

Communications in Algebra

Publication details, including instructions for authors and subscription information: http:// www.tandfonline.com/ loi/ lagb20

Extensions of J acobson's Lemma

Gustavo Corach ${ }^{\text {a }}{ }^{\text {d }}$, Bhaggy Duggal ${ }^{b}$ \& Robin Harte ${ }^{c}$
${ }^{a}$ Departmento de Matematica, Universidad Buenos Aires, Buenos Aires, Argentina
${ }^{\mathrm{b}}$ Department of Mathematics, Faculty of Science and Mathematics, Visegradska, Nis, Serbia
${ }^{\text {c }}$ Department of Mathematics, University of Dublin, Dublin, Ireland
${ }^{\text {d }}$ Instituto Argentino de Matematica, "Alberto P. Calderón"
Version of record first published: 04 J an 2013.

To cite this article: Gustavo Corach, Bhaggy Duggal \& Robin Harte (2013): Extensions of J acobson's Lemma, Communications in Algebra, 41:2, 520-531

To link to this article: http://dx. doi.org/ 10.1080/00927872.2011.602274

PLEASE SCROLL DOWN FOR ARTICLE

Full terms and conditions of use: http://www.tandfonline.com/page/terms-and-conditions
This article may be used for research, teaching, and private study purposes. Any substantial or systematic reproduction, redistribution, reselling, loan, sub-licensing, systematic supply, or distribution in any form to anyone is expressly forbidden.

The publisher does not give any warranty express or implied or make any representation that the contents will be complete or accurate or up to date. The accuracy of any instructions, formulae, and drug doses should be independently verified with primary sources. The publisher shall not be liable for any loss, actions, claims, proceedings, demand, or costs or damages whatsoever or howsoever caused arising directly or indirectly in connection with or arising out of the use of this material.

EXTENSIONS OF JACOBSON'S LEMMA

Gustavo Corach ${ }^{1,4}$, Bhaggy Duggal, ${ }^{2}$ and Robin Harte ${ }^{\mathbf{3}}$
${ }^{1}$ Departmento de Matematica, Universidad Buenos Aires, Buenos Aires, Argentina
${ }^{2}$ Department of Mathematics, Faculty of Science and Mathematics, Visegradska, Nis, Serbia
${ }^{3}$ Department of Mathematics, University of Dublin, Dublin, Ireland
${ }^{4}$ Instituto Argentino de Matematica, "Alberto P. Calderón"

Jacobson's Lemma, relating different kinds of non singularity of ca-1 and ac-1, extends to ba-1 whenever aca $=a b a$.

Key Words: Common spectral properties; Jacobson's lemma; Operator equation.
2010 Mathematics Subject Classification: 47A05.

0. INTRODUCTION

Suppose A is a ring, with identity 1 , or more generally an additive category: we shall write,

$$
\begin{equation*}
A^{-1}=A_{\text {left }}^{-1} \cap A_{\text {right }}^{-1}, \tag{0.1}
\end{equation*}
$$

for the invertible group, with

$$
\begin{equation*}
A_{\text {left }}^{-1}=\{a \in A: 1 \in A a\}, \quad A_{\text {right }}^{-1}=\{a \in A: 1 \in a A\}, \tag{0.2}
\end{equation*}
$$

the left- and right-invertibles, and

$$
\begin{equation*}
A_{\text {left }}^{o}=\left\{a \in A: a^{-1}(0)=\{0\}\right\}, \quad A_{\text {right }}^{o}=\left\{a \in A: a_{-1}(0)=\{0\}\right\}, \tag{0.3}
\end{equation*}
$$

the monomorphisms and epimorphisms, with

$$
a^{-1}(0)=\{x \in A: a x=0\}, \quad a_{-1}(0)=\{x \in A: a x=0\},
$$

respectively, the left and the right annihilator of $a \in A$.
In a Banach algebra these are the elements that are either not left zero divisors or not right zero divisors; in the category of bounded operators between Banach

