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Water balance has been one of the main research focuses in the
field of ecophysiology of arid‐zone mammals. In animals living in
South American deserts as well as in other arid lands, water
balance is a great challenge (Diaz and Ojeda, '99; Walsberg, 2000;
Diaz et al., 2006) because of the high temperatures and highwater‐
deficit rates characteristic of the environment. As a strategy to
face limited exogenous water or excessive loss, numerous species
present very low water loss rates through evapotranspiration,
urination, and digestion (Schmidt‐Nielsen, '64, '79; MacMillen
and Lee, '67; Degen, '97; Cortés et al., 2000; MacNab, 2002).
Regarding the renal capacity of mammals to maintain body

water balance, the efficiency of kidneys has been associated with
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the thickness of their medulla. For species having unipapillary
kidneys, their thicker medulla or longer papilla implies longer
Henle loops and tubules involved in urine concentration
(Sperber, '44; Schmidt‐Nielsen and O'Dell, '61; Beuchat, '90a,b).
The length of the papilla has been considered the structural basis
of the concentrating ability (Vimtrup and Schmidt Nielsen, '52;
Beuchat, '90a; Schmidt‐Nielsen and Schmidt‐Nielsen, 2011).
Different indices were used to estimate renal performance. The
most widely used renal index is the relative medullary thickness
(RMT), with its magnitude being related to the dryness of the
habitat and to the capability of maximum renal concentration
(Sperber, '44; Schmidt‐Nielsen and O'Dell, '61; Brownfield and
Wunder, '76; Geluso, '78; Beuchat, '93, '96; Al‐Kahtani et al.,
2004). Other renal indices based on linear measurements and
kidney areas have been introduced to study the structural
modification of the kidney associated with the conservation of
body water (Pffeifer, '68). Among those indices are the percentage
of relative medulla thickness (PMT), the percentage of medullary
area and the relative medullary area (RMA) (Heisinger and
Breitenbach, '69; Weisser et al., '70; Schmid, '72; Blake, '77).
The variation in the capability of mammals to produce

concentrated urine has been mostly studied at the inter‐specific
level (Sperber, '44;MacMillen and Lee, '69; Bridges and James, '82;
; Greenwald, '89; Beuchat, '90b; Cortés et al., '90; Brooker and
Withers, '94; Diaz and Ojeda, '99; Willmer et al., 2000; MacNab,
2002). However, few works have addressed this aspect at the
intraspecific level (Sahni et al., '93; Oswald, '98; Taylor, '98; Tracy
andWalsberg, 2001; Laakkonen, 2002). There are no studies about
differences in functional renal morphology among populations in
South American desert rodents, despite the importance of local
adaptation in the response of species to climate change (Bocedi
et al., 2013), the predicted increases of mean annual temperature
and the current area of these dry lands (Lauenroth et al., 2004).
The aim of this study is to characterize, evaluate and compare

the functional renal morphology in five populations of a small
desert herbivorous rodent along an aridity gradient in South
America. To assess the functional morphology of the kidney, we
computed the classical renal indices and designed new ones that
include the area of inner medulla. In addition, we discuss the
usefulness of the renal indices used. The animal model used was
the Southern mountain cavy (Microcavia australis), a social
medium‐sized herbivorous desert rodent (Campos et al., 2001;
Andino et al., 2011) that behaves as a facultative specialist forager
when coping with heterogeneous, highly seasonal and low‐
quality trophic resources (Sassi et al., 2011). This species was never
observed drinking free water in its natural habitat or under
laboratory conditions. The species inhabits arid and semi‐arid
lands in an area with a wide range of precipitation, which allows
us to assess the geographical variability of its functional renal
morphology. We hypothesize that functional renal morphology of
the Southern mountain cavy would fit spatial variations in aridity
across the environment where the species occurs.

MATERIALS AND METHODS
The Southern mountain cavy is a hystricognath rodent of ca. 250–
300 g, which occurs throughout a wide range of arid and semi‐arid
environments in the southern portion of South America, from
approximately 22° S to 52° S, in a variety of habitats with different
environmental conditions (Tognelli et al., 2001). The species has
proved to be versatile in coping with the challenges of the arid
lands it inhabits, as well as with their typical seasonal and spatial
heterogeneity (Sassi et al., 2011). Accordingly, Southern mountain
cavy is a good model to evaluate the influence of environmental
factors on the functional renal morphology to understand their
local adaptations to xeric environments.
Fieldwork was carried out in the Central Monte desert of

