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Spontaneous vortex state and ¢-junction in a superconducting bijunction with a localized spin
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A Josephson bijunction made of three superconductors connected by a quantum dot is considered in the regime

where the dot carries a magnetic moment. In the range of parameters where such a dot, if inserted in a two-terminal
Josephson junction, creates a w-shift of the phase, the bijunction forming a triangular unit is frustrated. This
frustration is studied within both a phenomenological and a microscopic model. Frustration stabilizes a phase
vortex centered on the dot, with two degenerate states carrying opposite vorticities, independently of the direction
of the magnetic moment. Embedding the bijunction in a superconducting loop allows one to create a tunable
“@”-junction whose equilibrium phase can take any value. For large enough inductance, it generates noninteger
spontaneous flux. Multiloop configurations are also studied.
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I. INTRODUCTION

Junctions with confined electrons, like atomic, molecular
or quantum-dot (QD) junctions, are among the most studied
nanoscopic devices [1]. In these structures electron-electron
correlations within the junction together with the electronic
properties of the contacts lead to a number of different
phenomena concerning fundamental aspects of quantum
charge and spin transport. Modern technologies allow building
junctions that are close to the ultimate limit of miniaturization
with normal, superconducting [2-8], or ferromagnetic [9,10]
leads, creating new opportunities for novel nanodevices with
predefined functional properties. One-electron transistors, spin
valves, or superconducting spin qubits are some examples
of such devices. When a molecule or a QD bridges the gap
between two metallic leads, the Coulomb energy tends to
quantize the charge confined in the junctions, i.e., on the
molecule or the dot, leading to the possibility of fabricating a
junction with a confined spin. In the case of superconducting
leads, the characteristic of the so-obtained Josephson junction
depends on the total spin in the junctions. Superconducting
circuits with QD (S-QD-S junctions) have been extensively
studied during the last decade [11,12]. These junctions are
fabricated by contacting superconducting leads to a normal
nanostructure, typically a single-walled carbon nanotube
or a semiconducting nanowire. The structure may include
gate electrodes that can be used to control the number of
electrons in the dot. S-QD-S junctions having a localized
spin in the dot may have a global minimum of the free
energy for a m-difference between the phases of the two
superconducting contacts. The current-phase characteristic of
these junctions is described by a Josephson equation with a
negative critical current [13,14]. These junctions, referred to
as m-junctions, in contrast with standard “O-junctions,” have
interesting properties and potential applications in supercon-
ducting electronics, including phase or flux qubits [15]. A
superconducting ring containing a -junction could generate
a spontaneous current with (nearly) half a superconducting
quantum flux threading the ring, a very convenient situation
for experimental detection. Notice that this current structure
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is stable only if the ring self-inductance exceeds a critical
value [16,17].

In absence of time-reversal symmetry breaking, the equi-
librium Josephson current is zero at a phase equal to zero
or . Breaking time-reversal symmetry allows one to build
new ‘“phase-shifted” equilibrium states. Such “¢-junctions”
have been proposed in long junctions with alternating current
densities [18-20] (and experimentally obtained [21,22]), with
point contact, Zeeman effect, and spin-orbit coupling [23], or
nonaligned junctions in a magnetic field [24].

Here we present results for a m-bijunction consisting of
a QD connected to three superconducting leads; see Fig. 1.
Graphene dots (GQDs) are good candidates to build such a
device [25,26]. In fact graphene offers new opportunities for
superconducting electronics as a new class of material that
can be tailored and contacted to normal or superconducting
leads. With gate electrodes controlling the number of electrons
confined in the GQD, a nonzero spin can be localized at
the dot which tends to generate a m-shift between each
of the pairs of superconductors. This situation, in a way
similar to Heisenberg magnets, generates frustration [16].The
frustration can be resolved by canting the phases of the three
superconductors, in a way that depends on the asymmetry
of the device. This asymmetry, due to different couplings
between the dot and the contacts, can be controlled by gates.
Frustration leads to canting only for moderate asymmetries. In
the canted phase, the equilibrium phase difference between
two given superconductors can be controlled at will to a
value ¢,, between 0 and m. Such a tunable ¢-junction
can be probed by various geometries incorporating one or
several superconducting loops. An important feature of the
phase canted state is that it contains a spontaneous vorticity.
Due to time-reversal symmetry, two equivalent solutions with
opposite vorticities are found, corresponding to phases ¢,, and
—@- This symmetry can be broken with the help of a single
loop and an applied magnetic field. In addition, the structure
of the energy-phase profile of the bijunction makes the barrier
between the two degenerate minima tunable, either through the
bijunction parameters, or using the external flux. This might
be an useful property for building a superconducting qubit.
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FIG. 1. (Color online) Bijunction made of three superconductors
and one quantum dot carrying a spin S = 1/2. The inset show the
equivalent triangular model, valid in the perturbative regime only.
The asymmetry ratios between the junction’s critical currents are
indicated.