Received May 8, 2011; Revised June 26, 2011. Communicated by M. Bresar.
Address correspondence to Prof. Gustavo Corach, Departmento. de Matematica, Universidad Buenos Aires, Paseo colon 850, Buenos Aires 1063, Argentina; E-mail: gcorach@fi.uba.ar
spaces these are the operators that are either not one one or not dense. Now Jacobson's Lemma $[1,5,12]$ says that if $a, c \in A$ then

$$
\begin{equation*}
a c-1 \in A^{-1} \Longleftrightarrow c a-1 \in A^{-1} . \tag{0.4}
\end{equation*}
$$

Indeed (0.4) holds separately for the left and the right invertibles of (0.2), as well as for the non zero-divisors of (0.3) : for example, there is implication

$$
\begin{equation*}
c^{\prime}(a c-1)=1 \Longrightarrow\left(c c^{\prime} a-1\right)(c a-1)=1 . \tag{0.5}
\end{equation*}
$$

The formula of (0.5) will also convert a right inverse, or a generalized inverse, for $a c-1$ into one for $c a-1$. In this note, we generalize (0.4) and many of its relatives from $c a-1$ to certain $b a-1$: specifically we will suppose

$$
\begin{equation*}
a b a=a c a \tag{0.6}
\end{equation*}
$$

Three special cases are of interest: the case

$$
\begin{equation*}
b=c, \tag{0.7}
\end{equation*}
$$

which will give Jacobson's lemma; the case in which

$$
\begin{equation*}
a b a=a c a=a, \tag{0.8}
\end{equation*}
$$

in which both b and c are generalized inverses of $a \in A$; and the case

$$
\begin{equation*}
a b a=a^{2} \tag{0.9}
\end{equation*}
$$

in which $c=1$. This last case goes back to Vidav [16], cf [2, 14, 15]; in particular, Schmoeger [14] shows that (0.9) holds if there are idempotents $p=p^{2}, q=q^{2}$ for which $a=q p, b=p q$.

The central results in this note are of course pure algebra: but in the neighboring realm of topological algebra they have very close relatives, and we take the opportunity to extend our purely algebraic observations to their topological analogues.

1. INVERTIBILITY

Jacobson's Lemma is primarily about invertibility, covering both left, right, and indeed generalized invertibility. The proof of our extension involves one specfic act of proof, and then a curious logical syllogism:

Theorem 1. If $a, b, c \in A$ satisfy (0.6) then

$$
\begin{equation*}
a c-1 \in A^{-1} \Longleftrightarrow b a-1 \in A^{-1} \tag{1.1}
\end{equation*}
$$

and

$$
\begin{equation*}
c a \in A_{\text {left }}^{-1} \Longleftrightarrow b a \in A_{\text {left }}^{-1}, \quad a c \in A_{\text {right }}^{-1} \Longleftrightarrow a b \in A_{\text {right }}^{-1} . \tag{1.2}
\end{equation*}
$$

Proof. Towards (1.1) we claim

$$
\begin{equation*}
a c-1 \in A_{\text {left }}^{-1} \Longrightarrow b a-1 \in A_{\text {left }}^{-1}, \tag{1.3}
\end{equation*}
$$

and conversely

$$
\begin{equation*}
b a-1 \in A_{\text {left }}^{-1} \Longrightarrow a c-1 \in A_{\text {left }}^{-1} . \tag{1.4}
\end{equation*}
$$

The basic act of proof is (1.3): if $c^{\prime} \in A$ then in the presence of (0.6) there is implication

$$
\begin{align*}
c^{\prime}(a c-1) & =1 \Longrightarrow a=c^{\prime}(a c-1) a=c^{\prime} a(b a-1) \\
& \Longrightarrow b a-1=b c^{\prime} a(b a-1)-1 \Longrightarrow 1=\left(b c^{\prime} a-1\right)(b a-1) \tag{1.5}
\end{align*}
$$

This applies when $c=b$ and then continues to hold after interchanging a and b : this in particular gives Jacobson's Lemma (0.5). Interchanging b and c in (1.3), and also in (0.5), now completes (1.4). The analogue of (1.3) for right invertibility follows by reversal of multiplication, applied however to the converse (1.4), after interchange of c and b.

For the first part of (1.2), we observe, in the presence of (0.6),

$$
\begin{equation*}
(c a)^{2} \in A b a . \tag{1.6}
\end{equation*}
$$

The converse is a simple interchange of b and c, and then the second part is reversal of products.

