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We describe O (n) time algorithms for finding the minimum weighted dominating induced
matching of chordal, dually chordal, biconvex, and claw-free graphs. For the first three
classes, we prove tight O (n) bounds on the maximum number of edges that a graph having
a dominating induced matching may contain. By applying these bounds, and employing
existing O (n + m) time algorithms we show that they can be reduced to O (n) time.
For claw-free graphs, we describe a variation of the existing algorithm for solving the
unweighted version of the problem, which decreases its complexity from O (n2) to O (n),
while additionally solving the weighted version. The same algorithm can be easily modified
to count the number of DIM’s of the given graph.
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1. Introduction

We consider undirected simple graphs G , denoting by
V (G) and E(G), respectively, the sets of vertices and edges
of G , n = |V (G)| and m = |E(G)|. For v ∈ V (G), N(v) rep-
resents the set of neighbors of v ∈ V (G), while N[v] =
N(v) ∪ {v}. For S ⊆ V (G), N(S) = ∪v∈S N(v). We say a ver-
tex v ∈ V (G) such that N[v] = V (G) is universal. Denote
by G[S] the subgraph of G induced by the vertices of S .
If G[S] is a 0-regular graph then S is an independent set,
if it is a 1-regular graph then S is the set of vertices of
an edge independent set. By G + H we denote the disjoint
union of two graphs G and H . We say that a graph G is
H-free if G does not contain H as an induced subgraph.
A vertex v is called simplicial if all its neighbors are adja-
cent to each other. An edge independent set is also known
as an induced matching. For convenience, we may write in-
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duced matching to refer either to the set of edges or to its
corresponding vertex set. Finally, we also employ the nota-
tion matching with its usual meaning of a set of pairwise
non-adjacent edges.

Say that an edge e ∈ E(G) dominates itself and every
other edge adjacent to it. An edge dominating set of G is a
set of edges E ′ ⊆ E(G), such that every e ∈ E(G) is dom-
inated by some edge of E ′ . If each e ∈ E(G) is dominated
by exactly one edge of E ′ then E ′ is an efficient edge dom-
inating set. In the latter situation, E ′ defines an induced
matching, while the set of vertices not incident to E ′ form
an independent set. For this reason, an efficient edge dom-
inating set is also called dominating induced matching (DIM).
Not every graph admits a DIM. The DIM problem is to deter-
mine whether a graph has such a matching, and is known
to be NP-complete [9]. We will consider graphs G with
a weighting Ω , that assigns to each edge v w ∈ E(G) a
non-negative finite weight ω(v w). The aim is to find the
minimum weight of a dominating induced matching of G ,
if any. We name this problem as DIMΩ(G). Some of the
existing algorithms for solving DIM problems are [3–5,10].
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Since the number of edges of any DIM of G , if existing,
is invariant, it is straightforward to generalize the problem
for edges with negative weights too.

Following the definition, the DIM problem can be
viewed as to decide whether there is a partition of the ver-
tices into two sets (say a coloring of the vertices in white
and black) such that the white set is an independent set
while the black one induces a 1-regular graph. Moreover,
the black set defines a DIM of the graph [7]. A coloring is
partial if only part of the vertices of G have been assigned
colors, otherwise it is total. A black vertex is single if it
has no black neighbor, and is paired if it has exactly one
black neighbor. Each coloring, partial or total, can be valid
or invalid.

A partial coloring is valid whenever any two white
vertices are non-adjacent and each black vertex is either
paired, or is single having some uncolored neighbor. A to-
tal coloring is valid whenever any two white vertices are
non-adjacent and each black vertex is paired.

A valid partial coloring Γ might possibly extend into
a coloring Γ ′ ⊇ Γ by iteratively applying a set of color-
ing rules, compatible with Γ . In general, such rules would
color some uncolored vertex v , whose color is uniquely de-
termined by the colors of Γ . For instance, any uncolored
neighbor of a white vertex must be colored as black, oth-
erwise the coloring would be invalid. See [7] for a set of
such rules. We refer to this process as propagation.

