη‖ < (R − δ)‖η‖

Therefore

‖eit X Aη − Aη‖ < (R − δ)‖η‖, for t ∈ [−1, 1],

and thus ‖eit X A − A‖ ≤ R − δ < R, for t ∈ [−1, 1]. �

Lemma 3.3 Let P be a selfadjoint projection and U a unitary operator. Then if

‖U P − P‖ < 1,

it holds that

U R(P)+̇N (P) = H.

Proof Suppose that U verifies the condition above. Let us check first that U (R(P))∩
N (P) = {0}. Suppose otherwise, that there exists ξ ∈ H such that ‖Pξ‖ = 1 and
U Pξ ∈ N (P), i.e. PU Pξ = 0. Then

1 > ‖U P − P‖2 ≥ ‖U Pξ − Pξ‖2 = ‖U Pξ‖2 + ‖Pξ‖2 − 2Re〈U Pξ, Pξ 〉
= 2 − 2Re〈PU Pξ, ξ 〉 = 2,

a contradiction.
Let us check now that U (R(P))+ N (P) = H. Suppose that there exists a unitary

vector η orthogonal to both subspaces. Then η ⊥ U Pξ for all ξ ∈ H and η ⊥ N (P).
The latter condition means that Pη = η, and putting ξ = η in the former means that
0 = 〈U Pη, η〉 = 〈U Pη, Pη〉. This leads to a contradiction with the same computa-
tion as above. This implies that the sum is dense in H. Let us check that it is closed.
Let ξn ∈ H be a sequence in U (R(P))+ N (P)which converges to ξ . Then there exist
ηn, ψn ∈ H such that ξn = U Pηn + (1 − P)ψn . Then PU Pηn → Pξ . Note that

‖PU P − P‖ = ‖P(U P − P)‖ ≤ ‖U P − P‖ < 1.



Split Partial Isometries 821

This implies that PU P is an invertible operator in B(R(P)). In particular, this implies
that the sequence Pηn is convergent, and therefore also the sequence U Pηn . Thus
also the sequence (1 − P)ψn is convergent, and this implies that the sum is closed. �


The next result estimates how close a partial isometry V must be to PN (V )⊥ , in
order to belong to I0. Note that ‖V − PN (V )⊥‖ = ‖V − PR(V )‖. Indeed,

‖V − PN (V )⊥‖2 = ‖V − V ∗V ‖2

= ‖(V − V ∗V )(V ∗ − V ∗V )‖ = ‖V V ∗ − V ∗ − V + V ∗V ‖,

and

‖V − PR(V )‖2 = ‖V − V V ∗‖2 = ‖(V ∗ − V V ∗)(V − V V ∗)‖
= ‖V ∗V − V − V ∗ + V V ∗‖.

Corollary 3.4 Let V be a partial isometry. If

‖V − PN (V )⊥‖ < 1

(or equivalently ‖V − PR(V )‖ < 1) then V ∈ I0. Moreover, in this case there exists
a smooth curve V (t) in I0, t ∈ [0, 1] of the form V (t) = eit X PN (V )⊥ , such that
V (0) = PN (V )⊥ and V (1) = V . Analogously, one can find a curve of the form
V ′(t) = PR(V )eitY joining V and PR(V ).

Proof The hypothesis that ‖V − PN (V )⊥‖ < 1 implies the existence of a unitary oper-
ator U such that V = U PN (V )⊥ . Indeed, in Prop. 3.1 of [2], it was proved that if two
partial isometries V1, V2 verify ‖V1 − V2‖ < 1, then there exist unitaries U1,U2 such
that V2 = U1V1U∗

2 . We may apply this result to V1 = PN (V )⊥ and V2 = V :

V = U1 PN (V )⊥U∗
2 .

Note that

V ∗V = U2 PN (V )⊥U∗
1 U1 PN (V )⊥U∗

2 = U2 PN (V )⊥U∗
2 ,

i.e. U2 commutes with PN (V )⊥ . Therefore V = U1U∗
2 PN (V )⊥ .

There exists X∗ = X with ‖X‖ ≤ π such that U = ei X . Put V (t) = eit X PN (V )⊥ .
Clearly V (t) is smooth, V (0) = PN (V )⊥ and V (1) = V . Moreover, by the above
lemmas, eit X (R(P)) +̇ N (P) = H. Since eit X (R(P)) = R(eit X P) = R(V (t)) and
N (P) = N (eit X P) = N (V (t)), this shows that V (t) ∈ I0.