Alternatively, for (1.2), notice that if (0.6) holds and either $c a$ or $b a$ is left invertible, then $c a=b a$.

Theorem 1 is familiar $[1,6,14]$ when $c=b(0.7)$, and is obtained by Schmoeger $[14,15]$ when $c=1(0.9)$. We have not been able to extend Theorem 1 from semi invertibility to "regularity," in the sense of having a generalized inverse. We cannot interchange $c a$ and $a c$ in (1.2): if for example $a=u$ and $b=c=v$ with

$$
\begin{equation*}
v u=1 \neq u v, \tag{1.7}
\end{equation*}
$$

then $c a$ is invertible while $a c$ is neither left nor right invertible. We also cannot interchange $A_{\text {left }}^{-1}$ and $A_{\text {right }}^{-1}$, and, hence, replace them both by the invertible group A^{-1}, in (1.2): for example if (1.7) holds then

$$
\begin{equation*}
(a=v, b=1, c=u v) \Longrightarrow\left(a b a=v^{2}=a c a,(b a) u=1,(1-u v)(c a)=0\right) \tag{1.8}
\end{equation*}
$$

The same example shows that we cannot replace (1.3) by inclusion

$$
\begin{equation*}
A(a c-1) \subseteq A(b a-1) \tag{1.9}
\end{equation*}
$$

2. MONOMORPHISM

The analogue of Theorem 1 holds for mono- and epimorphisms:

Theorem 2. If (0.6) holds then

$$
\begin{equation*}
a c-1 \in A_{l e f t}^{o} \Longleftrightarrow b a-1 \in A_{l e f t}^{o} \tag{2.1}
\end{equation*}
$$

and

$$
\begin{equation*}
a c-1 \in A_{r i g h t}^{o} \Longleftrightarrow b a-1 \in A_{r i g h t}^{o} . \tag{2.2}
\end{equation*}
$$

Also

$$
\begin{equation*}
c a \in A_{l e f t}^{o} \Longleftrightarrow b a \in A_{l e f t}^{o} \tag{2.3}
\end{equation*}
$$

and

$$
\begin{equation*}
a c \in A_{r i g h t}^{o} \Longleftrightarrow a b \in A_{r i g h t}^{o} . \tag{2.4}
\end{equation*}
$$

Proof. The basic act of proof here is forward implication in (2.1). If $x \in A$ then

$$
\begin{equation*}
(b a-1) x=0 \Longrightarrow(x=b a x \text { and }(a c-1) a x=a(b a-1) x=0) \tag{2.5}
\end{equation*}
$$

Thus,

$$
\begin{equation*}
a(b a-1)^{-1}(0) \subseteq(a c-1)^{-1}(0) \tag{2.6}
\end{equation*}
$$

and, hence,

$$
(a c-1)^{-1}(0) \Longrightarrow(b a-1)^{-1}(0)
$$

It follows ([1, Proposition 2])

$$
\begin{equation*}
(b a-1)^{-1}(0) \subseteq b(a c-1)^{-1}(0) . \tag{2.7}
\end{equation*}
$$

This, in particular, establishes forward implication in (2.1). Now the same logic as for Theorem 1 now supplies the backward implication. Also forward implication in (2.2) follows from (2.1) by "reversal of products." Finally, for forward implication in (2.3), it follows from (1.6) that

$$
\begin{equation*}
(b a)^{-1}(0) \subseteq(c a)^{-2}(0), \tag{2.8}
\end{equation*}
$$

while

$$
(c a)^{-1}(0)=\{0\} \Longrightarrow(c a)^{-2}(0)=\{0\} .
$$

If (0.6) holds and either $c a$ or $b a$ is monomorphic then again it follows $c a=b a$.

