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A SECOND ORDER SLIDING MODE PATH FOLLOWING CONTROL

FOR AUTONOMOUS SURFACE VESSELS

F. Valenciaga

ABSTRACT

This paper presents a path following control design for an autonomous
surface vessel. The considered boat presents three degreesof freedom being
driven by two independent propellers placed at its stern andis represented by
a highly nonlinear underactuated dynamic model. The control objective is to
reach and closely follow a pre-specified trajectory, operating in an environment
perturbed by currents and waves. This objective is achievedthrough a control
scheme based on the interaction of guidance laws synthesized by Lyapunov
techniques and a high order sliding mode control approach based on the
Super Twisting Algorithm. This methodology allows designing robust and
simple controllers avoiding chattering effects on slidingsurfaces, producing
continuous control actions and presenting a reduced computational burden. The
control performance is analyzed through representative simulations.
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I. Introduction

Nowadays there exist different kinds of devices
capable of studying the coastal marine environment
characterized by strong and complex links between
species and the chemical and physical processes taking
place into it. Among all the possible platforms,
Autonomous Surface Vessels (ASV) present many
advantages respect to other alternatives. Some of them
are: simpler and cheaper energy supply, versatility
respect to propulsion alternatives, the possibility of
more straightforward data communications, larger
autonomy, lower construction costs, higher transit
speeds, etc. Its main drawback is that they are limited
to make near-surface observations.

Considered as single planar rigid bodies ASVs
possess three degrees of freedom constituting an
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underactuated mechanical systems described by com-
plex dynamical models [1][2]. Set-point[3], trajectory
tracking [4], and path following [5] control research for
autonomous underactuated vessels have received great
attention during the last two decades. The main control
proposals have traditionally been based on feedback
linearization and backstepping methods, however other
approaches using passivity, direct Lyapunov, sliding
mode and model predictive techniques have also been
reported in the specialized literature. A complete review
about the advances in this field can be found in the
article by Ashrafiuon et al. [2].

This work presents the path following control
design for an ASV actuated through two independent
propellers. The control objective is to track a predefined
geometric path in an environment characterized by
the existence of currents and waves. Besides these
environmental features, the control design must also
overcome the inherent system complexity whose
dynamic behavior can be described through a multi-
input nonlinear and underactuated model with uncertain
parameters. The success of the proposed control
is mainly based on the generation of adequate
references that ensure the convergence towards the
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desired trajectory. This task is carried-out by a
set of guidance laws designed through a standard
Lyapunov methodology that, in case of necessity, also
allows prioritizing the geometric tracking task fading
the trajectory temporal requirements. The control
design is approached using second order sliding
mode (SOSM) techniques based on theSuper-Twisting
algorithm (STwA) which results very appropriate to
produce simple controllers with some features specially
attractive in the present case. Some of them are the
inherent robustness of the resultant controllers, the
chattering free sliding mode behavior, the continuous
control signals synthesized by the controllers, the
finite and bounded reaching time, their reduced
computational cost, etc. [6] [7] [8][9] [10].

II. System Model

Usually, autonomous water vehicles are mathemat-
ically described using two reference frames, one fixed
to the earth (NED or N-frame) and the other attached
to the vessel’s centre of buoyancy (B-frame). Thus, in
the three dimensional ocean space, the vessel motion
can be expressed through a set of six kinetic equations
and six kinematic equations relating the vessels position
and attitude coordinates and their time derivatives.
These kinetic and kinematic equations are respectively
referred to the N-frame and the B-frame.

Considering the specific configuration of the ASV
described and the mentioned operational constraint, the
general dynamic representation of water vessels [11]
can be simplified and reduced to a sixth-order model.
Thus, the ASV’s motion can be appropriately described
by [1]:

ẋ = vx cos(ϕ)− vy sin(ϕ) + ϑx

ẏ = vx sin(ϕ) + vy cos(ϕ) + ϑy

ϕ̇ = ω
v̇x = (my vy ω − dx vαx

x + u1 + ξx) /mx

v̇y = (−mx vx ω − dy sign(vy) |vy|
αy + ξy) /my

ω̇ = (md vx vy − dω sign(ω) |ω|αω + u2 + ξω) /Iω
(1)

wherex, y andϕ are the position/attitude coordinates in
the NED frame andvx, vy andω are the vessel velocities
in the B-frame. On the other hand the parametersmx,
my andmd = my −mx > 0 are elements of the called
mass matrix whiledx, dy andIω correspond to elements
of the damping matrix. It is important to note that
this model only considers forward vessel motion (vx >
0). Reverse motion can be quite different because it
involves another set of parameters [1].

