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0. INTRODUCTION

Suppose A is a ring, with identity 1, or more generally an additive category:
we shall write,

A−1 = A−1
left ∩ A−1

right� (0.1)

for the invertible group, with

A−1
left = �a ∈ A � 1 ∈ Aa�� A−1

right = �a ∈ A � 1 ∈ aA�� (0.2)

the left- and right-invertibles, and

Ao
left = �a ∈ A � a−1�0� = �0��� Ao

right = �a ∈ A � a−1�0� = �0��� (0.3)

the monomorphisms and epimorphisms, with

a−1�0� = �x ∈ A � ax = 0�� a−1�0� = �x ∈ A � ax = 0��

respectively, the left and the right annihilator of a ∈ A.
In a Banach algebra these are the elements that are either not left zero divisors

or not right zero divisors; in the category of bounded operators between Banach
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EXTENSIONS OF JACOBSON’S LEMMA 521

spaces these are the operators that are either not one one or not dense. Now
Jacobson’s Lemma [1, 5, 12] says that if a� c ∈ A then

ac − 1 ∈ A−1 ⇐⇒ ca− 1 ∈ A−1� (0.4)

Indeed (0.4) holds separately for the left and the right invertibles of (0.2), as well as
for the non zero-divisors of (0.3): for example, there is implication

c′�ac − 1� = 1 �⇒ �cc′a− 1��ca− 1� = 1� (0.5)

The formula of (0.5) will also convert a right inverse, or a generalized inverse, for
ac − 1 into one for ca− 1. In this note, we generalize (0.4) and many of its relatives
from ca− 1 to certain ba− 1: specifically we will suppose

aba = aca� (0.6)

Three special cases are of interest: the case

b = c� (0.7)

which will give Jacobson’s lemma; the case in which

aba = aca = a� (0.8)

in which both b and c are generalized inverses of a ∈ A; and the case

aba = a2� (0.9)

in which c = 1. This last case goes back to Vidav [16], cf [2, 14, 15]; in particular,
Schmoeger [14] shows that (0.9) holds if there are idempotents p = p2� q = q2 for
which a = qp� b = pq.

The central results in this note are of course pure algebra: but in the
neighboring realm of topological algebra they have very close relatives, and we take
the opportunity to extend our purely algebraic observations to their topological
analogues.

1. INVERTIBILITY

Jacobson’s Lemma is primarily about invertibility, covering both left, right,
and indeed generalized invertibility. The proof of our extension involves one specfic
act of proof, and then a curious logical syllogism:

Theorem 1. If a� b� c ∈ A satisfy (0.6) then

ac − 1 ∈ A−1 ⇐⇒ ba− 1 ∈ A−1 (1.1)

and

ca ∈ A−1
left ⇐⇒ ba ∈ A−1

left� ac ∈ A−1
right ⇐⇒ ab ∈ A−1

right� (1.2)
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522 CORACH ET AL.

Proof. Towards (1.1) we claim

ac − 1 ∈ A−1
left �⇒ ba− 1 ∈ A−1

left� (1.3)

and conversely

ba− 1 ∈ A−1
left �⇒ ac − 1 ∈ A−1

left� (1.4)

The basic act of proof is (1.3): if c′ ∈ A then in the presence of (0.6) there is
implication

c′�ac − 1� = 1 �⇒ a = c′�ac − 1�a = c′a�ba− 1�

�⇒ ba− 1 = bc′a�ba− 1�− 1 �⇒ 1 = �bc′a− 1��ba− 1�� (1.5)

This applies when c = b and then continues to hold after interchanging a and b: this
in particular gives Jacobson’s Lemma (0.5). Interchanging b and c in (1.3), and also
in (0.5), now completes (1.4). The analogue of (1.3) for right invertibility follows by
reversal of multiplication, applied however to the converse (1.4), after interchange
of c and b.

For the first part of (1.2), we observe, in the presence of (0.6),

�ca�2 ∈ Aba� (1.6)

The converse is a simple interchange of b and c, and then the second part is reversal
of products.

Alternatively, for (1.2), notice that if (0.6) holds and either ca or ba is left
invertible, then ca = ba.