3. TOPOLOGICAL ZERO DIVISORS

If A is a normed algebra, or category, then the non zero divisors of (0.3) can be replaced by non topological zero divisors. We recall that a linear mapping $T: X \rightarrow$ Y between normed spaces is said to be bounded below if there is $k>0$ for which

$$
\begin{equation*}
\|\cdot\| \leq k\|T(\cdot)\| \tag{3.1}
\end{equation*}
$$

and that in a normed algebra $a \in A$ is a left topological zero divisor, or a right topological zero divisor precisely when the left multiplication, or right multiplication,

$$
L_{a}: x \mapsto a x, \quad R_{a}: x \mapsto x a
$$

is not bounded below. Evidently for $T: X \rightarrow Y$ there is implication

$$
\text { left invertible } \Longrightarrow \text { bounded below } \Longrightarrow \text { one one. }
$$

We shall write
$A_{\text {left }}^{\bullet}=\left\{a \in A: L_{a}:\right.$ bounded below $\}, \quad A_{\text {right }}^{\bullet}=\left\{a \in A: R_{a}:\right.$ bounded below $\} ;$
evidently

$$
\begin{equation*}
A_{\text {left }}^{-1} \subseteq A_{\text {left }} \subseteq A_{\text {left }}^{o}, \tag{3.3}
\end{equation*}
$$

and similarly with "right" in place of "left." Thus, there is also a "quantitative" version of Theorem 2:

Theorem 3. If (0.6) holds then

$$
\begin{equation*}
a c-1 \in A_{\text {left }} \Longleftrightarrow b a-1 \in A_{l e f t} \tag{3.4}
\end{equation*}
$$

and

$$
\begin{equation*}
a c-1 \in A_{\text {right }}^{\bullet} \Longleftrightarrow b a-1 \in A_{r i g h t}^{\bullet} . \tag{3.5}
\end{equation*}
$$

Also,

$$
\begin{equation*}
c a \in A_{l e f t}^{\circ} \Longleftrightarrow b a \in A_{l e f t}^{\circ} \tag{3.6}
\end{equation*}
$$

and

$$
\begin{equation*}
a c \in A_{\text {right }}^{\bullet} \Longleftrightarrow a b \in A_{\text {right }}^{\bullet} . \tag{3.7}
\end{equation*}
$$

Proof. The act of proof is forward implication in (3.4): if $k>0$ there is implication

$$
\begin{equation*}
\|\cdot\| \leq k\|(a c-1)(\cdot)\| \Longrightarrow\|\cdot\| \leq(\|b\| k\|a\|+1)\|(b a-1)(\cdot)\| \tag{3.8}
\end{equation*}
$$

and

$$
\begin{equation*}
\|\cdot\| \leq k\|(a c)(\cdot)\| \Longrightarrow\|\cdot\| \leq k^{2}\|c\|\|a\|\|(b a)(\cdot)\| \tag{3.9}
\end{equation*}
$$

for example, if for arbitrary $x \in A$ we have $\|x\| \leq k\|(a c-1) x\|$ then for arbitrary x

$$
\|a x\| \leq k\|(a c-1) a x\| \leq k\|a\| \|(b a-1) x
$$

and, hence,

$$
\|x\| \leq\|b\|\|a x\|+\|(b a-1) x\| \leq(\|a\| k\|b\|+1)\|(b a-1) x\| .
$$

Alternatively passage from A to the "enlargement" ([5, Definition 1.9.2])

$$
\begin{equation*}
\mathbf{Q}(A)=\ell_{\infty}(A) / c_{0}(A) \tag{3.10}
\end{equation*}
$$

has the effect of recognizing topological zero divisors $a \in A$ as giving zero divisors $\mathbf{Q}(a) \in \mathbf{Q}(A)$. The details of the construction are unimportant: all that matters is ([5] Theorem 3.3.5) that if $T: X \rightarrow Y$ then

$$
\begin{equation*}
T \text { bounded below } \Longrightarrow \mathbf{Q}(T) \text { one one } \Longrightarrow \mathbf{Q}(T) \text { bounded below. } \tag{3.11}
\end{equation*}
$$

It follows that if $a \in A$ then

$$
\begin{equation*}
a \in A_{l e f t}^{\circ} \Longleftrightarrow \mathbf{Q}(a) \in \mathbf{Q}(A)_{l e f t}^{o} \tag{3.12}
\end{equation*}
$$

Thus, Theorem 3 is a consequence of Theorem 2 applied to the enlargement.