Since also V lies in the same connected component of P = PR(V ), then there exists
a unitary operator W such that V = PR(V )W ∗. Thus ‖PW ∗ − P‖ = ‖W P − P‖ < 1.
Then, by the lemma,

W R(P) +̇ N (P) = R(V ∗) +̇ N (V ∗) = H,
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i.e. V ∗ ∈ I0, and thus V ∈ I0. The construction of V (t) is similar as in the previous
case. �

The next result shows that if V is close enough to an arbitrary projection, then V lies
in I0.

We shall use results from [2], concerning the structure of I as a homogeneous space
of U(H)× U(H), by means of the action

(U,W ) · V = U V W ∗, U,W ∈ U(H), V ∈ I0.

For instance, it holds that if V0, V1 ∈ I verify that ‖V1 − V2‖ < 1, then there exist
unitary operators γ, ν, which are polynomials in Vi , V ∗

j , such that V2 = γ V1ν
∗.

Theorem 3.5 If V is a partial isometry and P is a projection such that ‖V −P‖ < 1/3,
then V ∈ I0. Moreover, there is smooth curve V (t) ∈ I0 such that V (0) = P and
V (1) = V .

Proof We recall the construction of the alluded γ and ν, for the case V1 = P and
V2 = V , simpler than in [2], because V1 is a projection, and the distance between the
partial isometries is less than 1/2 (rather than less than 1). Put

P ′ = V ∗V and Q′ = V V ∗.

Note that

‖P − P ′‖ ≤ ‖V ∗V − V ∗ P‖ + ‖V ∗ P − P‖ ≤ ‖V − P‖ + ‖V ∗ − P‖ < 2

3
< 1.

Analogously ‖Q′ − P‖ < 1. Projections at norm distance less that 1 are unitari-
ly equivalent, and the unitaries can be chosen as smooth functions in terms of the
projections (see for instance [13]). In this case, there are unitaries ν and σ such that

νPν∗ = P ′ and σ Pσ ∗ = Q′.

The cross section μP (V ) in [2] performing μP (V ) · P = V is given by μP (V ) =
(γ, ν), where γ is

γ = V νP + σ(1 − P).

Then

‖ν∗γ P − P‖ = ‖γ P − νP‖ = ‖V νP − νP‖.

Note that νP = P ′ν, so that V νP = V P ′ν = V V ∗V ν = V ν. Thus the term above
equals

‖V ν − νP‖ ≤ ‖V ν − pν‖ + ‖Pν − νP‖ = ‖V − P‖ + ‖P − νPν∗‖
≤ 3‖V − P‖ < 1.
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Then ‖ν∗γ P − P‖ < 1, which by the above Lemma implies that

H = ν∗γ R(P)+̇N (P) = γ R(P)+̇νN (P).

Note that γ R(P) = R(γ Pν∗) = R(V ) and νN (P) = N (γ Pν∗) = N (V ), and then
V ∈ I0.

Moreover

‖V − PN (V )‖ = ‖γ Pν∗ − νPν∗‖ = ‖ν∗γ P − P‖ < 1,

which by the above result implies that V and PN (V ) can be joined by a smooth curve
inside I0. On the other hand, P and PN (V ) = νPν∗ can also be joined by a smooth
curve inside the manifold of selfadjoint projections [13], which is a submanifold
of I0. �

Corollary 3.6 Let V1, V2 be partial isometries with dim N (V1) = dim N (V2) =
codim R(V1) = codim R(V2), and let P1 and P2 be projections such that ‖Vi − Pi‖ ≤
1/3 for i = 1, 2. Then Vi lie in the same connected component of I0

Proof Both V1 and V2 lie in I0 by the above Proposition. Clearly the projections P1
and P2 are unitarily equivalent, therefore they can be joined by a continuous curve.
On the other hand, the above Proposition also states that V1 can be joined to P1 by
means of a continuous curve inside I0, and the same holds for V2 and P2. Thus V1
and V2 can be joined by a continuous curve inside I0. �


4 The Relationship with Normal Partial Isometries

In this section we study topologic properties of I0, for instance, we characterize the
connected components. It will be useful to recall how the connected components of I
[10] and IN [2] are parametrized. The connected components of I are identified by
three numbers ι, κ, ν ∈ N0 ∪ {∞}:

Iνι,κ = {V ∈ I : dim R(V ) = ι, dim N (V ) = κ, dim R(V )⊥ = ν},

with the obvious restrictions (for instance, if ι < ∞, then ν = ∞, etc.). If V lies in
IN or in I0, apparently κ = ν, therefore

IN ⊂ I0 ⊂ ∪ι,κIκι,κ .