The paper is organized as follows. In Sec. II a phenomeno-
logical phase model is first considered, with a stability analysis
of the canted (frustrated) solution against the nonfrustrated
solution. Then a microscopic model for a dot with a single level
allows a nonperturbative solution, which essentially confirms
the existence of a canted phase below a critical asymmetry of
the dot-contact couplings. Section III considers a single-loop
setup, with an applied orbital magnetic field, then two-loop or
three-loop setups.

II. BIJUNCTION AT EQUILIBRIUM

A. A phenomenological model

The quantum dot connects all three superconductors
(Fig. 1). Each pair (i,j) of the three superconductors (i =
1,2,3) forms a Josephson junction. As a first approximation,
one can write the total energy of the bijunction as the
sum of those of separated junctions. Such an expression
could be obtained in perturbation theory from a microscopic
Hamiltonian, at fourth order in the tunneling element between
the superconductor states and the dot states. The bijunc-
tion is then equivalent to a triangular array of separated
junctions. We assume that the presence of a 1/2 spin on
the dot creates m-junctions, and that this holds for all of
them. The nonperturbative calculation presented in the next
subsection shows that it is essentially the case, unless the
couplings to the dot are very asymmetric. Denoting the
superconducting phases as ¢; (i = 1-3), the bijunction energy
thus reads

Ep; = Eolgog cos 12 + gocos ¢z + cosgpz], (1)

with ¢;; = ¢; — ¢;, Ep > 0 and where gyp > 0, g > 0 are
parameters quantifying the bijunction asymmetry (Fig. 1).

Let us look for the equilibrium state. Setting to zero the
partial derivatives of Eg; with respect to the ¢;’s is equivalent
to imposing zero current J; in each lead S;. One obtains from
Ji=0

gsing +sing3 =0, )
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FIG. 2. (Color online) (a),(b) Two symmetric canted solutions
in the frustrated situation, corresponding to a spontaneous phase
vortex. The straight arrows represent the superconducting phase.
(c) Nonfrustrated solution with two r -junctions (§; — S, and S; — S3)
and a O-junction (S, — S3).

which, together with similar equations expressing that J, or
J3 =0, yields

(808 —1—g*

22 3

COS 3 =

Such a nontrivial solution thus exists only if |1 — §| <

g < (I + é). This is a canted (e.g., frustrated) phase solution
[Figs. 2(a) and 2(b)], with two degenerate states obtained
from each other by changing ¢, 3 into —¢, 3. In such states,
the current across any junction S; — S; is nonzero. Yet, the
total current in each lead is zero. Those two degenerate
solutions therefore feature a phase vortex, with two opposite
vorticities. While in a real triangular network this vorticity is
associated with a circulating current, with a zero-dimensional
quantum dot it is difficult to define a path with a nonzero
current circulating around the dot. Nevertheless, we show
in the last section that a true vortex can be induced on an
adjacent loop.

In the opposite case, [(gog)* — 1 — g%| > 2g, the energy
minimum is obtained for ¢, = 0 or 7, ¢3 = 0 or &, replacing
Eq. (3). This results in two of the three junctions being -
junctions and the other one a 0-junction [Fig. 2(c)].

Later on we consider situations where lead 1 is disconnected
(e.g., the phase ¢, is floating), while leads 2 and 3 are
connected to an external circuit. Then the convenient phase
variable is ¢ = ¢» — ¢3. One can use gauge invariance and
choose ¢, = %, ¢3 = —%. Then Equation (2) yields

tan¢; = G tan (%) @
with G = g—;: The total energy reads

| cos (5)]

1 + G2 tan? (%)

Epy=Ep|cos¢ —go(g +1) (5)
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FIG. 3. (Color online) (Top left) Variation of the “floating” phase
¢, with the phase ¢ across S, — S3, for g = 1 (staircase) and 0.9. Total
energy of the bijunction inserted in a single loop, as a function of the
phase ¢,3 = ¢ for (top right) go = 1, g = 1; (middle left) go =1,
g = 0.9; (middle right) go = 1, g = 0.7; (bottom left) go = 0.5, g =
0.9; (bottom right) go = 1.5, g = 0.9. Despite the 2 -periodicity, the
plot between ¢ = +27 shows the different barriers depending on the
couple of degenerate phase vortex states.