Theorem 1 is familiar [1, 6, 14] when c = b (0.7), and is obtained by Schmoeger
[14, 15] when c = 1 (0.9). We have not been able to extend Theorem 1 from semi
invertibility to “regularity,” in the sense of having a generalized inverse. We cannot
interchange ca and ac in (1.2): if for example a = u and b = c = v with

vu = 1 �= uv� (1.7)

then ca is invertible while ac is neither left nor right invertible. We also cannot
interchange A−1

left and A−1
right, and, hence, replace them both by the invertible group

A−1, in (1.2): for example if (1.7) holds then

�a = v� b = 1� c = uv� �⇒ �aba = v2 = aca� �ba�u = 1� �1− uv��ca� = 0�� (1.8)

The same example shows that we cannot replace (1.3) by inclusion

A�ac − 1� ⊆ A�ba− 1�� (1.9)

2. MONOMORPHISM

The analogue of Theorem 1 holds for mono- and epimorphisms:
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EXTENSIONS OF JACOBSON’S LEMMA 523

Theorem 2. If (0.6) holds then

ac − 1 ∈ Ao
left ⇐⇒ ba− 1 ∈ Ao

left� (2.1)

and

ac − 1 ∈ Ao
right ⇐⇒ ba− 1 ∈ Ao

right� (2.2)

Also

ca ∈ Ao
left ⇐⇒ ba ∈ Ao

left (2.3)

and

ac ∈ Ao
right ⇐⇒ ab ∈ Ao

right� (2.4)

Proof. The basic act of proof here is forward implication in (2.1). If x ∈ A then

�ba− 1�x = 0 �⇒ (
x = bax and �ac − 1�ax = a�ba− 1�x = 0

)
� (2.5)

Thus,

a�ba− 1�−1�0� ⊆ �ac − 1�−1�0�� (2.6)

and, hence,

�ac − 1�−1�0� �⇒ �ba− 1�−1�0��

It follows ([1, Proposition 2])

�ba− 1�−1�0� ⊆ b�ac − 1�−1�0�� (2.7)

This, in particular, establishes forward implication in (2.1). Now the same logic as
for Theorem 1 now supplies the backward implication. Also forward implication in
(2.2) follows from (2.1) by “reversal of products.” Finally, for forward implication
in (2.3), it follows from (1.6) that

�ba�−1�0� ⊆ �ca�−2�0�� (2.8)

while

�ca�−1�0� = �0� �⇒ �ca�−2�0� = �0��

�

If (0.6) holds and either ca or ba is monomorphic then again it follows
ca = ba.
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524 CORACH ET AL.

3. TOPOLOGICAL ZERO DIVISORS

If A is a normed algebra, or category, then the non zero divisors of (0.3) can be
replaced by non topological zero divisors. We recall that a linear mapping T � X →
Y between normed spaces is said to be bounded below if there is k > 0 for which


 · 
 ≤ k
T�·�
� (3.1)

and that in a normed algebra a ∈ A is a left topological zero divisor, or a right
topological zero divisor precisely when the left multiplication, or right multiplication,

La � x �→ ax� Ra � x �→ xa

is not bounded below. Evidently for T � X → Y there is implication

left invertible �⇒ bounded below �⇒ one one�

We shall write

A•
left = �a ∈ A � La � bounded below�� A•

right = �a ∈ A � Ra � bounded below��

(3.2)

evidently

A−1
left ⊆ A•

left ⊆ Ao
left� (3.3)

and similarly with “right” in place of “left.” Thus, there is also a “quantitative”
version of Theorem 2:

Theorem 3. If (0.6) holds then

ac − 1 ∈ A•
left ⇐⇒ ba− 1 ∈ A•

left (3.4)

and

ac − 1 ∈ A•
right ⇐⇒ ba− 1 ∈ A•

right� (3.5)

Also,

ca ∈ A•
left ⇐⇒ ba ∈ A•

left (3.6)

and

ac ∈ A•
right ⇐⇒ ab ∈ A•

right� (3.7)

Proof. The act of proof is forward implication in (3.4): if k > 0 there is implication


