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Abstract

Protein sequences evolve under selection pressures imposed by functional and biophysical requirements, resulting in
site-dependent rates of amino acid substitution. Relative solvent accessibility (RSA) and local packing density (LPD) have
emerged as the best candidates to quantify structural constraint. Recent research assumes that RSA is the main deter-
minant of sequence divergence. However, it is not yet clear which is the best predictor of substitution rates. To address this
issue, we compared RSA and LPD with site-specific rates of evolution for a diverse data set of enzymes. In contrast with
recent studies, we found that LPD measures correlate better than RSA with evolutionary rate. Moreover, the independent
contribution of RSA is minor. Taking into account that LPD is related to backbone flexibility, we put forward the possibility
that the rate of evolution of a site is determined by the ease with which the backbone deforms to accommodate mutations.

Key words: protein evolution, site-specific evolutionary rate, protein structure, local packing density, contact number,
weighted contact number, relative solvent accessibility.

Protein evolutionary divergence is subject to functional and
biophysical constraints (Pal et al. 2006; Thorne 2007; Worth
et al. 2009; Wilke and Drummond 2010; Grahnen et al. 2011;
Liberles et al. 2012). Such constraints result in emergent
patterns of sequence variability: different sites evolve at
different rates. In most current research, relative solvent
accessibility (RSA) is considered to be the main determinant
of site-specific evolutionary rates (Bustamante et al. 2000;
Dean et al. 2002; Franzosa and Xia 2009; Ramsey et al.
2011). However, local packing density (LPD), measured
using either the contact number (CN) (Liao et al. 2005;
Franzosa and Xia 2009) or the weighted contact number
(WCN) (Shih et al. 2012), has also been found to correlate
significantly with sequence variability. Of the cited studies,
only one compared CN and RSA, finding similar correlations
with evolutionary rates, with RSA performing better, and CN
having a significant but minor independent contribution
(Franzosa and Xia 2009). Untangling the relative contribu-
tions of LPD and RSA is important because, being conceptu-
ally different, they lead to different pictures of how structure
constrains evolutionary sequence divergence. Despite recent
advances, further research is needed to settle this issue.
Here, we compare the ability of RSA and LPD, measured by
CN or WCN, to account for site-specific rates of evolution.

We compiled a data set of 216 monomeric enzymes
randomly picked from the Catalytic Site Atlas 2.2.11 (Porter
et al. 2004). Protein size varies widely within the data set, and

it includes representatives of all six main EC functional classes
(Webb 1992) and domains of all main SCOP structural classes
(Murzin et al. 1995). A list of the proteins and their properties
is included in supplementary table S1, Supplementary
Material online.

For each protein of the data set, we calculated three
structural profiles: WCN, CN, and RSA. The WCN profile
WCN ¼ ðWCN1,WCN2 . . . WCNNÞ is a local packing density

profile with WCNi ¼
PN

j6¼i
1
.

r2
ij , where rij is the distance

between the C� of residues i and j, and N is the protein
length (Lin et al. 2008). The CN profile CN ¼ ðCN1,
CN2 . . . CNNÞ is a local packing density profile with CNi

defined as the number C� within a spherical neighborhood
of radius r0. Here, we used r0 ¼ 13 Å as in Franzosa and Xia
(2009). The RSA profile is RSA ¼ ðRSA1,RSA2 . . . RSANÞ,
where the RSA of each residue was obtained by dividing
its area accessible to the solvent (ASA), calculated using
DSSP (Kabsch and Sander 1983), by the maximum ASA for
the given amino acid type (Miller et al. 1987).

To quantify evolutionary constraints at sequence level, we
calculated the site-dependent sequence variability profile
CS ¼ ðCS1,CS2 . . . CSNÞ, where CSi is the rate of evolution
of site i relative to the mean and N is the number of sites.
These rates were calculated as follows. First, we obtained a set
of up to 300 homologous sequences from the Clean_Uniprot
database following the ConSurf protocol (Goldenberg et al.
2009; Ashkenazy et al. 2010). Second, we obtained the
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multiple sequence alignment (MSA) using MUSCLE (Edgar
2004). Finally, given the MSA, we calculated the site-specific
rates using Rate4Site, which builds the phylogenetic tree using
the neighbor-joining algorithm and estimates the rates using
an empirical Bayesian method and the JTT model of sequence
evolution (Pupko et al. 2002; Mayrose et al. 2004).

We compared the sequence and structural profiles for
each protein of the data set. For the sake of such comparison,
profiles were turned into z-scores calculating their difference
from the mean and dividing by their standard deviation (SD).
For LPD measures, the sign of the z-score was changed so that
higher scores correspond to higher expected evolutionary
rates and expected correlations are positive. To reduce
noise, before normalization profiles were smoothed using a
sliding window of size 3 as recommended in Pei and Grishin
(2001). We quantified the similarity between profiles using
Pearson’s correlation coefficient �, which measures the
degree of linear association.