It should be stressed that the ASV nonlinear
dynamic model (1) can be classified as underactuated,
presenting only two control variables denoted asu1

andu2. These control inputs correspond to the global
propeller force and the torque, which are related to
the individual propeller’s forcesf1 and f2 through
the expressionsu1 = f1 + f2 andu2 = (f2 − f1)B/2,
where B is the distance between the propeller’s axes.
On the other hand, the considered dynamic model also
includes the action of perturbations through different
variables that represent marine currents (ϑx andϑy) and
forces produced by waves (ξx, ξy andξω).

III. Control Design

The proposed control objective for this particular
ASV is to closely track a predefined geometric path
on the water surface, considering an environment
characterized by the existence of currents and waves.
Besides the perturbations action, the control design
must also overcome the system complexity whose
dynamic behavior is described through the multi-
input nonlinear and underactuated model with uncertain
parameters (1).

To successfully reach the proposed objective,
the control design is faced-out using SOSM and in
particular the STwA. This technique has proved to be
specially appropriate to cope with nonlinear systems,
presenting robust features with respect to system
parameter uncertainties and external disturbances
[6][12]. On the other hand, this approach allows to
mitigate the chattering effect inherent to traditional
sliding mode implementations and produce ideally
continuous control signals, reducing the mechanical
stress on the propellers and therefore on the whole
system [7]. The use of the STwA is particularly
attractive because its design only needs the nominal
system model information and a general knowledge of
uncertainties and perturbations acting on it. Besides,
the controllers obtained present a reduced on-line
computation only based on the sliding variable
measurement.

The references used by the sliding controllers are
produced by a set of guidance laws designed through
the standard Lyapunov methodology. These guidance
references are essential to ensure the vessel convergence
to the desired path. The mentioned laws are designed
to be, in case of necessity, capable to prioritize the
geometric tracking task fading the trajectory temporal
requirements [13].
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3.1. References Generation. A Lyapunov Approach

Lets consider two hypothetical particles on the sur-
face water plane,pd andpp(̟), respectively character-
ized in position and speed with respect to the N-frame
by the vectorspd = [xd, yd]

T , pp = [xp(̟), yp(̟)]
T ,

ṗd = [ẋd, ẏd]
T andṗp = [ẋp(̟), ẏp(̟)]

T . Considering
that pp(̟) belongs to a parameterized geometric
locus representing the desired path, the objective is to
determine the speed (Ud = ‖ṗd‖) and direction (χd =
atan(ẏ/ẋ)) that pd must follow to reach and track the
pp(̟) movements. It must be highlighted that the use
of a time dependant parametrization in the desired path
expression allows postponing strict time constraints
prioritizing, if it were necessary, the geometric tracking
task.

Fig. 1. Guidance scheme

To determine the speed and orientation references
for pd, it is necessary to define its positional error with
respect to the instantaneous path particle position. With
this purpose, it is useful to define a new reference frame
(P-frame), attached topp(̟) and oriented along the
geometric derivative of the desired path inpp(̟), i.e.
according to the angle (see Fig.1) [13]:

χp = atan

(
dyp(̟)

d̟
d̟
dt

dxp(̟)
d̟

d̟
dt

)

= atan

(
y′p(̟)

x′
p(̟)

)

(2)

Considering this definition it is straightforward to
determine the transformation matrix from the P-frame
to the N-frame. That is:

Rp =

[
cos(χp) −sin(χp)
sin(χp) cos(χp)

]

(3)

This rotation matrix maintains the vector magnitudes
and therefore it fulfilsR−1

p = RT
p .