We prove that any chordal graph containing a DIM has
at most 2n − 3 edges. Counting the edges and applying the
O (n + m) time algorithm by Lu, Ko and Tang [11] lead
to an O (n) time algorithm. For dually chordal graphs, by
employing the similarity result chordal - dually chordal for
DIM’s by Brandstädt, Leitert and Rautenbach [2] also leads
to solving the DIM problem in O (n) time. For biconvex
graphs, we prove that any K3,3-free convex graph contains
at most 2n −4 edges. Additionally, that any biconvex graph
containing a DIM is K3,3-free. Using these two results,
counting the number of edges of the given graph and em-
ploying the O (n +m) time algorithm by Brandstädt, Hundt
and Nevries [1] leads to solving the DIM problem for bi-
convex graphs in O (n) time. Finally, for claw-free graphs,
we describe a variation of the algorithm by Cardoso, Kor-
pelainen and Lozin [7]. The latter solves the DIM problem,
without weights, in O (n2) time, while the presently pro-
posed algorithm requires O (n) time for solving DIMΩ(G).

A conference version of this paper has been presented
at LATIN’ 2014 [6].

2. Chordal, dually chordal and biconvex graphs

In this section, we remark that computing DIMΩ(G) for
any graph G which is chordal, dually chordal or biconvex
requires no more than O (n) time.

Lemma 1. (See [1].) If G contains a K4 then G has no DIM’s.

Lemma 2. Every K4-free chordal graph G with at least 2 vertices
has at most 2n − 3 edges. The bound is tight even if G is an
interval graph.
Proof. By induction on the number of vertices. For n = 2,
the result is trivial. Suppose the bound is valid for graphs
with n − 1 vertices, n ≥ 3. Let G be an n-vertex chordal
graph and v a simplicial vertex of it. Since |E(G)| =
|E(G \ {v})| +d(v), where d(v) denotes the degree of v , by
the induction hypothesis, the number of edges of G \ {v} is
bounded by 2n − 5. Since G is K4-free, d(v) ≤ 2, therefore
|E(G)| ≤ 2n − 5 + 2 = 2n − 3.

An interval graph having two universal vertices and the
remaining ones having degree 2 has no K4 and contains
2n − 3 edges, meaning that the bound is tight for interval
graphs. �
Corollary 3. The DIMΩ(G) problem can be solved in O (n) time
for (dually) chordal graphs.

Proof. Let G be a given chordal graph. First, count the
number of edges of G , up to a limit of 2n − 3. If the
bound has been exceeded then stop answering that G has
no DIM’s. Otherwise, apply the algorithm [11] which solves
DIMΩ(G) in O (n) time. Finally, if a graph has a DIM then
it is chordal if and only if it is dually chordal [2]. Con-
sequently, DIMΩ(G) can also be solved in O (n) time for
dually chordal graphs. �

Next, consider solving DIMΩ(G) for biconvex graphs.
An ordering < of X in a bipartite graph G = (X, Y , E)

has the interval property if for every vertex y ∈ Y , the ver-
tices of N(y) are consecutive in the ordering < of X . A bi-
partite graph (X, Y , E) is convex if there is an ordering of
X or Y that fulfills the interval property. Furthermore if
there are orderings for both X and Y which fulfill the in-
terval property the graph is biconvex.

Lemma 4. Let G be a convex bipartite graph having no subgraph
isomorphic to K3,3 . Then G contains at most 2n − 4 edges, for
n ≥ 3.

Proof. By induction on n. If n = 3, the graph has at most 2
edges, satisfying the bound. Let G be an arbitrary K3,3-free
convex graph, v its minimum degree vertex and G ′ the
graph obtained from G by removing v .

• d(v) ≤ 2: Clearly, G ′ is also K3,3-free. By inductive hy-
pothesis, G ′ has at most 2n − 6 edges. Consequently,
G has at most 2n − 6 + d(v) ≤ 2n − 4 edges.

• d(v) > 2: Every vertex in G has degree at least 3. Let
G = (X, Y , E) where X has the interval property. Thus
for each vertex y ∈ Y , N(y) consists of vertices that
are consecutive. Let {x1, . . . , xk} be the ordering < of
X and w.l.o.g. let {y1, y2, y3} ⊆ N(x1). Since y1, y2, y3
have at least 3 neighbors and X has the interval prop-
erty, it follows that {x2, x3} ⊆ N(y1) ∩ N(y2) ∩ N(y3).
Therefore {x1, x2, x3, y1, y2, y3} induces a K3,3, a con-
tradiction.