Argentina in 2002 and 2003. Five sites of different aridity
conditions (from hyper‐arid through semi‐arid to humid) were
selected within the distribution range of Southern mountain cavy:
La Laja, Matagusanos, Villavicencio, Ñacuñán, and Médano de
Oro (Table 1). Médano de Oro behaves as humid because it has a
shallow water table, with a high net primary productivity (see
Table 1), and cavies could obtain preformed water by ingesting
these plants, as reported for other desert rodents (Nagy and
Peterson, '88). Therefore, we estimated a corrected precipitation
value for Médano de Oro using a regression model with net
primary productivity values as the independent variable and
precipitation as the dependent one, in order to obtain a better
estimate of the water from plant tissues available to the Southern
mountain cavy.
Southern mountain cavy individuals were captured using

Havahart traps during the dry season, which is characterized by
low precipitation, low temperatures and low number of daylight
hours (Ojeda and Tabeni, 2009; Andino et al., 2011). In the dry
season, green grasses and herbaceous plants are absent and plant
cover is the lowest in the year (Andino et al., 2011).
The number of individuals captured was as follows: 8 in La Laja

(3 females and 5 males); 3 in Villavicencio (1 female and 2 males);
4 in Ñacuñán (1 female and 3 males); 5 in Mataguasanos (2
females and 3 males); and 7 in Médano de Oro (2 females and 5
males). None of the individuals used in the study were juveniles or
pregnant females.
The captured animals were weighed (�0.1 g) and maintained in

individual cages for no longer than 24 hr. Then they were
sacrificed with sodium pentobarbital in an intraperitoneal
injection, following the Guidelines on Euthanasia of American
Veterinary Association (AVMA, 2013). All animal procedures were
approved by the Institutional Animal Care and Use Committee of
the School of Exact, Physical and Natural Sciences of the National
University of San Juan.
Both kidneys were removed, weighed to the nearest 0.001 g and

fixed in 10% formaldehyde. Length, width, and thickness of the
kidneys were measured with a dial calliper to the nearest 0.1mm.
Two sections along the frontal axis through the longest part of the
renal papilla were obtained from the left kidney (Cortés et al., '90;
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Díaz and Ojeda, '90; Al‐Kahtani et al., 2004). When it was not
possible to make a complete sagittal section, the right kidney was
used. Cortex thickness (CT), outer zone of the medulla, and inner
zone of the medulla were distinguishable if the kidneys were
freshly fixed; medulla thickness (MT) is the sum of the values of
outer and inner medulla. The limit between the cortex and the
medulla, and the outer and inner medulla are visible grossly. It
reflects the structural differentiation between zones. The cortex is
the zone that contains glomeruli and the tubules. The medulla has
tubules that consist of loops of Henle and collecting ducts. The
difference between the outer and inner medulla lies in the loops of
Henle. The inner medulla has only thin segments of loops of Henle
and the outer medulla has thin and thick segments. The edge of the
outer and inner medulla can be clearly observed with a
stereoscopic microscope (6�). The outline of the entire kidney,
including the corticomedullary junction, and the outer and inner
boundaries of the medulla, were traced on paper using a camera
lucida attached to a stereoscopic microscope (Geluso, '78). The
thickness of each zonewasmeasured with a ruler (0.5mm). Kidney
zone areas were calculated from the weight of each piece of paper
and the weight of a determined area of the paper. The following
indices were calculated: relative medullary thickness (RMT¼
medullary thickness� 10/cube root of the product of kidney
length, width and thickness), ratio ofmedulla to cortex (M/C), ratio
of inner medulla to cortex (IM/C), percent medullary thickness
(PMT), percent medullary area (PMA), and relative medullary area
(RMA¼medullary area/cortical area) (Sperber, '44; Heisinger and
Breitenbach, '69; Schmid, '72; Brownfield and Wunder, '76;
Geluso, '78). In addition, three new indices were proposed and
calculated: IMA/CA (inner medullary area/cortical area), IMA/RA
(inner medullary area/total renal area), and IMA/MA (inner
medullary area/medullary area) because classical indices do not
reveal kidney shape variation at the intraspecific level.
We used an analysis of variance to assess the variation of renal