These balanced connected components Iκι,κ , are characterized by the fact that they
contain projections [2]: for each pair ι, κ , there is an orthogonal projection Pι,κ (in
fact, a whole connected component of projections) such that

Iκι,κ = {U Pι,κW ∗ : U,W ∈ U(H)}.
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An example of a non balanced isometry is the unilateral shift, or any isometry. In [2]
it was shown that these numbers ι, κ parametrize the connected components of IN ,
more precisely, the connected components (IN )ι,κ are:

(IN )ι,κ = IN ∩ Iκι,κ .

We shall see below that the same happens for I0.
In a previous work [1], the first two authors studied the geometry of the set IN of

normal partial isometries, i.e., partial isometries such that the initial space V ∗V and
the final space V V ∗ coincide. As remarked above, IN ⊂ I0 is a smooth submanifold.
In this section we shall study the topological properties of I0 relating it to IN

Let us recall the following fact from the differential geometry of the space of pro-
jections, or Grassmannian of H, denoted by P , as developed by Corach, Porta and
Recht [6,13]:

Remark 4.1 1. The tangent space (T P)P of P at P consists of selfadjoint operators
X which are co-diagonal with respect to P: P X P = (1 − P)X (1 − P) = 0.

2. The manifold P is a homogeneous space of U(H), by means of the action U · P =
U PU∗. If P(t) is a curve of projections, the parallel transport X (t) of a tangent
vector X along P(t), with X (t0) = X , is given by

X (t) = �(t)X�(t)∗,

where �(t) is the curve of unitaries obtained as the unique solution of the linear
equation

{
�̇(t) = (Ṗ(t)P(t)− P(t)Ṗ(t))�(t)
�(t0) = 1.

(5)

Additionally, the curve �(t) lifts P(t):

�(t)P(0)�(t)∗ = P(t).

3. If P0, P1 are selfadjoint projections such that ‖P0 − P1‖ < 1 then there exists a
unique X ∈ B(H) with X∗ = X, ‖X‖ < π/2, which is P0-codiagonal

P0 X P0 = (1 − P0)X (1 − P0) = 0,

such that
(a) ei X P0e−i X = P1.
(b) The curve ρ(t) = eit X P0e−i t X , t ∈ [0, 1] is the shortest curve of projections

joining P0 and P1 (among rectifiable curves).
(c) If we fix P0, the map which sends P1 �→ X is smooth. It is in fact the inverse

of the exponential map of the Grassmann manifold.
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Note that the second equivalent condition established in Theorem 2.2 states that if
V ∈ I0 then

‖V ∗V − V V ∗‖ < 1.

Therefore, by the above cited result, there exists a unique selfadjoint operator XV ∈
B(H) such that

1. ‖XV ‖ < π/2.
2. XV is V ∗V -codiagonal.
3. ei XV V ∗V e−i XV = V V ∗.
4. The map V �→ XV is smooth.

In particular, these conditions imply that the unitary ei XV maps N (V )⊥ onto R(V ).
It follows that e−i XV V is a partial isometry with initial and final space N (V )⊥, i.e.
e−i XV V ∈ IN . If A ∈ IN , put PA = A∗ A = AA∗. Let us denote by

E = {(X, A) : A ∈ IN , X∗ = X, ‖X‖ < π/2, X is co-diagonal with respect to PA}.

Consider E with the topology induced by the norm in B(H) × B(H). Therefore the
following map is defined

� : I0 → E, �(V ) = (XV , e−i XV V ). (6)

Theorem 4.2 The map � is a homeomorphism.

Proof Note that � is clearly continuous. We claim that its inverse is the map �

� : E → I0, �(X, A) = ei X A.

Apparently � is the restriction to E of a continuous map defined in B(H) × B(H)
with an identical formula. We must check first that � takes values in I0. Put V =
�(X, A) = ei X A. Then, using that AA∗ = A∗ A = PA,

V ∗V − V V ∗ = A∗ A − ei X AA∗e−i X = 1

2
{(2pA − 1)− ei X (2PA − 1)e−i X }.

Since X is PA co-diagonal, it is elementary to verify that X anti-commutes with
2PA − 1:

X (2PA − 1) = −(2PA − 1)X.