4. SURJECTIVITY

The analogue of (1.4) and (2.2) hold, for linear operators, with right invertibility, or epimorphisms, replaced by the property of being "surjective," or onto:

Theorem 4. If (0.6) holds with $a: X \rightarrow Y$ and $b, c: Y \rightarrow X$ then

$$
\begin{equation*}
(c a-1) X=X \Longleftrightarrow(a b-1) Y=Y . \tag{4.1}
\end{equation*}
$$

Proof. If (0.6) holds then

$$
\begin{equation*}
b^{-1}(c a-1) X \subseteq(a b-1) Y, \quad(c a-1) X \subseteq a^{-1}(a b-1) Y \tag{4.2}
\end{equation*}
$$

Indeed,

$$
\begin{aligned}
b y= & (c a-1) x \Longrightarrow a b y=a(c a-1) x=(a b-1) a x \\
& \Longrightarrow y=a b y-(a b-1) y=(a b-1)(a x-y)
\end{aligned}
$$

and

$$
x=(c a-1) w \Longrightarrow a x=a(c a-1) w=(a b-1) a w ;
$$

now the first part of (4.2) gives forward implication in (4.1).
Alternatively, this follows by applying (2.2) to the category of all linear operators on linear spaces. However, we can "quantify" Theorem 4 to give the analogue for "openness" between normed spaces, and then "almost openness" ([5, Definition 3.4.1]):

Theorem 5. If (0.6) holds there is implication

$$
\begin{equation*}
c a-1 \text { relatively open } \Longrightarrow a b-1 \text { relatively open. } \tag{4.3}
\end{equation*}
$$

Proof. Here $a: X \rightarrow Y$ is said to be "relatively open" if there is $k>0$ for which

$$
\begin{equation*}
\forall x \in X \exists x^{\prime} \in X: a x=a x^{\prime} \quad \text { with }\left\|x^{\prime}\right\| \leq k\|a x\| ; \tag{4.4}
\end{equation*}
$$

thus, "open" means relatively open and onto. Following the argument of (4.2) suppose $c a-1$ is relatively open: then there is $k>0$ for which

$$
b y=(c a-1) x \Longrightarrow b y=(c a-1) x^{\prime} \text { with }\left\|x^{\prime}\right\| \leq k\|b y\| .
$$

It now follows

$$
y \in(a b-1) Y \Longrightarrow y=a b y-(a b-1) y=(a b-1)\left(a x^{\prime}-y\right)
$$

with

$$
\left\|a x^{\prime}-y\right\| \leq\|a\|\left\|x^{\prime}\right\|+\|y\| \leq(\|a\| k\|b\|+1)\|y\| .
$$

Of course on Banach spaces openness and almost openness revert to the property of being onto. Between normed spaces an operator $a: X \rightarrow Y$ is dense iff its dual $a^{*}: Y^{*} \rightarrow X^{*}$ is one one, and is almost open iff its dual is bounded below: thus, we can also derive "right" nonsingularity results from "left."

It is clear that (4.2) continues to hold if we replace the ranges of $c a-1$ and $a b-1$ by their closures. It is not, however, clear that the closed range property transfers:

$$
\begin{equation*}
(a c-1) Y=\mathrm{cl}(a c-1) Y \Longleftrightarrow(b a-1) X=\mathrm{cl}(b a-1) X ? \tag{4.5}
\end{equation*}
$$

Certainly if $(a c-1) Y$ is closed in Y then

$$
x=\lim _{n}(b a-1) x_{n} \Longrightarrow a x=\lim _{n}(a c-1) a x_{n}=(a c-1) y,
$$

giving $x=b(a c-1) y-(b a-1) x$. In the special case (0.8), with $b=c$, it now follows ([1] Theorem 5)

$$
x=(c a-1)(c y-x) .
$$

5. FREDHOLM THEORY

When $A=B(X)$ is the bounded operators on a Banach space, or indeed the category of all bounded operators, then Theorem 1 becomes a theorem about invertibility of operators; if instead A is either a Calkin algebra or the "Calkin category" then it is a theorem about being Fredholm. Thus, the analogue of Theorem 1 holds for left and right Fredholmness. The analogue of Theorem 1 also holds for upper semi-Fredholmness: this follows from Theorem 2 together with ([5, Definition 5.7.4]) an "essential" version of the enlargement,

$$
\mathbf{P}(A)=\ell_{\infty}(A) / m(A),
$$

for which

$$
\begin{equation*}
T \text { upper semi Fredholm } \Longleftrightarrow \mathbf{P}(T) \text { one one. } \tag{5.1}
\end{equation*}
$$