linear indices among localities and its statistical significance. The
variables fit the requirements of ANCOVA and ANOVA. We used
renal indices as response variables, and localities as the
explanatory variable. Firstly, we used body weight as a covariable
in comparisons; however, as it did not show any significant effect,
we used only ANOVA analysis. When there were differences
between localities among renal indices, an a posteriori Newman–
Keuls test was performed. Results are expressed asmean� SD, and
in all statistical tests, a¼ 0.05 was considered. Spearman
correlations were performed between mean renal indices and
mean annual precipitation of each study site only for renal indices
that were significantly different from the ANOVA (RMT, PMA,
IMA/CA, IMA/RA, and IMA/MA).
A generalized linear model (GLM), with Normal distribution,

provided in R 3.0.1 (R Development Core Team 2013) software was
used to identify the factors that affect renal indices in the Southern
mountain cavy. We used precipitation, mean minimum tempera-
ture of the coldest month (Tmin) andmeanmaximum temperature
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of the warmest month (T max) as fixed factors. We previously
performed a correlation analysis to identify multicollinearity in
order to remove correlated variables (Neter et al., '90). However,
we included all variables in the analysis because the coefficients
were r< 0.8.
We used the Kullback–Leibler information–theoretic approach

as the distance between the various candidate models and full
reality (Anderson et al., 2001; Johnson and Omland, 2004). We
computed the Akaike Information Criterion corrected for small
samples (AICc) for each of the candidate models and selected the
models with the lowest AICc value (Burnham and Anderson,
2002). We ranked the remaining competing models according to
their AICc value and subsequently estimated their Akaike
differences (Di) with respect to the best model (lowest AICc), the
Akaike weight (wi,) of each model and the relative importance (RI)
of the exploratory variables (Burnham andAnderson, 2002). In the
comparison among models we considered all combinations of
factors mentioned earlier.

RESULTS
For each site, the kidneys examined were unilobular, had a single
papilla, did not present extra‐renal extension, and had a two‐zone
medulla (Fig. 1). The KW/BW ratio (kidney weight/body weight)
showed significant differences among sites (P< 0.05). The
morphology of kidneys and the renal indices of each study
locality are shown in Table 2.

Of the classical linear renal indices, PMT, M/C, and IM/C did not
detect significant differences among the populations compared
(Table 2). Only PMA showed a significant difference among sites
(Table 2). All the new renal area indices proposed (IMA/CA, IMA/
RA, and IMA/MA), however, revealed statistical significant
differences among sites (Table 2). Among the renal area indices
that detected differences among Southern mountain cavy
populations from different sites with different climate conditions
(RMT, PMA, IMA/CA, IMA/RA, and IMA/MA), only IMA/RA and
IMA/MA showed a statistical negative Spearman rank correlation
with precipitation (rS¼�0.56; n¼ 27; P¼ 0.002; rS¼�0.67;
n¼ 27; P< 0.0002, respectively), which was stronger when we
used the corrected precipitation value (rS¼�0.69; n¼ 27;
P< 0.0001; rS¼�0.69; n¼ 27; P< 0.0001, respectively).
We built GLMmodels to evaluate the effect of precipitation and

maximum and minimum temperature on renal linear indices
(RMT, PMT, M/C, IM/C) and renal area indices (RMA, PMA, IMA/
CA, IMA/RA, IMA/MA). We also calculated the models with a
corrected precipitation value estimated for Médano de Oro. For
renal linear indices, only best models for M/C and IM/C indices
included precipitation as a predictor, and the RI of precipitation
was 0.81 and 0.68, respectively; however, when we used the
corrected precipitation value, precipitation was not included in the
models. The percentage of the total deviance explained by these
models was low (<32%).
Among the classical renal area indices, precipitation was

included in the best models only for RMA with the corrected
precipitation values (Table 3), but the percentage of the deviance
explained was low (14.1%). With respect to the new area renal
indices, the best models for IMA/RA and IMA/MA included
precipitation (IMA/CA only when corrected precipitation values
were used in the analysis). In all cases, when the GLM analyses
were made with the corrected precipitation values, the percentage
of the total variance explained increased (from 33 to 67 for IMA/
RA and from 40 to 60 for IMA/MA). The RI of precipitation in the
models also increased (from 0.65 to 1.00 for IMA/RA, and from
0.95 to 0.99 form IMA/MA) when we used the corrected
precipitation value for Médano de Oro (Table 3). The RI of
maximum temperature of the warmest month was also high for
IMA/RA and IMA/RA indices (Table 3).

DISCUSSION
Most classical linear renal indices (PMT, M/C, and IM/C) were not
able to detect statistical differences among Southern mountain
cavy populations from sites with different aridity conditions (from
hyper‐arid through semi‐arid to humid). The means of the index
that detected statistical differences among populations (RMT) did
not reflect the studied rainfall gradient. Nevertheless, the values of
the indices estimated for Southern mountain cavy populations
were similar to those reported for other species in arid zones
(Rickart, '88; Cortés et al., '90; Brooker and Withers, '94; Diaz and
Ojeda, '99).