 · 
 ≤ k
�ac − 1��·�
 �⇒ 
 · 
 ≤ �
b
k
a
 + 1�
�ba− 1��·�
 (3.8)
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EXTENSIONS OF JACOBSON’S LEMMA 525

and


 · 
 ≤ k
�ac��·�
 �⇒ 
 · 
 ≤ k2
c
 
a

�ba��·�
� (3.9)

for example, if for arbitrary x ∈ A we have 
x
 ≤ k
�ac − 1�x
 then for arbitrary x


ax
 ≤ k
�ac − 1�ax
 ≤ k
a
 
�ba− 1�x�

and, hence,


x
 ≤ 
b
 
ax
 + 
�ba− 1�x
 ≤ �
a
k
b
 + 1�
�ba− 1�x
�

�

Alternatively passage from A to the “enlargement” ([5, Definition 1.9.2])

Q�A� = 	
�A�/c0�A� (3.10)

has the effect of recognizing topological zero divisors a ∈ A as giving zero divisors
Q�a� ∈ Q�A�. The details of the construction are unimportant: all that matters is
([5] Theorem 3.3.5) that if T � X → Y then

T bounded below �⇒ Q�T� one one �⇒ Q�T� bounded below� (3.11)

It follows that if a ∈ A then

a ∈ A•
left ⇐⇒ Q�a� ∈ Q�A�oleft� (3.12)

Thus, Theorem 3 is a consequence of Theorem 2 applied to the enlargement.

4. SURJECTIVITY

The analogue of (1.4) and (2.2) hold, for linear operators, with right
invertibility, or epimorphisms, replaced by the property of being “surjective,” or
onto:

Theorem 4. If (0.6) holds with a � X → Y and b� c � Y → X then

�ca− 1�X = X ⇐⇒ �ab − 1�Y = Y� (4.1)

Proof. If (0.6) holds then

b−1�ca− 1�X ⊆ �ab − 1�Y� �ca− 1�X ⊆ a−1�ab − 1�Y� (4.2)

Indeed,

by = �ca− 1�x �⇒ aby = a�ca− 1�x = �ab − 1�ax

�⇒ y = aby − �ab − 1�y = �ab − 1��ax − y�
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526 CORACH ET AL.

and

x = �ca− 1�w �⇒ ax = a�ca− 1�w = �ab − 1�aw�

now the first part of (4.2) gives forward implication in (4.1). �

Alternatively, this follows by applying (2.2) to the category of all linear
operators on linear spaces. However, we can “quantify” Theorem 4 to give the
analogue for “openness” between normed spaces, and then “almost openness” ([5,
Definition 3.4.1]):

Theorem 5. If (0.6) holds there is implication

ca− 1 relatively open �⇒ ab − 1 relatively open� (4.3)

Proof. Here a � X → Y is said to be “relatively open” if there is k > 0 for which

∀ x ∈ X ∃ x′ ∈ X � ax = ax′ with
x′
 ≤ k 
ax
� (4.4)

thus, “open” means relatively open and onto. Following the argument of (4.2)
suppose ca− 1 is relatively open: then there is k > 0 for which

by = �ca− 1�x �⇒ by = �ca− 1�x′ with 
x′
 ≤ k
by
�

It now follows

y ∈ �ab − 1�Y �⇒ y = aby − �ab − 1�y = �ab − 1��ax′ − y�

with


ax′ − y
 ≤ 
a
 
x′
 + 
y
 ≤ �
a
k
b
 + 1�
y
�

�

Of course on Banach spaces openness and almost openness revert to the
property of being onto. Between normed spaces an operator a � X → Y is dense iff
its dual a∗ � Y ∗ → X∗ is one one, and is almost open iff its dual is bounded below:
thus, we can also derive “right” nonsingularity results from “left.”