If $a c-1$ is Fredholm, in the category of bounded linear operators on Banach spaces, so that with (0.6) also $b a-1$ is Fredholm, then (2.7) shows that in addition $a c-1$ and $b a-1$ have the same nullity, and then dually the same defect, and of course the same index: thus, we learn that if (0.6) holds then,

$$
\begin{equation*}
a c-1 \text { Weyl } \Longleftrightarrow b a-1 \text { Weyl. } \tag{5.2}
\end{equation*}
$$

This does not appear to survive in a more abstract context:
Theorem 6. If $T: A \rightarrow D$ is a (unital) homomorphism, or more generally an additive functor, and if $a, b, c \in A$ satisfy (0.6), then

$$
\begin{equation*}
\text { ac }-1 \text { left or right } T \text { Fredholm } \Longleftrightarrow b a-1 \text { left or right } T \text { Fredholm. } \tag{5.3}
\end{equation*}
$$

Proof. We say that $a \in A$ is " T Fredholm" when $T a \in D$ is invertible; now apply Theorem 1 to $T a, T b, T c$ in D.

Theorem 6 hardly needed stating, but enables us to observe that the corresponding result for " T Weyl" is not clear. Suppose that (0.6) holds and that

$$
\begin{equation*}
a c-1=e+u \in A_{\text {left }}^{-1}+T^{-1}(0) \text { with } e^{\prime} e-1=0=T(u): \tag{5.4}
\end{equation*}
$$

then, as from the argument for Theorem 1,

$$
\begin{align*}
1= & \left(b e^{\prime} a-1\right)(b a-1)-b e^{\prime} u a, \quad \Longrightarrow\left(b e^{\prime} a-1\right)(b a-1) \in 1+T^{-1}(0) \\
& \subseteq T^{-1} D^{-1} . \tag{5.5}
\end{align*}
$$

In other words, all we learn is that $b a-1$ is left T Fredholm.
We have also been unable to decide whether, in the presence of (0.6), if $a \in$ $\mathrm{cl} A^{-1}$ then there is implication

$$
\begin{equation*}
a c-1 \in \operatorname{Exp}(A) \Longleftrightarrow b a-1 \in \operatorname{Exp}(A) \tag{5.6}
\end{equation*}
$$

Here

$$
\begin{equation*}
\operatorname{Exp}(A)=\left\{e^{c_{1}} e^{c_{2}} \ldots e^{c_{n}}: n \in \mathbf{N}, c \in A^{n}\right\} \tag{5.7}
\end{equation*}
$$

is the subgroup of A^{-1} generated by the exponentials, which coincides with the connected component of the identity. When $c=b$ this is a result of Murphy ([12, Proposition 4.3]).

6. DRAZIN INVERTIBILITY

On the other hand, "Drazin invertibility" transfers: we recall $[8,10]$ that if

$$
\begin{equation*}
b a^{2}=a=a^{2} c \tag{6.1}
\end{equation*}
$$

then (0.8) holds: there is equality $b a=a c$ and in fact $b a c$ is a "group inverse" for $a \in A$. This motivates:

Theorem 7. If $a, b, c \in A$ satisfy (0.6) then there is implication

$$
\begin{equation*}
a c-1 \in A(a c-1)^{2} \Longleftrightarrow b a-1 \in A(b a-1)^{2} \tag{6.2}
\end{equation*}
$$

and

$$
\begin{equation*}
a c-1 \in(a c-1)^{2} A \Longleftrightarrow b a-1 \in(b a-1)^{2} A . \tag{6.3}
\end{equation*}
$$

Proof. We argue, for forward implication in (6.2),

$$
\begin{aligned}
a c-1 & =c^{\prime}(a c-1)^{2} \Longrightarrow a(b a-1)=c^{\prime}(a c-1)^{2} a=c^{\prime} a(b a-1)^{2} \\
& \Longrightarrow b a(b a-1)=b c^{\prime} a(b a-1)^{2} \Longrightarrow b a-1=\left(b c^{\prime} a-1\right)(b a-1)^{2}
\end{aligned}
$$