Figure 1. Renal morphology of the Southern mountain cavy
(Microcavia australis) for individuals of the five study sites (La Laja,
Matagusanos, Médano de Oro, Ñacuñán, and Villavicencio). C,
cortex; OM, outer medulla; IM, inner medulla.
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With respect to the classical area indices, only PMA detected
differences among cavy populations; however, as in RMT, means
did not reflect the studied precipitation gradient. The highest RMA
value obtained for an individual of Southernmountain cavy (2.75)
was higher than the ones reported for South American desert
rodents: Muridae, between 0.96 and 1.69; Octodontidae, between
0.75 and 1.73 (Cortés et al., '90; Diaz and Ojeda, '99; Diaz
et al., 2006), but similar to those reported for other desert rodents,
such as Dipodomys merriami and D. odii (Sperber, '44; Brownfield
andWunder, '76). The highest RMAvalue documented for a desert
rodent corresponds to the Australian hopping‐mouse Notomys
alexis (4.26, MacMillen and Lee, '67), a smaller species than
Southern mountain cavy.
The high values of the indices RMT and RMA obtained in this

work highlight the morphological kidney variation of all Southern
mountain populations from the studied arid environments, with a
high efficiency of urine concentration associated with the
elongation of the papilla (Sperber, '44; Schmidt‐Nielsen and
O'Dell, '61; MacMillen and Lee, '67, '69; Purohit, '74; Calder and
Braun, '83; Bankir and de Rouffignac, '85; Cortés et al., '90;
Beuchat, 1990a,b, '96; Diaz and Ojeda, '99). The length of the loops
of Henle, that is, an elongated renal papilla, increases the capacity
to concentrate urine. The renal medulla in the Southern mountain
cavy represents a great portion of the kidney, but does not have a
notorious extra‐renal papilla (Fig. 1), as observed in other small
arid‐zone species (Beuchat, '90b; Brooker and Withers, '94; Diaz

and Ojeda, '99). The RMT of the Southern mountain cavy is higher
than that of other Caviidae (Al‐Kahtani et al., 2004), probably due
to the presence of a large medulla and a thin cortex. Previous
studies have been focused on total medulla indices to test the
degree of adaptation of a species to aridity conditions (Calder and
Braun, '83; Beuchat, '96; Al‐Kahtani et al., 2004). The relationship
of the inner medulla to cortex thickness (Geluso, '78) is the only
classical ratio that takes into account the inner medulla separated
from the entire medulla. Nevertheless, Bankir and de Rouffignac
('85) proposed not considering themedulla as a whole but, instead,
analyzing the role of each zone in the renal medulla (outer
medulla, inner space and inner medulla) to evaluate the urine
concentration capacity and the adaptation of species to water
stress. The length of the loops of Henle, the arrangement of the
tubules and vascular bundles in the inner medulla, and the
presence of extensions of the renal pelvis in contact with the inner
medullamay all contribute to the urine concentration capability of
the kidneys (Beuchat, '90b; Schmidt‐Nielsen, '95; Schmidt‐
Nielsen and Schmidt‐Nielsen, 2011), and to explain why only
the IMA/RA and IMA/MA indices, which use the inner medulla
area information, show a statistical significant correlation with
precipitation. Furthermore, urea molecules are continuously
cycling back to the inner medulla (Yang and Bankir, 2005), and
then a large inner medulla would provide a greater ability to
accumulate urea, a key process in the mechanism of urine
concentration.

Table 2. Linear and areal renal indices for the Southern mountain cavy (Microcavia australis) from different localities (mean� SE).