The variation of ¢; with ¢ (see Fig. 3) shows that for
a partially symmetric bijunction (g = 1), ¢; jumps by 7
each time ¢ is an odd multiple of w. The energy profile
of the bijunction is pictured in Fig. 3. Although it is 2x-
periodic, the plot between —27 and 27 shows that, depending
on the choice of the minima modulo 27, the barrier between
the equivalent minima can be different. Notice that if g = 1,
the Ep;(¢) curve possesses a cusp at ¢ = m, but this cusp
is rounded by any small asymmetry between leads 2 and
3@ #D.

In the case g =1, the energy minimum corresponding
to the canted solution satisfies cos% = £5. It spans from
¢ =mn for go =0, corresponding to a single m-junction
S> — S5 through the dot, to ¢ = 2?” or %” for go = 1 [fully
symmetric bijunction, Figs. 2(a) and 2(b)] and ¢ =0 for
go = 2 [Fig. 2(c)]. If instead go > 2, there is no canting and
the bijunction displays two m-junctions S, — S; and S; — S3
in series, and a O-junction S, — S3 [Fig. 2(c)].

As an essential fact, in the canted case there are two
equivalent solutions, obtained by changing ¢ in —¢ or in
2 — ¢ [Figs. 2(a) and 2(b)]. As shown in Sec. III, the choice of
the minima and of the corresponding barrier can be monitored
by an external flux.

This simple calculation shows that (i) frustration manifests
itself in canting the phases from O or m; (ii) a doubly
degenerate state is formed, with opposite phase vorticities;
(iii) a too asymmetric bijunction does not sustain frustration,
and yields two m-junctions and one O-junction. Phase vorticity
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appears as a spontaneous symmetry breaking, induced by the
frustration brought by the existence of a localized spin creating
m-junctions. The presence of the localized spin therefore
induces a chirality in the bijunction.

B. A microscopic model

Let us now provide a nonperturbative calculation, describ-
ing the localized spin with the help of a local Zeeman (or
exchange field J), as in Ref. [27]. This can be related to a
model including the Coulomb interaction through a mean-field
approximation. This excludes the possible formation of a
Kondo state in the O-junction regime when the dot-lead
couplings are large enough. The Hamiltonian of the system
is H = Hg + Hp + Hy, where Hg, Hp, and Hy respectively
denote the lead, dot, and lead-dot tunneling contributions. The
dot part is written as

Hp=Eo Y did, — J(dld; —d]d)), (6)
s=1.

where E is the bare energy level. We assume that Eg — J < 0
and Ey+ J > 0, such that for weak coupling to the leads,
the dot level carries one electron with spin up. Writing H
in the Nambu notation H = Hg + Hp + Hr, and performing
a gauge transformation to incorporate the superconducting
phases ¢; in the tunneling term Hr, one gets, up to an additive
constant, the following expressions:

Hs= D D Wultoe+ 8j00We ¥ = (wl/{jm > :

=123 k J(=k), 1
@)
Hp = d'(Ego, — Joo)d, (8)
Hy =Y W, Tid+He., d= d )
J

with T; =t;0,¢/%/% and t; is the tunneling amplitude
between the lead j and the dot. oy is the identity matrix and
0Oy, y,- denote the Pauli matrices in the basis formed by electrons
with spin 1 and holes with spin |.

The procedure to obtain the Andreev bound states and the
current-phase relationships by writing an effective action for
the two dots can be found in Ref. [27]. One writes the partition
function as

7 = /D[lp,w,&,d]e*mwﬂ’dl, (10)

e.g., as a functional integral over Grassmann fields for the
electronic degrees of freedom (Wi, W jx,d,d). The Euclidean
action reads

B _
Sp=So+ [ ar| X Budeon
0

Jk

+&ko; + Ajo)W(t) + Hr(7) | . 1D
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B is the inverse temperature, and Hy(r) =
Y Ui(DT;d(r) + He. while Sp = [ dr[d(r)(@.00 +
€0,)d(t)]. After integrating out the leads we get
Z = [ Dld,d] e~ %" with