It is clear that (4.2) continues to hold if we replace the ranges of ca− 1 and
ab − 1 by their closures. It is not, however, clear that the closed range property
transfers:

�ac − 1�Y = cl �ac − 1�Y ⇐⇒ �ba− 1�X = cl �ba− 1�X? (4.5)

Certainly if �ac − 1�Y is closed in Y then

x = limn�ba− 1�xn �⇒ ax = limn�ac − 1�axn = �ac − 1�y�
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EXTENSIONS OF JACOBSON’S LEMMA 527

giving x = b�ac − 1�y − �ba− 1�x. In the special case (0.8), with b = c, it now
follows ([1] Theorem 5)

x = �ca− 1��cy − x��

5. FREDHOLM THEORY

When A = B�X� is the bounded operators on a Banach space, or indeed the
category of all bounded operators, then Theorem 1 becomes a theorem about
invertibility of operators; if instead A is either a Calkin algebra or the “Calkin
category” then it is a theorem about being Fredholm. Thus, the analogue of
Theorem 1 holds for left and right Fredholmness. The analogue of Theorem 1 also
holds for upper semi-Fredholmness: this follows from Theorem 2 together with ([5,
Definition 5.7.4]) an “essential” version of the enlargement,

P�A� = 	
�A�/m�A��

for which

T upper semi Fredholm ⇐⇒ P�T� one one� (5.1)

If ac − 1 is Fredholm, in the category of bounded linear operators on Banach
spaces, so that with (0.6) also ba− 1 is Fredholm, then (2.7) shows that in addition
ac − 1 and ba− 1 have the same nullity, and then dually the same defect, and of
course the same index: thus, we learn that if (0.6) holds then,

ac − 1 Weyl ⇐⇒ ba− 1 Weyl� (5.2)

This does not appear to survive in a more abstract context:

Theorem 6. If T � A → D is a (unital) homomorphism, or more generally an additive
functor, and if a� b� c ∈ A satisfy (0.6), then

ac − 1 left or right T Fredholm ⇐⇒ ba− 1 left or right T Fredholm� (5.3)

Proof. We say that a ∈ A is “T Fredholm” when Ta ∈ D is invertible; now apply
Theorem 1 to Ta� Tb� Tc in D. �

Theorem 6 hardly needed stating, but enables us to observe that the
corresponding result for “T Weyl” is not clear. Suppose that (0.6) holds and that

ac − 1 = e+ u ∈ A−1
left + T−1�0� with e′e− 1 = 0 = T�u� � (5.4)

then, as from the argument for Theorem 1,

1 = �be′a− 1��ba− 1�− be′ua� �⇒ �be′a− 1��ba− 1� ∈ 1+ T−1�0�

⊆ T−1D−1� (5.5)
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528 CORACH ET AL.

In other words, all we learn is that ba− 1 is left T Fredholm.
We have also been unable to decide whether, in the presence of (0.6), if a ∈

cl A−1 then there is implication

ac − 1 ∈ Exp�A� ⇐⇒ ba− 1 ∈ Exp�A�� (5.6)

Here

Exp�A� = �ec1ec2 � � � ecn � n ∈ N� c ∈ An� (5.7)

is the subgroup of A−1 generated by the exponentials, which coincides with the
connected component of the identity. When c = b this is a result of Murphy ([12,
Proposition 4.3]).

6. DRAZIN INVERTIBILITY

On the other hand, “Drazin invertibility” transfers: we recall [8, 10] that if

ba2 = a = a2c� (6.1)

then (0.8) holds: there is equality ba = ac and in fact bac is a “group inverse” for
a ∈ A. This motivates:

Theorem 7. If a� b� c ∈ A satisfy (0.6) then there is implication

ac − 1 ∈ A�ac − 1�2 ⇐⇒ ba− 1 ∈ A�ba− 1�2 (6.2)

and

ac − 1 ∈ �ac − 1�2A ⇐⇒ ba− 1 ∈ �ba− 1�2A� (6.3)

Proof. We argue, for forward implication in (6.2),

ac − 1 = c′�ac − 1�2 �⇒ a�ba− 1� = c′�ac − 1�2a = c′a�ba− 1�2

�⇒ ba�ba− 1� = bc′a�ba− 1�2 �⇒ ba− 1 = �bc′a− 1��ba− 1�2�

�

More generally a ∈ A is Drazin invertible if some power ak has a group inverse.
To extend Theorem 7, we argue ( cf [4, Lemma 2.1]) that if (0.6) holds and f ∈ Poly
is a polynomial

f�ac�a = af�ba� � (6.4)

note that (6.4) is clear for constants and the coordinate, and transfers to sums and
products of polynomials. Now if k ∈ N we can argue, extending Theorem 2.2 of [4],