Thus ei X (2PA − 1)e−i X = e2i X (2PA − 1). It follows that

‖V ∗V − V V ∗‖ = 1

2
‖(2PA − 1)(1 − e2i X )‖ = 1

2
‖1 − e2i X‖,

where the last equality follows because 2PA−1 is a unitary operator. As remarked at the
beginning of Sect. 2, since ‖2X‖ < π, ‖1 − e2i X‖ < 2 and thus ‖V ∗V − V V ∗‖ < 1,
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i.e. V ∈ I0. If V ∈ I0, it is apparent that �(�(V )) = V . Let (X, A) ∈ E and put
V = ei X A. Then V ∗V = A∗ A and

V V ∗ = ei X AA∗e−i X = ei X A∗ Ae−i X = ei X V ∗V e−i X .

Since X is PA = V ∗V -co-diagonal, and ‖X‖ < π/2, by the uniqueness property of
the logarithm remarked above, it follows that XV = X , and therefore ��(X, A) =
�(V ) = (X, e−i X V ) = (X, A). �


As recalled above, the connected components of IN are parametrized by the pro-
jections: two normal partial isometries lie in the same connected component of IN if
and only if their final (=initial) projections are unitarily equivalent. Moreover, one has
the following fact:

Proposition 4.3 Let P(t), t ∈ [0, 1] be a smooth curve of projections. Let A0, A1 ∈
IN such that A∗

i Ai = P(i) for i = 0, 1. Then there exists a continuous curve A(t) ∈
IN such that A∗(t)A(t) = A(t)A∗(t) = P(t), A(0) = A0 and A(1) = A1.

Proof Let us construct a continuous (in fact it will be smooth) curve A(t) ∈ IN , t ∈
[0, 1/2] with

A(0)= P(0), A(1/2)= P(1/2) and A∗(t)A(t)= A(t)A∗(t)= P(t), t ∈ [0, 1/2].

Let �(t) be the solution of Eq. (5) with �(0) = 1. Then �(t) lifts P(t): �(t)P(0)
�∗(t) = P(t). The operator A0 is a unitary operator in R(P(0)), thus there exists
a selfadjoint operator X0 which acts in R(P(0)), i.e. P(0)X0 P(0) = X0, such that
A0 = ei X0 . Since �(t) lifts P(t), it follows that Xt = �(t)X0�(t)∗ acts in R(P(t)):

P(t)Xt P(t) = �(t)P(0)X0 P(0)�∗(t) = �(t)X0�
∗(t) = Xt .

It follows that A(t) = P(t)ei(1−2t)Xt is a smooth curve, such that for each
t ∈ [0, 1/2], A(t) is a unitary in R(P(t)), or in other words, A(t) ∈ IN , with
A∗(t)A(t) = A(t)A∗(t) = P(t), such that A(0) = A0 and A(1/2) = P(1/2).
Analogously, one constructs a smooth curve A(t) for y ∈ [1/2, 1] such that A(t) ∈
IN , A∗(t)A(t) = A(t)A∗(t) = P(t), A(1/2) = P(1/2) and A(1) = A1. Adjoining
both paths, one obtains a continuous path as required (in fact smooth, except eventually
at t = 1/2). �


The next result shows that each connected component of I0 is the intersection of
I0 with a component of I.

Theorem 4.4 If V0, V1 ∈ I0 lie in the same connected component of I, then there is
a smooth curve in I0 joining them.

Proof Since I is a smooth submanifold of B(H) (see for instance [1]), if V0, V1 lie
in the same connected component of I, then there exists a smooth curve V (t) in I
with V (0) = V0 and V (1) = V1. Let P(t) = V ∗(t)V (t), which is a smooth curve
in the Grassmannian P . By the above theorem, to V0 and V1 correspond selfadjoint
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operators XV0 and XV1 and normal partial isometries A0 and A1. In particular, as seen
above, XV0 , being V ∗

0 V0 = P(0) co-diagonal, is a tangent vector in (T P)P(0). Let
X (t) be the parallel transport of XV0 along the smooth curve P(t), which consists
of P(t) co-diagonal selfadjoint operators. Note that since X (t) = �(t)XV0�(t)

∗ and
�(t) are unitary operators,

‖X (t)‖ = ‖XV0‖ < π/2.

Also note that A∗
i Ai = Ai A∗

i = P(i), for i = 0, 1. By the above result on IN , there
exists a smooth curve A(t) ∈ IN , with A(0) = A0, A(1) = A1 and

A(t)∗ A(t) = A(t)A(t)∗ = P(t).