Hence, G contains indeed at most 2n−4 edges. This bound
is tight, K2,n−2 is an example. �

We remark that bipartite graphs, not necessarily con-
vex, which do not contain K3,3 as a minor also have at
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most 2n − 4 edges [8](note that [8] employs the term
H-free with the meaning that G does not contain the graph
H as a minor). However, this bound does not apply to
general bipartite graphs not containing K3,3 as an induced
subgraph, as shown by the example below described.

Let G = (X, Y , E) be a bipartite graph where X =
{x0, x1, . . . , x15} and Y = {y0, y1, . . . , y7}. Add the edge
xi y2 j , if the binary representation of i has the digit 0 at
position j, while if such a binary representation contains
the digit 1 at j then add the edge xi y2 j+1. It is easy to
see that one of the edges xi y2 j , xi y2 j+1 will exist for all
i, j : 0 ≤ i ≤ 15,0 ≤ j ≤ 3. We show that G is K3,3-free:
Suppose this is not true, and let {xi, x j, xk, yp, yq, yr} be
the vertices of an induced K3,3. By the construction of G
the binary representations of i, j, k have the same value
for positions � p

2 �, � q
2 �, � r

2 �. But i, j, k are distinct integers
0 ≤ i, j,k ≤ 15, which leads to a contradiction, since there
are no three integers smaller than 16 with the above prop-
erty. Consequently, G is K3,3-free. To complete the exam-
ple, note that G has 24 vertices and more than 44 edges.

Consider k copies of the graph defined above. Say xi
j

is the x j vertex from the i-th copy. Add edges yi
7x(i+1)

0 ,
0 ≤ i < k. The number of vertices is 24k while m = 64k +
k − 1. This resulting graph is K3,3-free bipartite and has all
vertices of degree at least 4. The bound 65k − 1 ≤ 48k − 4
is not satisfied for any k.

Lemma 5. Let G = (X, Y , E) be a biconvex graph which has a
DIM. Then G is K3,3-free.

Proof. Suppose G contains a K3,3 given by X ′ = {x1, x2,

x3} ⊆ X and Y ′ = {y1, y2, y3} ⊆ Y . Consider an arbitrary
DIM of the graph and its corresponding black-white col-
oring of the vertices. Then the vertices of X ′ and Y ′
must have distinct colors. Suppose w.l.o.g. that the ver-
tices X ′ are black and those of Y ′ are white. Let y∗

1, y∗
2,

y∗
3 be the black neighbors of x1, x2, x3, respectively. It

follows that the graph induced by the nine vertices of
X ′ ∪ Y ′ ∪ {y∗

1, y∗
2, y∗

3} is not biconvex, a contradiction. �
Corollary 6. The DIM problem for biconvex graphs can be solved
in O (n) time.

Proof. Let G be a biconvex graph. If G contains a DIM,
by Lemma 5, G is K3,3-free. Therefore G has at most
2n − 4 edges, by Lemma 4. Consequently, given an arbi-
trary biconvex graph, count the number of its edges, up to
2n − 4. If the number of edges exceeds 2n − 4 then the
graph does not contains any DIM, otherwise apply the al-
gorithm [1], which solves the DIM problem in O (n + m)

time, for chordal bipartite graphs. Since convex graphs are
contained in chordal bipartite, we can solve the DIM prob-
lem for biconvex graphs in O (n) time. �

We remark that there are convex graphs having a
quadratic number of edges that admit DIM’s. For instance,
V (G) = V 1 ∪ V 2 ∪ V 3, where |V (G)| = n, |V 1| = |V 2| =
|V 3| = n

3 . Let V i be an independent set for 1 ≤ i ≤ 3, and
let V 1 ∪ V 2 induce a complete bipartite graph, V 1 ∪ V 3 be
an induced matching, and V 2 ∪ V 3 be an independent set.
Such a graph is bipartite, with bipartition (V 1, V 2 ∪ V 3),
moreover it is convex bipartite since it admits an interval
ordering. Also, it contains a quadratic number of edges. On
the other hand, V 1 ∪ V 3 is a DIM of it.