Biomass
Matagusanos

(n¼ 5)
La Laja
(n¼ 8)

Villavicencio
(n¼ 3)

Ñacuñán
(n¼ 4)

Médano de
Oro (n¼ 7)

ANOVA

F4.22 P

Body weight (g) 202� 18a,b 199� 14a,b 172� 24b 196� 20a,b 252� 15a 2.826 0.049
Kidney weight (g) 1.64� 0.16 1.54� 0.13 1.50� 0.21 1.51� 0.18 1.30� 0.14 0.703 0.598
(KW/BW)� 100 0.82� 0.084a,b 0.78� 0.066a,b 0.91� 0.109b 0.79� 0.094a,b 0.52� 0.071a 3.431 0.025
Renal linear indices
RMT 8.91� 0.26a 8.96� 0.21a 7.82� 0.34b 9.33� 0.30a 9.09� 0.22a 3.220 0.032
PMT 87.79� 0.92 88.9� 0.72 88.27� 1.18 88.53� 1.02 89.77� 0.77 0.771 0.555
M/C 2.13� 0.22 2.33� 0.17 2.66� 0.28 3.00� 0.25 2.53� 0.19 2.081 0.118
IM/C 5.12� 0.48 5.96� 0.38 5.31� 0.62 7.18� 0.54 5.26� 0.41 2.723 0.056

Renal area indices
RMA 2.22� 0.23 2.62� 0.18 2.31� 0.29 2.75� 0.25 2.00� 0.19 2.108 0.114
PMA 68.29� 1.95b 71.94� 1.54a,b 68.60� 2.52b 76.74� 2.18a 66.24� 1.65b 4.335 0.009
IMA/CA 0.89� 0.09a,b 1.03� 0.07a 0.80� 0.11a,b 1.09� 0.10a 0.67� 0.07b 4.449 0.009
IMA/RA 0.28� 0.01a 0.28� 0.01a 0.24� 0.02a,b 0.25� 0.01a,b 0.22� 0.01b 6.175 0.002
IMA/MA 0.41� 0.02a 0.40� 0.01a 0.34� 0.02b 0.33� 0.02b 0.34� 0.01b 6.406 0.001

Results of the ANOVAs comparing indices among localities.
BW, body weight; KW, kidney weight; RMT, relative medullary thickness; PMT, percent medullary thickness; M/C, ratio of medulla to cortex; IM/C, ratio of inner
medulla to cortex; RMA, relative medullary area; PMA, percent medullary area; IMA/CA, inner medullary area/cortical area; IMA/RA, inner medullary area/total
renal area; IMA/MA, inner medullary area/medullary area.
Bold indicates significance at 0.05% or lower.
Letters (a, b, c) indicate the result of an a posteriori Tukey test for unequal N among means (P< 0.05).
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In the Southern mountain cavy, the new indices that take into
account the inner medullary area, IMA/CA, IMA/RA, and IMA/
MA, differed significantly among localities (Table 2), becoming
lower with increasing precipitation. The only exception was the
humid area Médano de Oro, which behaves as humid because it
has a shallow water table, with high plant productivity, and cavies
could obtain preformed water by ingesting these plants, as other
desert rodents do (Nagy and Peterson, '88).
These indices (IMA/MA and IMA/RA), which include informa-

tion about the inner medulla, clearly correlate with the
precipitation gradient. This result is not true for relative medullary
thickness (RMT). Although RMT index is commonly used as an
indicator of renal efficiency in inter‐specific studies in arid zones
(Calder and Braun, '83; Beuchat, '96; Al‐kahtani et al., 2004), it has
not been efficient in the study of the functional morphology of the
kidney at intraspecific level, as previously observed by Laakkonen
(2002).
Renal hypertrophy and greater urine concentration were

reported in environments where habitat aridity increases during
the dry season (Blount and Blount, '68; Bakko, '75; Csuti, '79;

Hewitt, '81; Cortés et al., '94). The physiological changes of an
organism as a response to environmental changes are very often
considered the processes responsible for promoting the adjust-
ments of those organs to biotic and non‐biotic changes in
environmental conditions as a strategy to improve their biological
performance (Garland and Carter, '94; Huey and Berrigan, '96;
Bozinovic et al., 2003). The renal area is not modified by a change
in environmental humidity, but the inner medullary area is, which
increases while the outer medulla decreases. IMA/RA and IMA/
MA were among the renal indices that showed significant
differences among the studied Southern mountain cavy popula-
tions from different localities along an aridity gradient, and had
the highest correlation coefficient with corrected precipitation
values (rS¼�0.69 and rs¼�0.69) and uncorrected precipitation
(rS¼�0.56 and rs¼�0.67). Although there is no reason to
assume that these indices will behave differently with other desert
mammals, further research is needed to assess their efficiency in
order to characterize the adaptation of renal morphology to an
arid environment. Therefore, a long and broad renal papilla and a
large inner medulla would be important to produce a high urine

Table 3. The relationship between renal indices in the Southern mountain cavy and climatic variables pre (precipitation), T min (mean
minimum temperature of the coldest month), and T max (mean maximum temperature of the warmest month) were examined by Generalized
Linear Models with a Gaussian distribution.