In figure 1, we show the profiles for the threonine synthase
of Saccharomyces cerevisiae (Baker’s yeast), pdb code 1kl7,
a protein that we will use throughout this letter as an illus-
trative example. The qualitative similarity between all
structural profiles and the sequence profile for this protein
is clear. Quantitatively, for this case, we find � CS,WCNð Þ ¼

0:77, � CS,CNð Þ ¼ 0:71, � CS,RSAð Þ ¼ 0:62, which are all sig-
nificant (P<< 10�2). For this protein, then, LPD profiles
(WCN and CN) are more similar to CS than the RSA profile.
To see whether this is the case in general, we calculated these
three correlations for each protein of the data set. For 213/216
proteins, the three correlations are significant (P< 0.01),
whereas for 3/216 none of the three correlations are

significantly different from 0. We removed these three pro-
teins for the rest of the analysis. Results are shown in figure 2
where we compare LPD–CS correlations (y axis) with RSA–
CS correlations (x axis) for all proteins of the data set.
Counting the number of cases above and below the y = x
diagonal, we find that � CS,WCNð Þ > �ðCS,RSAÞ for 173/
213 = 81% of cases and � CS,CNð Þ > �ðCS,RSAÞ for 154/
213 = 72% of cases. A binomial test shows that these
values are significantly larger than 50% (P<< 10�2).
Moreover, the mean sequence–structure correlations
(±1 SD) are h� CS,WCNð Þi ¼ 0:62� 0:01, h� CS,CNð Þi ¼

0:59� 0:01, and h� CS,RSAð Þi ¼ 0:56� 0:01. Therefore,
both the number of cases and the mean values support
that both LPD measures, especially WCN, correlate better
than RSA with evolutionary rates.

For the example protein of figure 1, LPD and RSA profiles
are clearly similar to each other, which is also the case for all
proteins of the data set. This raises the issue of whether LPD
and RSA provide overlapping or complementary contribu-
tions to evolutionary rate variation among sites. To address
this question, we used semipartial correlations to partition
the overall variance into overlapping and unique contribu-
tions. Given a dependent variable y and two independent
variables u and v, the semipartial correlation � y,u j vð Þ ¼

� y,uð Þ � �ðu,vÞ�ðy,vÞ
. ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� �2ðu,vÞ
p

is the correlation

between y and u from which v has been partialed out.
If one performs a linear fit y~u + v, the squared total corre-
lation coefficient 0 � R2 � 1 represents the proportion of
the variance of y accounted for by the linear model: R2 is
the explained variance of y. Using semipartial correlations,
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FIG. 1. Comparison of the site-dependent sequence-variability profile (CS) and structural profiles (WCN, CN, RSA) for the threonine synthase of
Saccharomyces cerevisiae, pdb code 1kl7. Profiles have been normalized by turning them into z-scores. For WCN and CN, the sign of z-scores was
reversed so that the expected correlation with rates of evolution is positive.
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such explained variance can be partitioned as the sum
of three contributions R2 ¼ �2 y,u or vð Þ+ �2 y,u j vð Þ+
�2 y,v j uð Þ. The first term accounts for the redundancy
between the independent variables: it represents the
information that the two variables have in common. The
last two terms represent the unique contributions of u and
v, respectively, to the explained variance of y. For a more
detailed explanation variance partitioning, see Cohen (2003)
and Warner (2013).

For the example protein 1kl7 (fig. 1), a variance partitioning
analysis of CS~WCN + RSA shields R2 ¼ 0:59 ¼ 0:38 +
0:21 + 0:00 for the common, unique WCN, and unique
RSA contributions, respectively. Thus, the variance of CS
explained by WCN and RSA is 59% of its total variance.
Dividing the previous equation by R2 and multiplying by
100, we can partition the explained variance as 100% ¼
65% + 35% + 0%, meaning that 65% of the explained var-
iance is accounted commonly by WCN or RSA and 35%
uniquely by WCN, but RSA shows no unique contribution
(0%). A similar analysis of CS~CN + RSA shows that the

explained variance is 51% of the total CS variance
(R2 ¼ 0:51Þ and such explained variance (100%) is parti-
tioned into common, unique CN, and unique RSA contribu-
tions of 75%, 25%, and 0%, respectively. Therefore, for this
particular case, RSA does not contribute to the variance of
CS once either LPD measure, WCN or CN, are controlled for.
To see whether this is the case in general, we repeated this
analysis for each protein of the data set. The variance partition
analysis is summarized in table 1. As a result of the large LPD-
RSA correlations, the redundancy term is the largest. For
the CS~WCN + RSA case, WCN accounts uniquely for 19%
of the explained variance while RSA’s unique contribution
is 5%. For the CS~CN + RSA case, the unique contribution
of CN is 13% and that of RSA is 5%. Therefore, both LPD
measures have larger unique contributions to the explained
variance than RSA.

To complete this study, we compare univariate and bivar-
iate models. For this purpose, we note that the squared
semipartial correlation �2 y,v j uð Þ represents the increase in
squared correlation R2 resulting from adding variable v to the
linear model y~u to obtain the model y~u + v (Warner 2013).
The semipartial correlation’s P value can be used to decide
whether to include v or not. The univariate model should be
discarded in favor of the bivariate model only if such P value is
below a given cut-off significance level, which here we choose
to be 0.01.