3. Claw-free graphs

The problem of finding a DIM of a claw-free graph, if
existing, has been solved in [7] by an O (n2) time algo-
rithm. We review the ideas of this paper and propose an
improvement of it.

We assume that the given graph G = (V (G), E(G)) is
connected, and has neither an induced cycle nor an in-
duced path. Clearly, if G is disconnected we can reduce
the problem to its connected components, while if G is a
cycle or a path the solution is trivial.

By [7], if a claw-free graph G has a DIM then each ver-
tex v of G is one of the following six types: (1) degree 1;
(2) degree 2 with two non-adjacent neighbors; (3) degree
2 with two adjacent neighbors; (4) degree 3 with G[N(v)]
inducing a K1 + K2, and the two edges connecting v to the
K2 are called heavy, while the third incident edge to v is
called light; (5) degree 3 with a G[N(v)] inducing a P3;
(6) degree 4 with G[N(v)] inducing a 2K2. Thus, we as-
sume that each vertex of G falls into one of the above
types. This implies m ≤ 2n, i.e. m = O (n).

The algorithm [7] can be viewed as a sequence of the
following distinct phases:

1. Handling three consecutive vertices of Type 2.
2. Handling vertices of Type 1 which are at distance at

least 3 of some Type 4 vertex.
3. Coloring all vertices of Types 1, 2, 5 and 6.
4. Coloring the remaining vertices, of Types 3 and 4.

Our proposed algorithm describes new formulations for
Phases 1, 2 and 4, while maintaining the original Phase 3
of the algorithm [7]. We proceed by describing each of the
parts.

3.1. Phase 1

The purpose is to eliminate the occurrence of three
consecutive Type 2 vertices v1, v2, v3, such that N(v2) =
{v1, v3}, N(v1) = {v2, w1} and N(v3) = {v2, w3}. Consider
the following alternatives:

• w1 = w3: In this case if d(w1) = 2 then G = C4, which
contradicts G not to be a cycle. Hence d(w1) ≥ 3, but
then G[N[w1]] contains a claw, a contradiction. Thus
this case does not occur.

• w1 w3 ∈ E(G): If d(w1) = d(w3) = 2 then G = C5 again
a contradiction. Hence we may suppose ∃u ∈ N(w1) \
{v1, w3}. We know that u /∈ N(v1), thus in order to
avoid a claw in G[N[w1]] we must assume u ∈ N(w3).
The latter implies that no more vertices can belong to
the neighborhoods of w1 and w3, otherwise G would
contain vertices outside the above six types, a contra-
diction.
Any DIM of G must have exactly one edge of the tri-
angle {w1, u, w3}. The edge w1 w3 does not lead to a
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valid DIM since it forces v2 to be a single black ver-
tex without black neighbor. It is easy to verify that the
possibilities are either: {w1u, v2 v3} or {w3u, v1 v2}.
Therefore we can eliminate vertices v1, v2, v3 and
sum the weight of edge v1 v2 to that of w3u, and sum
the weight of v2 v3 to that of w1u. To guarantee that
the edge w1 w3 is not chosen to enter the DIM, we
assign infinite weight to it.

• w1 �= w3 and w1 w3 /∈ E(G): In this case we use the
original procedure of [7], which consists of replacing
vertices v1, v2, v3 for the edge w1 w3. However, the
algorithm [7] solves the DIM problem without weights,
thus, in order to guarantee the correct solution for the
new weighted graph, we need to consider the follow-
ing additional possibilities:
– w1, w3 are black: Then v1, v3 are black and v2 is

white. The weights of edges v1 w1 and v3 w3 must
be added to the weight of w1 w3

– w1 is black and w3 is white: In this case, v2 and
v3 are black while v1 is white. Hence the weight
of edge v2 v3 must be added to the weight of each
edge of the set of edges w1z, where z �= v1

– w3 is black and w1 is white: This case is symmetric
to the previous one. The weight of edge v1 v2 must
be added to the weight of each edge of the set w3z,
where z �= v3.

These operations are repeated until no three consecu-
tive vertices of Type 2 remains in the graph, leaving a new
reduced graph G ′ = (V (G ′), E(G ′)). This can be achieved in
O (n) time. The algorithm now proceeds on G ′ .