In the P-frame, the position error ofpd is composed
by the along-track error,s, and the cross-track error,e.

They can be mathematically expressed as:

ε = [s, e]
T
= RT

p

(
pd − pp(̟)

)
(4)

Then, defining a typical positive definite Lyapunov
function in terms of the errorε as:

Vε =
1

2
ε εT (5)

its time derivative can be written as:

V̇ε = εT ε̇ = εT (Ṙ
T

p (pd − pp) + RT
p (ṗd − ṗp)) (6)

Next, considering thaṫRp can be expressed as:

Ṙp =

[
−χ̇p sin(χp) −χ̇p cos(χp)
χ̇p cos(χp) −χ̇p sin(χp)

]

=

=

[
cos(χp) −sin(χp)
sin(χp) cos(χp)

]

︸ ︷︷ ︸

Rp

[
0 −χ̇p

χ̇p 0

]

︸ ︷︷ ︸

Sp

(7)

equation (6) can be rewritten as:

V̇ε = s(Ud cos(χd − χp)− Up) + eUd sin(χd − χp)
(8)

where the particles velocities have been replaced
according to:

ṗp = Rp vp = Rp

[
Up

0

]

(9)

ṗd = Rd vd = Rd

[
Ud

0

]

(10)

It should be noted that the presence of the rotation
matrix Rd in (10), implies the use of another reference
frame attached topd and aligned with the desired speed
vector, i.e involving the angleχd (see Fig.1). This
matrix allows transforming this vector to the common
N-frame.

Watching expression (8), a possible choice for the
path particle speed could be:

Up = Ud cos(χd − χp) + γs (11)

being γ > 0 an arbitrary constant associated to the
convergence speed ofs. On the other hand, from Fig.1
it is straightforward to see that:

χr = χd − χp = −atan

(
e

∆s − s

)

(12)

where ∆s is usually called lookahead distance. The
expression proposed for this time-varying variable is:

∆s = ηe−‖ε‖2/K (13)

c© 2012 John Wiley and Sons Asia Pte Ltd and Chinese Automatic Control Society
Prepared using asjcauth.cls



4 Asian Journal of Control, Vol. 00, No. 0, pp. 1–8, Month 2012

being η and K arbitrary positive constants used to
synthesize the shape of∆s. It should be stressed that
for large errors this lookahead distance vanishes, while
for small position errors it tends toη, which is coherent
with a general navigation criterion. Then, considering
that

sin(χr) =
−e

√

e2 + (∆s − s)2
(14)

expression (8) can be rewritten as:

V̇ε = −γ s2 − Ud
e2

√

e2 + (∆s − s)2
(15)

Therefore, choosingUd as:

Ud = µ
√

e2 + (∆s − s)2 (16)

with µ > 0, conduce to obtain a negative definite
expression for the first time derivative of the Lyapunov
function:

V̇ε = −γ s2 − µ e2 < 0 (17)

which means that governing the movements of the
particles pd and pp(̟) according to (11), (12) and
(16) determines the uniform global and exponential
convergence of the positional errorε to zero.

At this point it should be noted thatpp was
considered parameterized by the variable̟. Thus, from
(11) it is straightforward to write:

‖vp‖2 = Up = ‖RT
p ṗp‖2 =

√

x′2
p + y′2p ˙̟ (18)

from where the equation to dynamically refresh this
parameter can be written as:

˙̟ =
Up

√

x′2
p + y′2p

=
Ud cos(χr) + γs
√

x′2
p + y′2p

(19)

Finally, according to Fig.1 it is straightforward to
determine that the wanted guidance laws can be
expressed by:

v∗x = µ
√

e2 + (∆s − s)2 cos(ϕ− χd) (20)

ϕ∗ = χd = χp + χr (21)

3.2. SOSM-STwA Control Design

The control objective considered in this work is
to reach and closely follow a pre-specified trajectory
in an environment perturbed by currents and waves.
Taking into account that the system presents only two
control actions, a pair of sliding variables representing

the control objectives,s1 ands2 must be defined. Then,
having in mind the necessary relative degree condition
for the sliding vectorS = [s1 s2]

T , the following
surfaces are proposed:

s1(x, t) = vx − v∗x(t) (22)

s2(x, t) = ϕ− ϕ∗(t) + ρ(ϕ̇− ϕ̇∗(t)) (23)

whereρ > 0 andv∗x, ϕ∗ are the references determined
by the guidance laws and presented in the previous
subsection. It should be noted that the second sliding
variable is in fact a Hurwitz dynamic surface involving
a time derivative term added to fulfill the necessary
vectorial relative degree condition (VRD=[1, 1]).