For example, for 1kl7, � CS,RSA jWCNð Þ ¼ �0:03 and
� CS,RSA j CNð Þ ¼ �0:01 with P values of 0.46 and 0.91,
respectively. As both P values are above 0.01, for this case
adding RSA will not significantly improve either of the uni-
variate models CS~WCN or CS~CN. Repeating this analysis
for all proteins of the data set, for the CS~WCN + RSA case
we find that the best model is CS~WCN for 146/213 proteins,
the bivariate model for 33/213 cases, and CS~RSA for 34/213
cases. For the CS~CN + RSA case, the best model is CS~CN
in 131/213 cases, the bivariate model in 33/213 cases, and
CS~RSA in 49/213 cases. Therefore, not only the average
unique contributions of both LPD measures are larger than
that of RSA, but if one were to choose one variable to model
structural constraints, LPD measures are a safer bet with an
odds ratio of approximately 3:1.

To assess the robustness of our conclusions, we performed
some extra tests. First, because Pearson’s correlation coeffi-
cient may be sensitive to the existence of outliers or nonlinear

FIG. 2. Comparison between the correlation coefficients of site-specific
rates of evolution and different structural measures. Top: � CS,WCNð Þ

versus � CS,RSAð Þ. Bottom: � CS,CNð Þ versus � CS,RSAð Þ: The sign of
WCN and CN profiles is changed before calculating the correlations
so that significant correlations are expected to be positive. Points above
(below) the diagonal are proteins for which LPD (RSA) correlates better
than RSA (LPD) with sequence variability. The percentages of points
above and below the diagonals are shown.

Table 1. Variance Partitioning.

Fit Contribution R2 %

CS�WCN + RSA Total 0.413 ± 0.010 100.0
Common 0.318 ± 0.008 76.3 ± 0.9
WCN 0.080 ± 0.004 19.1 ± 0.9
RSA 0.015 ± 0.001 4.6 ± 0.6

CS�CN + RSA Total 0.380 ± 0.009 100.0
Common 0.316 ± 0.008 82.1 ± 0.6
CN 0.048 ± 0.003 12.7 ± 0.7
RSA 0.017 ± 0.001 5.2 ± 0.5

NOTE.—Fit is the bivariate linear fit considered; R2 is the explained variance averaged
over the data set of 213 enzymes ± its SD; % is the proportion of explained variance
accounted for by the given contribution.

137

Structural Constraints on Sequence Divergence . doi:10.1093/molbev/mst178 MBE
 at N

ational C
hiao T

ung U
niversity L

ibrary on January 17, 2014
http://m

be.oxfordjournals.org/
D

ow
nloaded from

 

;
for 
,
and 
-
u
-
-
Since 
-
also 
-
since
http://mbe.oxfordjournals.org/
http://mbe.oxfordjournals.org/


dependency between variables, we repeated the whole anal-
ysis using Spearman’s rank-based correlations, finding very
similar results (not shown). Second, we found the same
trends when using other methods to quantify sequence var-
iability. Third, we verified that the conclusions are the same
regardless of structural SCOP class or EC functional class.
Finally, we verified that there are no effects of protein size
and resolution of the X-ray structure.

Summing up, we have found that both LPD measures,
WCN and CN, correlate significantly better than RSA with
site-specific rates of evolution. Moreover, when LPD measures
are adjusted for, RSA is often not an important predictor of
CS. This is rather surprising considering that most current
work assumes that RSA is the main determinant of structural
constraints at site level. More importantly, such assumption is
supported by a recent study that compared RSA and CN and
found that RSA correlated better than CN, whose unique
contribution was significant but minor (Franzosa and Xia
2009). Their data set and methodology is too different from
ours for us to perform a detailed comparison. However, we
note that the correlations found in that study are much
smaller than ours: 0.126 and�0.118 for RSA and CN, respec-
tively, versus our correlations of approximately 0.6, on aver-
age. Our results are less noisy, probably due to usage of a
much larger number of homologous sequences to estimate
rates and not grouping sites of different proteins. Therefore,
the present results are less likely to be affected by spurious
correlations. We are confident that the present results pro-
vide strong support to the notion that local packing density is
a better candidate than solvent exposure to quantify struc-
tural evolutionary constraints on sequence divergence.

To finish, we consider what mechanism could explain
the connection between local packing density and sequence
divergence. Two observations may be relevant in this
regard. First, local packing density is related to backbone
flexibility (Halle 2002; Lin et al. 2008). Second, backbone
flexibility is directly connected with the structural change
resulting from a mutation (Echave and Fernandez 2010).
Thus, we speculate that local packing density of a site could
be an approximate measure of its flexibility, which could be
the actual causal determinant of its rate of evolution.
Mutations at flexible sites (low packing density) would be
accommodated more easily than mutations at rigid sites
(high packing density). Such a possibility was hinted in Liao
et al. (2005), and it is consistent with some recent studies of
the correlation between mobility and conservation (Liu and
Bahar 2012). However, further work is needed to test this
hypothesis.

Supplementary Material
Supplementary table S1 is available at Molecular Biology and
Evolution online (http://www.mbe.oxfordjournals.org/).
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