�ac − 1�k = c′�ac − 1�k+1 �⇒ a�ba− 1�k = �ac − 1�ka = c′a�ba− 1�k+1�
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EXTENSIONS OF JACOBSON’S LEMMA 529

giving

�ba− 1�k = ba�ba− 1�k − �ba− 1�k+1 = �bc′a− 1��ba− 1�k+1�

7. SPECTRAL THEORY

If A is a real or a complex linear algebra (or category) then (1.3) immediately
implies, for arbitrary non zero scalar 
,

ac − 
 ∈ A−1
left �⇒ ba− 
 ∈ A−1

left� (7.1)

and, similarly, (2.1) implies

ac − 
 ∈ Ao
left �⇒ ba− 
 ∈ Ao

left� (7.2)

If we now define the spectrum of a ∈ A by setting

��a� = �left�a� ∪ �right�a�� (7.3)

where

�left�a� = �
 ∈ C � a− 
 �∈ A−1
left�� �right�a� = �
 ∈ C � a− 
 �∈ A−1

right� (7.4)

then Theorem 1 can be restated in terms of the spectrum:

Theorem 8. If (0.6) holds then

��ac�\�0� = ��ba�\�0�� (7.5)

Proof. (7.5) holds separately for the left and the right spectrum; inclusion one
way follows from the implication (1.3) together with (7.1) and (7.2), and the logical
syllogism of that argument converts this inclusion to equality. �

Theorem 8 has obvious analogues in which the spectrum is replaced by “point”
and “approximate point” spectrum. From Theorem 8 it follows that, in the presence
of (0.6), there is equality

acc ��ac� = acc ��ba�� (7.6)

where we write acc�K� for the accumulation points of K ⊆ C. Considering the status
of the point 0 ∈ C, it is now clear that if (0.6) holds then either neither or both ac
and ba have a Koliha-Drazin inverse.

8. LOCAL SPECTRA

Theorems 1 and 2 have analogues in which invertibility or injectivity is replaced
by local one-one-ness, also known as the “single valued extension property” [10, p. 14;
13, p. 139]. We shall say that a ∈ A is locally one-one [7, 8] if there is implication

�a− z�f�z� ≡ 0 �⇒ f�z� ≡ 0� (8.1)
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530 CORACH ET AL.

whenever f � U → A is holomorphic on an open neighborhood U of 0 ∈ C. Thus,
a ∈ A has the single valued extension property at 
 ∈ C if and only if ([7] Theorem 9)
a− 
 ∈ A is locally one-one. The local analogue of Theorem 2 makes no distinction
between zero and non zero points:

Theorem 9. If A is a Banach linear category and if (0.6) holds then, for arbitrary

 ∈ C,

ac − 
 locally one− one ⇐⇒ ba− 
 locally one− one� (8.2)

Proof. We can virtually copy out the proof of (2.1): writing z � C → C for the
complex coordinate we have near 
 ∈ C,

�ba− z�f�z� ≡ 0 �⇒ �ac − z�af�z� ≡ a�ba− z�f�z� ≡ 0 �⇒ af�z�

≡ 0 �⇒ zf�z� ≡ baf�z� ≡ 0�

When 
 = 0 this argument works on a deleted neighbourhood. �

Theorem 9 applied to the enlargement Q�A� gives [8] something very close to
the analogue of Theorem 2 for “Bishop’s property (�).”

In the category of bounded operators we shall call y ∈ Y a holomorphic range
point of a � X → X if there exists f � U → X holomorphic on an open neighbourood
of 0 ∈ C for which

�a− z�f�z� ≡ y � (8.3)

the set a
�X� of its holomorphic range points is called the transfinite range or “coeur
analytique” of a � X → X. With this notation the intersection a
�X�∩a−1�0�, known
[7, 8] as the holomorphic kernel, vanishes if and only if a is locally one one. Now we
can replace the ranges of ca− 1 and ab − 1 in (4.1) by their holomorphic ranges;
similarly, we can replace the null spaces in (2.7) by holomorphic kernels.
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