From (22) and (23) and rewriting the dynamic
system model (1) under the structure:

ẋ = F(x) + ∆F(x, t) + ξ(t)
︸ ︷︷ ︸

F̃

+G u (24)

where x ∈ ℜn is the states vector andu ∈ ℜm is
the control vector,F represents the nominal drift
vector,∆F(x, t) is an explicitly time dependant drift
vector originated in unknown slow temporal parameter
variations,ξ(t) represents the influence of bounded
and continuous external perturbations and finally,G =
[g1 g2] is the system control matrix, it is straightforward
to obtain the expression ofṠ as:

Ṡ =

[
LF̃s1 +

∂s1
∂t

LF̃s2 +
∂s2
∂t

]

+

[
Lg

1
s1 0

0 Lg
2
s2

]

u (25)

where:

LF̃s1 +
∂s1
∂t

=
myvyω − dxv

αx
x + ξx

mx
− v̇∗x

LF̃s2 +
∂s2
∂t

= ω − ϕ̇∗ +

+ρ

(
mdvxvy − dω |ω|

αω sign(ω) + ξω
Iω

− ϕ̈∗

)

Lg
1
s1 = 1/mx Lg

2
s2 = −ρ/Iω

In these last expressions the time derivatives of the slow
time varying model parameters have been considered
null. On the other hand, it is important to note that the
proposed sliding variables produce in (25) a diagonal
control matrix. This feature simplifies the control
design task because there is an unique possible control
assignment implicitly imposed by the system structure
[14], being the forceu1 and the torqueu2 the only
control actions to respectively drive the system towards
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s1 = 0 and s2 = 0. Thus, the control design task can
be tackled considering two uncoupled SOSM SISO
controllers . With this purpose, from (25), the second
time derivative expression of̈S can be written as:

S̈ =

[

L2
F̃
s1 +

∂LF̃s1
∂t

L2
F̃
s2 +

∂LF̃s2
∂t

]

+

+

[
Lg

1
LF̃s1 Lg

2
LF̃s1

Lg
1
LF̃s2 Lg

2
LF̃s2

] [
u1

u2

]

+

+

[
Lg

1
s1 0

0 Lg
2
s2

] [
u̇1

u̇2

]

(26)

where gk is the k column of the matrixG. Given
that all the expressions involved in (26) correspond
to continuous bounded functions, considering the
operational limits of the system and the general features
of the disturbances influencing on it, there can be found
two sets of constantsK si , Ksi , Csi , UMi

andqsi with
i = 1, 2 that fulfill the inequalities:

0 < qsi < 1 (27)

0 < K si < Lgisi < Ksi (28)

∣
∣
∣
∣
L2

F̃
si +

∂LF̃si

∂t

∣
∣
∣
∣
+

2∑

k=1

∣
∣LgkLF̃si

∣
∣UMk

≤ Csi (29)

∣
∣
∣
∣
∣

LF̃si +
∂si
∂t

Lgisi

∣
∣
∣
∣
∣
< qsiUMi

(30)

Taking into account (27)-(30), it is straightforward to
find that each second time derivatives̈i of (26) belongs
to the differential inclusion:

s̈i ∈ [−Csi , Csi ] +
[
K si , Ksi

]
νi (31)

whereνi is the corresponding control time derivative.
This differential inclusion contains all the possible
system dynamics for any perturbations and parameter
variation (inside the considered limits) acting on the
system in its whole operational range. Then, according
to the STwA, if the parametersαsi andγsi are chosen
conserving the inequalities:

K siαsi > Csi (32)