Then the pairs α(t) = (X (t), A(t)) form a continuous curve in E , with initial point
(XV0 , A0). At t = 1, X (1) may be different than XV1 , however both selfadjoint oper-
ators are P(1) co-diagonal, and have norms less than π/2. Consider then the curve
β(t) = (t XV1 + (1 − t)X (1), A1), t ∈ [0, 1]. The selfadjoint operators t XV1 + (1 −
t)X (1) are P(1) co-diagonal, because XV1 and X1 are. Moreover,

‖t XV1 + (1 − t)X (1)‖ ≤ t‖XV1‖ + (1 − t)‖X (1)‖ < π/2.

Therefore this curve β(t) also lies in E . Adjoining α and β one obtains a continuous
curve in E which joins (XV0 , A0) and (XV1 , A1). By the above theorem, this induces
a continuous curve in I0, joining V0 and V1. Since I0 is a submanifold of B(H), this
implies the existence of a smooth curve joining them. �

In Corollary 3.4 it was shown that if V ∈ I and ‖V − PR(V )‖ < 1, then V ∈ I0. The
following corollary is related to his property.

Corollary 4.5 If V ∈ I0, then V lies in the same component of I0 as PR(V ). The same
holds for PN (V )⊥ .

Proof Clearly V and PR(V ) have the same range. They also have the same nullity.
Indeed, the null-space of PR(V ) is R(V )⊥ = N (V ∗). Since also V ∗ ∈ I0, R(V ∗) =
N (V )⊥ is a supplement for this space. It follows that N (V ) and N (V ∗) have a common
supplement, namely N (V )⊥. Therefore dim N (V ) = dim N (V ∗) = dim R(V )⊥. It
follows that V and PR(V ) lie in the same connected component of I. Therefore, by
the above theorem, they lie in the same connected component of I0. The proof for
PN (V )⊥ is analogous. �


Consider the map

ρ : I0 → IN , ρ(V ) = e−i XV V .

Note that, via the homeomorphism�, it corresponds to the projection onto the second
coordinate:

E → IN , (X, A) �→ A.
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It is clearly a retraction. Therefore one may use it to compare the homotopy groups of
I0 and IN . Note that the fibre over each element A ∈ IN is contractible, it identifies
with the open ball of radius π/2 of the Banach space

{X ∈ B(H) : X∗ = X, PA X PA = (1 − PA)X (1 − PA) = 0}.

In [2] it was shown that if A ∈ IN , then

π1(IN , A) � π1(U(R(A))),

which is trivial if dim R(A) > 1, and equal to Z if dim R(A) = 1. Therefore:

Corollary 4.6 If V ∈ I0, then

π1(I0, V ) = 0 if dim R(V ) > 1,

and

π1(I0, V ) = Z if dim R(V ) = 1.

In the case when both the range and the kernel are infinite dimensional, one can
prove that I0 is contractible. In order to do so, let us recall from [2] the fibre bundle
μP . If P is a projection, denote by

HP = U(R(P))× U(N (P))

regarded as a subgroup of U(H) (i.e., the group of unitaries which commute with P).
Note that each connected component of IN (and therefore also of I0) contains sel-
fadjoint projections. Let I P

N be the connected component of IN which contains P .
Then

μP : U(H)× HP → I P
N , μP (U,�) = U�PU∗

is a locally trivial fiber bundle (Proposition 4.3 of [2]). The fibre is

F = HP × U(N (P)).

If both N (P) and R(P) are infinite dimensional, by Kuiper’s theorem [7],
U(H),U(N (P)),U(R(P)) (and therefore also HP ) are contractible. Therefore I P

N
has trivial homotopy group of all orders. By the remarks, the same happens for the
connected component of P in I0. Then:

Corollary 4.7 Let V ∈ I0 such that R(V ) and R(V )⊥ (equivalently, N (V ) and
N (V )⊥) are infinite dimensional. Then the connected component of I0 containing V
is contractible.
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Proof By Corollary 4.5, the connected component of I0 containing V , contains also
PR(V ). By the above remark, this connected component of I0 is homotopically equiv-
alent to I P

N for P = PR(V ), which has infinite dimensional rank and nullity. Therefore
this component I0 has trivial homotopy of all orders. Since it is a differentiable man-
ifold, it is contractible by Palais’s theorem [12]. �
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