More generally $a \in A$ is Drazin invertible if some power a^{k} has a group inverse. To extend Theorem 7, we argue (cf [4, Lemma 2.1]) that if (0.6) holds and $f \in$ Poly is a polynomial

$$
\begin{equation*}
f(a c) a=a f(b a): \tag{6.4}
\end{equation*}
$$

note that (6.4) is clear for constants and the coordinate, and transfers to sums and products of polynomials. Now if $k \in \mathbf{N}$ we can argue, extending Theorem 2.2 of [4],

$$
(a c-1)^{k}=c^{\prime}(a c-1)^{k+1} \Longrightarrow a(b a-1)^{k}=(a c-1)^{k} a=c^{\prime} a(b a-1)^{k+1}
$$

giving

$$
(b a-1)^{k}=b a(b a-1)^{k}-(b a-1)^{k+1}=\left(b c^{\prime} a-1\right)(b a-1)^{k+1} .
$$

7. SPECTRAL THEORY

If A is a real or a complex linear algebra (or category) then (1.3) immediately implies, for arbitrary non zero scalar λ,

$$
\begin{equation*}
a c-\lambda \in A_{\text {left }}^{-1} \Longrightarrow b a-\lambda \in A_{\text {left }}^{-1} \tag{7.1}
\end{equation*}
$$

and, similarly, (2.1) implies

$$
\begin{equation*}
a c-\lambda \in A_{l e f t}^{o} \Longrightarrow b a-\lambda \in A_{l e f t}^{o} \tag{7.2}
\end{equation*}
$$

If we now define the spectrum of $a \in A$ by setting

$$
\begin{equation*}
\sigma(a)=\sigma^{l e f t}(a) \cup \sigma^{r i g h t}(a) \tag{7.3}
\end{equation*}
$$

where

$$
\begin{equation*}
\sigma^{\text {left }}(a)=\left\{\lambda \in \mathbf{C}: a-\lambda \notin A_{\text {left }}^{-1}\right\}, \quad \sigma^{\text {right }}(a)=\left\{\lambda \in \mathbf{C}: a-\lambda \notin A_{\text {right }}^{-1}\right\} \tag{7.4}
\end{equation*}
$$

then Theorem 1 can be restated in terms of the spectrum:
Theorem 8. If (0.6) holds then

$$
\begin{equation*}
\sigma(a c) \backslash\{0\}=\sigma(b a) \backslash\{0\} . \tag{7.5}
\end{equation*}
$$

Proof. (7.5) holds separately for the left and the right spectrum; inclusion one way follows from the implication (1.3) together with (7.1) and (7.2), and the logical syllogism of that argument converts this inclusion to equality.

Theorem 8 has obvious analogues in which the spectrum is replaced by "point" and "approximate point" spectrum. From Theorem 8 it follows that, in the presence of (0.6), there is equality

$$
\begin{equation*}
\operatorname{acc} \sigma(a c)=\operatorname{acc} \sigma(b a) \tag{7.6}
\end{equation*}
$$

where we write $\operatorname{acc}(K)$ for the accumulation points of $K \subseteq \mathbf{C}$. Considering the status of the point $0 \in \mathbf{C}$, it is now clear that if (0.6) holds then either neither or both ac and ba have a Koliha-Drazin inverse.

8. LOCAL SPECTRA

Theorems 1 and 2 have analogues in which invertibility or injectivity is replaced by local one-one-ness, also known as the "single valued extension property" [10, p. 14; 13, p. 139]. We shall say that $a \in A$ is locally one-one $[7,8]$ if there is implication

$$
\begin{equation*}
(a-z) f(z) \equiv 0 \Longrightarrow f(z) \equiv 0 \tag{8.1}
\end{equation*}
$$

whenever $f: U \rightarrow A$ is holomorphic on an open neighborhood U of $0 \in \mathbf{C}$. Thus, $a \in A$ has the single valued extension property at $\lambda \in \mathbf{C}$ if and only if ([7] Theorem 9) $a-\lambda \in A$ is locally one-one. The local analogue of Theorem 2 makes no distinction between zero and non zero points:

Theorem 9. If A is a Banach linear category and if (0.6) holds then, for arbitrary $\lambda \in \mathbf{C}$,

$$
\begin{equation*}
\text { ac }-\lambda \text { locally one }- \text { one } \Longleftrightarrow b a-\lambda \text { locally one }- \text { one } . \tag{8.2}
\end{equation*}
$$

Proof. We can virtually copy out the proof of (2.1): writing z: $\mathbf{C} \rightarrow \mathbf{C}$ for the complex coordinate we have near $\lambda \in \mathbf{C}$,

$$
\begin{aligned}
(b a-z) f(z) & \equiv 0 \\
& \Longrightarrow(a c-z) a f(z) \equiv a(b a-z) f(z) \equiv 0 \Longrightarrow a f(z) \\
& \Longrightarrow z f(z) \equiv b a f(z) \equiv 0
\end{aligned}
$$

When $\lambda=0$ this argument works on a deleted neighbourhood.
Theorem 9 applied to the enlargement $\mathbf{Q}(A)$ gives [8] something very close to the analogue of Theorem 2 for "Bishop's property (β)."

In the category of bounded operators we shall call $y \in Y$ a holomorphic range point of $a: X \rightarrow X$ if there exists $f: U \rightarrow X$ holomorphic on an open neighbourood of $0 \in \mathbf{C}$ for which

$$
\begin{equation*}
(a-z) f(z) \equiv y \text {; } \tag{8.3}
\end{equation*}
$$

the set $a^{\omega}(X)$ of its holomorphic range points is called the transfinite range or "coeur analytique" of $a: X \rightarrow X$. With this notation the intersection $a^{\omega}(X)_{\cap} a^{-1}(0)$, known $[7,8]$ as the holomorphic kernel, vanishes if and only if a is locally one one. Now we can replace the ranges of $c a-1$ and $a b-1$ in (4.1) by their holomorphic ranges; similarly, we can replace the null spaces in (2.7) by holomorphic kernels.

REFERENCES

[1] Bruce, B. (1998). Common properties of the linear operators $R S$ and SR. Proc. Amer. Math. Soc. 126:1055-1061.
[2] Corach, G., Maestripieri, A. (2010). Polar decomposition of oblique projections. Linear Alg. Appl. 433:511-519.
[3] Curto, R., Mathieu, M. (1995). Spectrally bounded inner derivations. Proc. Amer. Math. Soc. 123:2431-2434.
[4] Cvetkovic-Ilic, D., Harte, R. (2010). On Jacobson's Lemma and Drazin invertibility. Appl. Math. Letters 23:417-420.
[5] Harte, R. (1988). Invertibility and Singularity for Bounded Linear Operators. Dekker.
[6] Harte, R. (2003). On spectral boundedness. J. Korean Math. Soc. 40:307-317.
[7] Harte, R. (2008). On local spectral theory. Operator Theory: Adv. Appl. 187:175-183.
[8] Harte, R. (2010). On local spectral theory II. Funct. Anal. Approx. Comp. 2:67-71.
[9] Hartwig, R. (1976). More on the Souriau-Frame algorithm. SIAM J. Appl. Math. 31:42-46.
[10] Laursen, K., Neumann, M. (2000). Introduction to Local Spectral Theory. Clarendon Press.
[11] Mary, X. (1992/2008). On the converse of a theorem of Harte and Mbekhta: Erratum to "On generalized inverses in C* algebras." Studia Math. 103:71-77. Studia Math. 184:149-151.
[12] Murphy, G. (1992). The index group, the exponential spectrum, and some spectral containment theorems. Proc. Royal Irish Acad. 92A:229-238.
[13] Müller, V. (2007). Spectral Theory of Linear Operators and Spectral Systems. 2nd ed. Birkhäuser.
[14] Schmoeger, C. (2005). On the operator equations $A B A=A^{2}$ and $B A B=B^{2}$. Publ. Inst. Math. Beograd. (N.S.) 78(92):127-133.
[15] Schmoeger, C. (2006). Common spectral properties of linear operators such that $A B A=A^{2}$ and $B A B=B^{2}$. Publ. Inst. Math. Beograd. (N.S.) 79(93):109-114.
[16] Vidav, I. (1964). On idempotent operators in a Hilbert space. Publ. Inst. Math. (Beograd) 4:157-163.