γsi >

√

2

K si
αsi − Csi

Ksi(K si
αsi − Csi)(1− qsi)

K2
si
(1 + qsi)

(33)

the SOSM-STwA controllers:

ui = −γsi |si|
1/2sign(si) + νi (34)

ν̇i =

{
−ui |ui| > UMi

−αsisign(si) |ui| ≤ UMi

provide for the finite time system convergence of
any uncertain and perturbed system in (31) to the
manifoldsi = ṡi = 0 i = 1, 2, being the reaching time
a locally bounded function of the initial conditions
[8]. This means that the resultant controllers are robust
against the set of perturbations and parameter variations
preserving (31). Once the system is in sliding mode, the
motion is characterized by chattering absence.

In order to choose the controller parametersαi,
γi and UMi for i = 1, 2, it is necessary to explicitly
obtain the analytic expressions involved in (26). Next,
after long but straightforward algebraic manipulations
bounds (27)-(30) are obtained regarding the operational
limits and the maximum levels of perturbations and
unmodeled dynamics acting on the system. After
carrying-out this first analytic procedure, the parameters
of the controller for each sliding surface can be
selected according to expressions (32)-(33) to obtain
a good reaching performance. This last tuning phase
is commonly realized complementing analytic and
simulation tools [15][16].

IV. Simulation Results

Exhaustive simulations were carried out to assess
the performance of the proposed control. To develop
these simulations, the vessel parameters and their
uncertainty ranges were taken from [1]:

mx = 1.956± 0.019Kg my = 2.405± 0.117Kg
Iω = 0.403± 0.0068Kg.m dx = 2.436± 0.023

dy = 12.992± 0.297 dω = 0.0564± 0.00085
αx = 1.510± 0.0075 αy = 1.747± 0.013
αω = 1.592± 0.0285 B = 0.07m

H = 0.15m D = 0.20m

The simulation tests were performed using as desired
trajectory a closed elipsoidal path starting clockwise
from the point [1, 4.5, π/2]. The vessel was initially
considered at rest being its initial position[x0, y0, ϕ0] =
[0, 0, π/4]. Disturbances due to marine currents and
waves have been included in the simulation tests. In
particular the former was considered acting with a speed
of about the10% of the maximum vessel speed and
a direction determined by an angle ofδc = π/4. The
action of waves was characterized by the time profile

c© 2012 John Wiley and Sons Asia Pte Ltd and Chinese Automatic Control Society
Prepared using asjcauth.cls



6 Asian Journal of Control, Vol. 00, No. 0, pp. 1–8, Month 2012

depicted in Fig.2 with a propagation angle of0 rad.
This force is represented in a percentage scale using
the maximum force produced by the boat propellers
as reference. Its effect on the fourth, fifth and sixth
components of (1) depends on the vessel orientation,
reaching in the worst case the15% level. On the other
hand, model inaccuracies have been considered using
a set of parameters randomly chosen within the ranges
previously defined.
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Fig. 2. Waves train profile

Taking into account these specifications and the
ASV operational range, the following controllers
parameters were selected according to the process
described in the previous section:αs1 = 11.5; γs1 = 4;
UMs1

= 3; αs2 = 18; γs2 = 7.5; UMs2
= 6 andρ = 1.

To analyze the controller performance Fig.3
presents in thex− y plane the desired path and the
vessel trajectory and Fig.4 the time profiles of errors.
To complement theses images, Fig.5 depicts the time
evolution of the variablesUd, Up and ̟, and Fig.6
shows the sliding variables behavior.
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Fig. 3. Vessel trajectory and desired trajectory

As it can be appreciated in Fig.3, the vessel initially
describes a free approaching path, looking for the
starting trajectory point (A). The shape of this initial
reaching path depends on the parametersρ, µ and γ
established in the design stage. Given that the fictitious

0 20 40 60 80 100 120 140 160 180

−4

−2

0

2

 e
rr

or
es

 [m
/s

]

 time [s]

 

 

error s
error e

Fig. 4. Positional errorss ande
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Fig. 5. Guidance variables a)Ud b) Up c) ̟

particle pp starts moving when the vessel is in the
neighborhood of point A (approximately att = 2.5sec.
when the errors decreases enough to produce anUp >
0 and therefore̟ > 0 (see Fig.5)) the initial path
reaches the desired trajectory beyond that point. After
this approximation phase the designed control is able to
follow the specified path even in the presence of waves
and currents. The magnitude of the position errors
observed in Fig.3 are determined by the small scale
of the desired trajectory chosen respect to the vessel
dimensions. Larger trajectories present similar absolute
position errors but not significant relative errors.