3.2. Phase 2

In this phase, we eliminate the occurrence of Type 1
vertices, lying at distance at least 3 from some Type 4 ver-
tex. Let v ∈ V (G ′) such that d(v) = 1 and let w ∈ V (G ′)
be the vertex such that d(w) ≥ 3 and the distance to v
is minimum. Note that if there is no such w then G ′ is
a path, a contradiction. Therefore there is a path v − w
where all vertices, except v , w are of Type 2. Since there
are at most two consecutive vertices of Type 2, the dis-
tance between v and w is at most 3. It is easy to see that
w is of Type 4, otherwise G ′ is not claw-free. Let v , u1,
u2, w be any path of length 3 from a vertex v ∈ V (G ′)
to a vertex w ∈ V (G ′), with d(v) = 1 and d(w) = 3. Let
{z1, z2} be the K2 induced by N(w), and G∗ be the graph
after deletion of vertices {v, u1, u2}. It is clear that any
DIM M∗ of G∗ contains exactly one edge of the trian-
gle {w, z1, z2}. In case M∗ contains the edge z1z2, we
add the edge u1u2 to M∗ in order to obtain a DIM of G ,
hence to generate a DIM with the same weight in G∗ we
set ω(z1z2) = ω(z1z2) + ω(u1u2). In case that M∗ con-
tains wz1 or wz2 the edge vu1 is added to M∗ . In the
latter situation, we set ω(wz1) = ω(wz1) + ω(vu1) and
ω(wz2) = ω(wz2) + ω(vu1). We repeat this process for
each vertex v ∈ V (G ′) such that d(v) = 1. Finally, we as-
sert that every vertex of Type 1 is at distance 1 or 2 from
some vertex of Type 4. These computations can be com-
pleted in O (n) time.
3.3. Phase 3

By applying convenient propagation rules, the algo-
rithm [7] colors a subset of vertices of the graph, including
all vertices of Types 1, 2, 5, and 6. Let Γ be the final color-
ing obtained in the algorithm. First, check its validity. If Γ

is not valid, then G has no DIM’s and the algorithm termi-
nates. If Γ is valid and total, also terminate the algorithm,
since the unique DIM of G has been found. Otherwise, pro-
ceed to Phase 4.

All the above operations can be completed in O (n)

time. At the end of this phase, the only possibly uncolored
vertices are of Types 3 and 4. Observe that the obtained
coloring is unique, so there is no choice to be made con-
cerning weights, so far.

3.4. Phase 4

In this phase, we extend the coloring Γ , obtained by
the previous phase, into a total valid coloring. It is as-
sumed that Γ is a valid not total coloring, which cannot
be extended by propagation. Let U be the set of uncolored
vertices and S the set of single black vertices of the col-
oring Γ . Note that extending Γ is equivalent to extending
the coloring Γ ′ of G∗[U ∪ S] (in Γ ′ , only vertices of S are
colored with black color). It can be verified that in any
valid coloring, the following holds: ∀s ∈ S , N[s] induces
in G∗[U ∪ S] a K3 = {u, v, s} where u, v ∈ U . Since ver-
tices of S and Type 3 vertices are simplicial in G∗[U ∪ S],
any central vertex of induced P3 in G∗[U ∪ S] must be an
uncolored Type 4 vertex. Particularly, the vertices of a cy-
cle Ck≥4 are central vertices of induced P3’s. Moreover, an
edge of induced P3 must be heavy and the other one must
be light. It is easy to see that vertices of a light edge must
have different colors. The following lemma is helpful to ex-
tend coloring C ′ .

Lemma 7. Let Γ ′′ any total valid coloring extensible from Γ ′
and P = (v1, . . . , vt) be an induced path of G∗[U ∪ S] such
that v1 , vt are Type 4 vertices, v1 v2 is a light edge and v1 is
a black vertex, then (i) vi vi+1 is a light (heavy) edge if i is odd
(even); (ii) vi is black (white) if i is odd (even).