Renal Indices Best model Akaike weight
% of the total

deviance explained

Relative importance of variables

Precipitation T max T min

Renal linear indices
RMT T min 0.50 30 0.29 0.33 0.81

W/corrected precipitation T minþ T max 0.65 30 0.32 0.92 0.95
PMT Null model — — — — —

W/corrected precipitation Null model — — — — —

M/C Pre 0.41 20.8 0.81 0.37 0.27
W/corrected precipitation Null model — — — — —

IM/C Preþ T min 0.35 32.1 0.68 0.56 0.71
W/corrected precipitation T minþ T max 0.65 30.6 0.20 0.82 0.88

Renal area indices
RMA Null model — — — — —

w/corrected precipitation Pre 0.31 14.1 0.60 0.33 0.43
PMA T minþ T max 0.50 38.9 0.47 0.68 0.91

w/corrected precipitation T minþ T max 0.50 38.9 0.32 0.92 0.95
IMA/CA T minþ T max 0.37 27.1 0.41 0.62 0.85

w/corrected precipitation Preþ T min 0.34 37.6 0.93 0.36 0.64
IMA/RA Preþ T minþ T max 0.53 33.3 0.65 0.65 0.78

w/corrected precipitation Preþ T max 0.74 66.6 1.00 0.70 0.31
IMA/MA Preþ T minþ T max 0.71 40 0.95 0.79 0.76

w/corrected precipitation Preþ T minþ T max 0.74 60 0.99 0.95 0.76

The best model exhibitedminimumAICc (Akaike's Information Criterion corrected for small sample size); Akaike weight;% of the total deviance explained by the
best model; and the relative importance of the climatic variables in adjusting the renal indices.
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concentration (Diaz, 2001; Yang and Bankir, 2005). Finally, the
GLM showed that the relative importance of precipitation was
higher for IMA/MA and IMA/RA than for the other indices. IMA/
MA is mainly related to precipitation> T max> T min (all of them
factors related to aridity) for uncorrected and corrected precipita-
tion values. IMA/RA was associated with the same variables; the
RI of the variables was similar to IMA/MA for corrected
precipitation values, but was T min> T max> precipitation for
uncorrected precipitation values (Table 3). These abiotic variables
may contain climate‐related information that also affects renal
morphology.
Phenotypic variation among populations subjected to seasonal

and geographical changes that impose constraints, such as the
availability of water or food (Meserve, '81; Sassi et al., 2011), might
develop phenotypical plasticity (Nespolo et al., 2001; Tracy and
Walsberg, 2001; Bozinovic et al., 2003; Piersman and Drent, 2003;
Sassi et al., 2007), or genetically fixed variation when plasticity
cost increases (DeWitt et al., '98). Plasticity could explain the
intraspecific variation in time and space of a widespread species
(Tracy and Walsberg, 2001), such as the Southern mountain
cavy, but it could also account for genetically fixed variations
(DeWitt et al., '98), or stabilizing selection models (Polechová
et al., 2009); however, these processes are not mutually exclusive
(Olsson, 2006). The mechanism of the interpopulation variation
remains to be studied, and both processes could be a response
to aridity (Stearns, '89; Sahni et al., '93; Schlichting and
Pigliucci, '98).

CONCLUSIONS
Functional renal morphology of populations of the Southern
mountain cavy fits a spatial aridity gradient. Renal area indices
revealed more kidney shape variation in the Southern mountain
cavy than that reported at the inter‐specific level. Nevertheless,
the classical linear renal indices used for these cavies did not show
significant differences among the populations of arid, semi‐arid
and humid zones. These indices were formerly designed to indicate
inter‐specific differences. The present results highlight the high
local acclimation of this desert rodent at the level of renal
morphology.
The Southern mountain cavy populations from arid zones

showed an increase in the inner renal medullary area with respect
to the renal and total medullary area, this relationship decreasing
with mean precipitation (from hyper‐arid through arid to semi‐
arid populations). These intraspecific modifications in the kidneys
of the Southern mountain cavy populations, probably associated
with the capacity to preserve body water volume, were detected by
two of the renal indices proposed (IMA/RA and IMA/MA). These
results highlight the importance of intraspecific variation in renal
morphology of desert species. Further research work is needed to
elucidate this aspect. Finally, as for other studied organisms, such
as ectotherms, local adaptation and phenotypic variation of
mammals will allow researchers to build predictive models to

understand the effects of climate change on biodiversity in South
American dry lands.
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