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Measurement disturbances can also appear in the frequency 
response. Sometimes these disturbances produce noticeable 
differences by the comparison of transfer functions which can 
be mistaken for internal transformer failures. A procedure to 
avoid the effect of these disturbances is an important issue to 
be considered in transformer condition assessment by FRA. 

The disturbances present in measured frequency responses 
may be classified in two types: the first one has a relatively 
low magnitude but contaminates the whole signal, and the 
second one has a relatively high intensity but exists only 
locally. The first one is normally due to changes in the 
measurement layout and connections; the second one is 
normally related to electromagnetic disturbances that locally 
affect the transfer function (external influences). A good 
review on this topic and other aspects of the practical 
application of SFRA can be found in [8], [9]. 

The first type of noise is well characterized by a Gaussian 
noise model. In this work the second type of noise is referred 
to as outliers in a sense that it is neither part of the true signal 
nor a minor measurement error that can be reasonably 
modeled by Gaussian noise [9]. Most of the noise-removal 
algorithms, however, do not remove well a Gaussian noise and 
outliers simultaneously. For example, the Fourier-based 
filtering does not work well on the outlier removal; the energy 
of an outlier spreads over a wide frequency range so that usual 
low-pass filtering cannot remove outliers efficiently. 

The Wavelet Transform has recently gained in popularity in 
applications such as disturbance elimination and data 
smoothing. The related theory is given in the Appendix 
(Section VIII). 

III.  PROPOSED DIAGNOSIS STRATEGY 

The rationale behind the decomposition of FRA responses 
using DWT is to create smoothed transfer function versions 
with different levels of information, in order to improve the 
detection process of signal differences for different frequency 
regions. 

A.  Basic Assumptions and Facts 

The main assumptions for the development of the new 
methodology are listed below: 
1. Application of FRA for transformer diagnosis: It is 

assumed that a mechanical change or an electrical fault in 
the active part of the transformer produces variations in the 
frequency response. This is the basic assumption for FRA 
to be considered as a diagnostic tool. It is further assumed 
that the larger is the change in the transformer; the larger is 
the change in the transfer function. 

2. In the diagnosis process, FRA measurements to be 
compared are generally performed under different 
conditions and at different times. There exist the possibility 
that the reproducibility is not good and there can be 
differences between compared measurements which are not 
due to variations in the transformer but to the variation of 
the measurement conditions.  

3. The disturbances in FRA traces due to changes in the 
measurement conditions mainly occur in the high 
frequency region, which can usually be observed as 

superimposed fast variations or as outliers (these last ones 
anywhere in the trace). It is desirable that such differences 
are not erroneously identified as faults during the diagnosis. 

4. To avoid the influence of changes in the measurement 
conditions it is convenient to compare smoothed versions 
of the transfer functions, so that any disturbances are either 
not present or minimized to some extent. Since the filtering 
process also minimizes the effects of an actual fault or 
change, the comparison should be made with an 
appropriate strategy. 

5. The new comparison strategy proposes the use of several 
smoothed versions of the measured transfer functions with 
increasing degree of smoothing, to be compared by pairs. It 
was established that the maximum level of smoothing 
should be 7 for this application (see section IV). 

6. It is assumed that the detection has a higher degree of 
certainty if it occurs at a higher smoothing level. That is 
why the algorithm starts comparing at level 7. 
The processing of changes in FRA trace for different 

frequency regions and for different decomposition levels is the 
key factor to add robustness to the fault detection process. 

B.  Diagnosis Methodology Procedure 

The proposed methodology has the following steps: 
1. FRA responses smoothing: The decomposition process of 

FRA responses (trace smoothing) is performed by applying 
the Discrete Wavelet Transform. Both present and 
reference responses undergo successive smoothing steps, 
obtaining seven smoothed versions of the original transfer 
functions, denoted as (L1, L2,..., L7) for increasing 
decomposition level. The frequency range used is 20 Hz -
2 MHz. The functions obtained from the present and 
reference responses are compared for each decomposition 
level following a particular procedure. 

2. Comparison procedure of FRA responses: The comparison 
of smoothed versions of present and reference responses is 
done starting with L7 and then continuing with the 
successive levels in decreasing order. For a given 
decomposition level, the analysis is performed from low to 
high frequencies, using the logarithmic scale for the 
abscissa (frequency), which produces an expansion of the 
response trace at low frequencies and a compression at high 
frequencies. In the case that the comparison leads to 
abnormal differences in a given decomposition level, the 
frequency bands containing these abnormal values are 
stored and not rescanned when comparing traces at lower 
decomposition levels. This is because the corresponding 
detection limits of all smoothing levels are defined in such 
a way that if the detection occurs in one level, this will also 
occur at lower levels. Thus the detection takes place 
through the comparison of the "most representative 
components" of the responses, i.e., the components that 
remain after the filtering process, leaving aside response 
trace components having fast variations, which are to be 
compared at lower decomposition levels. This ensures that 
the detection of an abnormal difference is due to an actual 
failure, since a deviation arises in the basic form of the 
compared responses, and not from differences due to noise.  
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