Respect to the navigation variables, it should be
noted in Fig.5 thatUd initially appears upper saturated
to prevent a reference greater than the maximum vessel
speed. On the other handUp and therefore̟ are zero
lower saturated to avoid inversions in the trajectory
direction. It is also interesting to observe that after
the first20sec. Up andUd present oscillatory profiles.
This is produced by the chosen trajectory shape. On
regions where the desired path presents a high curvature
the propellers must be mainly used to change the
vessel direction and not to generate a forward force and
viceversa.

The control performance can be analyzed through
the sliding variables behavior. As it can be seen
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0 20 40 60 80 100 120 140 160 180
0

0.1

0.2

0.3

0.4

(a)

 v
x [

m
/s

]

0 20 40 60 80 100 120 140 160 180
−0.1

−0.05

0

0.05

0.1

(b)

 v
 y

 [
m

/s
]

0 20 40 60 80 100 120 140 160 180
−0.4

−0.2

0

0.2

0.4

(c)
 time [s]

ω
 [

 1
/s

]

Fig. 7. System states a)vx andvy ; b) ω

0 20 40 60 80 100 120 140 160 180
−1

0

1

2

3

(a)

u  1
   

[N
]

0 20 40 60 80 100 120 140 160 180
−0.1

−0.05

0

0.05

0.1

(b)
 time [s]

u  2
   

[N
m

]

Fig. 8. Control components

in Fig.6, after convergence the control successfully
deals with the complex nature of the reaching and
tracking task (even in the presence of disturbances
and model inaccuracies), taking the system to operate
on the designed sliding surfaces. To complete the
analysis, Figs.7 and 8 present the time profiles of the
system states and the control variables respectively.

In particular, it is important to stress the smoothness
of the control variablesu1 andu2, determined by the
use of SOSM control techniques. This chattering-free
characteristic is specially attractive because it reduces
the mechanical stress on the propellers extending their
operative life .

Finally, the phase portraits corresponding to
the system reaching phase to the sliding surfaces
are separately depicted in Fig.9. These plots show
the typical form that systems controlled by STwA
algorithms draw during convergence.
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Fig. 9. Surfaces reaching phase portraits a)ṡ1 − s1; b) ṡ2 − s2

V. Conclusions

This paper presents a successful path following
control design applied to an ASV described by an
uncertain nonlinear dynamic model and consider-
ing an environment characterized by the presence
of continuous bounded perturbations (currents and
waves). The control scheme is approached through
a MIMO HOSM controller whose sliding surfaces
are designed to fulfil the proposed control objective
and simultaneously obtain the necessary vectorial
relative degree. The references used by these sliding
surfaces are generated on-line by a set of guidance
laws synthesized through Lyapunov techniques. This
technique permits to incorporate a geometric locus
continuously parameterized by a time dependant scalar
variable, which facilitates to relax the path following
time requirements prioritizing, if it were necessary, the
geometric tracking task. This control scheme allows
closely following the desired path ensuring the uniform,
global and exponential convergence toward it. The
controlled closed-loop system shows a very good
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performance with additional attractive features like a
chattering-free behavior, a finite reaching time phase
and excellent robustness properties against external
disturbances and unmodeled dynamics (parameters
uncertainty). Besides, the smoothness of the control
variables determined by the use of SOSM-STwA this
approach is specially attractive because it reduces
the mechanical stress on the propellers, extending
their utility life. The implementation of the proposed
controller does not require more computational cost
than the necessary to implement a control scheme based
on traditional PIDs. The presented results are easily
extensible to other water vehicle topologies used for
path following applications.
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