Proof. Since P is an induced path, v2, . . . , vt−1 are cen-
tral vertices of induced P3’s, they are also Type 4 vertices
and the edges of P are light and heavy alternately. Then (i)
holds because the first edge is white. On the other hand,
vertices of light edges must have different colors, while the
same occurs for heavy edges if one vertex is white. Since
v1 is black and v1 v2 is a light edge, then v2 is white and
v3 is black. Again, we can check that v3 satisfies the same
properties as v1 and v4 will satisfy the same properties
as v2. Therefore there is a unique valid coloring for ver-
tices of P which consists of alternating the colors of the
vertices, where (ii) vi is black if and only if i is odd. �

We proceed by finding a minimum weight DIM on each
connected component Gi of G∗[U ∪ S]:
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3.4.1. Gi is a chordal graph
In this case, for each single black vertex s in Gi , its

neighbors u and v form an edge and we set ω(uv) = ∞.
In this way any non infinity weight DIM of Gi will not con-
tain this edge and s will be a black vertex as in C ′ . Apply
the algorithm described in the previous section that com-
putes DIMΩ(Gi), if existing.

3.4.2. Gi has an induced cycle Ck, k ≥ 4
As it was mentioned before, Ck is formed by light and

heavy edges, where each light edge is adjacent to heavy
edges and viceversa.

Lemma 8. (See [7].) Let G∗ be the resulting claw-free graph and
Γ the partial valid coloring obtained after Phase 3. If the sub-
graph of G∗ induced by uncolored vertices contains an induced
cycle Ck≥4 , then k is even. Moreover, if G∗ admits a black-white
partition, then the vertices of Ck are colored alternately black
and white along the cycle, and furthermore, by switching the
colors of vertices of Ck we again obtain a valid black-white par-
tition of G∗ .

Lemma 9. Gi admits exactly two DIM’s or none.

Proof. We extend the initial coloring choosing any alter-
nate coloring for Ck and applying propagation rules. Let
Γi be this result coloring. We will prove that Γi is invalid
or is a total valid coloring. Clearly, if Γi is invalid then Gi
has no DIM’s by Lemma 8. If Γi is a total valid coloring,
then switching the colors of vertices of Ck , we obtained
another total valid coloring of Gi and they are the unique
total valid colorings. Suppose that Γi is valid but there is
some uncolored vertex u in Gi . Let P = (v0, . . . , vt = u) be
the shortest path from a vertex v0 in Ck , w.o.l.g. we can
assume that v0, . . . , vt−1 are colored vertices. Clearly, P is
an induced path. On the other hand, v0 v1 is a heavy edge
because v1 must be adjacent to two consecutive vertices
of Ck by the claw-freeness. Hence, v1 must be a black ver-
tex and t ≥ 2. Then v1, vt−1 are central vertices of induced
P3’s which implies that v1, vt−1 are Type 4 vertices and
v1 v2 is a light edge. Clearly, vt = u must be Type 3 vertex
because otherwise it must be colored applying Lemma 7.
Hence, vt−1 vt is a heavy edge and vt−2 vt−1 is a light edge
which means that t is odd and vt−1 is white vertex. There-
fore, vt must be a black vertex which is a contradiction.
Consequently, Ci is a total valid coloring. �

Using these two lemmas, we can determine in linear
time all DIM’s of Gi and return one of minimum weight (if
existing).

As for the complexity of the last phase of the algo-
rithm, observe that a cycle of length ≥ 4 of a non chordal
graph can be obtained in linear time in the order of G ,
that is, O (n) time. All the remaining steps can be com-
pleted in O (n) time. It should be noted that the corre-
sponding phase of the algorithm [7] requires O (n2) time.
The main difference is that in the presently proposed al-
gorithm, it is sufficient to find just one induced cycle of
length ≥ 4, and propagate the coloring to its connected
component, whereas the algorithm [7] requires the com-
putation of O (n) such cycles, in subgraphs not necessarily
disjoint. Since each of them needs O (n) time, the overall
complexity of the latter algorithm is O (n2).

Our proposed formulation computes DIMΩ(G) in O (n)

time. Observe that through the algorithm the input graph
is modified, however the changes do not alter the value of
the DIMΩ(G) solution. As for the actual minimizing DIM,
itself, there is no difficulty retrieving it in O (n) time, by
backwards computation.

Applying similar techniques of the above algorithm, the
number of DIM’s of the graph G can be obtained in O (n)

time.
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