B
Sefr = Sp — / drdt d()E(r — tHd(T), (12)
0

where 3(t) = ., T/G;(D)T; and G (1) =
&o, + Ajo'x)ils(f)-

We perform a Fourier transform on the Matsubara fre-
quencies [with w, = 2n + 1)x/B], 8(7) = % an T and
G(r) = % Yo, €' " G(iw,), which gives for the Green func-
tion G;

Zk(ar oo +

Giliwy) = /d§ V(E)—iwy00 + &0 + Ajoy) ™!
7v(0)

/82— (0,2

Here v(§) = ), 8(6 — &) is approximated by a constant
v(0), the density of states at the Fermi level in the normal
leads. Let us assume for sake of simplicity that the three gaps
are equal, A; = A. One finally obtains the effective action
[introducing d,(7) = \/LF Yo, € dy(iwy)]

Sert = Y _ d(@) M(iwy,)d(iw,)

Wy

(w00 + Ajoy). (13)

(14)

M(iw,) = (—iw, + J)oo + Ego; — Zia, s

M(iw,) is described by a 2 x 2 matrix, whose coefficients are

given by
. r
2VA — (iw, )
Mp =— vie ,
A2 — (iwy)? (Z

(15)
rA ‘
Moy = =2 (Y pe ).
T T /A (iwy) (lZye )

M22=iwn(1+ )+E0+J,

2V A% — (iwp)?
with ' =27v(0) Y, [> and y; = |t:1?/ Y, [t:[>. M is a
Hermitian matrix once iw, is replaced by the real number z.
The dispersion relation for the Andreev bound states is given
by the eigenvalues of the effective action, replacing i w, by z.
After integrating out the {d,d} variables, the partition function
is given by

/D[d d] e 5% = l_[det/\/l(wn) (16)

i Wy

The free energy is given by

F= —% > In[det M(iw,)]. a17)
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FIG. 4. (Color online) Total energy of the bijunction, from the
microscopic model, as a function of the phase ¢,3 = ¢. Parameters are
A=1T=2,J=35,¢ =0, temperature T = 0.02, and (a) y1 23 =
(1/3,1/3,1/3), (b) y123 = (0.4,0.4,0.2).

-2 - T

The Josephson current in S; is expressed as

__2e 0
T T hB g
- —‘E@Zln[det/\/l(lwn)] (18)

Consider for simplicity the case of a bijunction symmetric
by exchange of leads 2 and 3, e.g., ¥» = y3, to be compared
with the g = 1 case of Sec. I. If the exchange field is sufficient
to stabilize a local moment, one also finds a critical value of
the asymmetry above which frustration disappears and the

bijunction is dommated by two m-junctions in series. In the
perturbative limit where I" is smaller than the single spin level
|Eo — J|, one finds energy profiles Ep;(¢) similar to those of
the phenomenological model, with couplings g;; respectively
proportional to y;y;. An example of an exact nonperturbative
solution is given in Fig. 4. More generally, the critical value
of J above which the m-junctions are stabilized is about
% = 0.5. In this regime, because the m-junction is weaker
than a O-junction, the perturbative calculation turns out to be
qualitatively correct, and the physics is well described by the
phenomenological model.

III. BIJUNCTION IN A CIRCUIT WITH LOOPS

Superconducting interference devices with embedded junc-
tions can be used to measure their phase-current relation
[28-30]. These techniques imply inserting the junction in a
multiple connected circuit. The above analysis shows that
the presence of three m-junctions can create frustration and
phase canting at the junctions. Having three superconducting
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FIG. 5. (Color online) Connecting the bijunction with one loop
can stabilize an arbitrary flux. J (blue arrow) denotes the current
flowing in junction S, — Ss.

reservoirs, the bijunction can be connected in various ways to
an external circuit.

A. Single loop

Let us first consider here the simplest geometry obtained by
connecting superconductors S, and S3 by aloop, leaving super-
conductor S; disconnected (Fig. 5). This implies that the phase
¢ = ¢ — ¢35 is accessible and controllable experimentally,
while the “floating” phase ¢; is determined by the condition
J1 =0 [Eq. (2)]. Let us denote by L the loop inductance,
®.x the external flux, and L1 the flux embedded in the loop,
induced by the current /. Expressing flux quantification along
the circuit enclosing the loop and passing through the dot
yields

2
¢ = —P[2x], (19)
)
where ® = ®. + LI is the total embedded flux and &y =
hc/2e is the elementary flux quantum. The total energy
becomes
2

EpnL() = 8(1’20 (@ — ¢ex)” + Eps(¢),  (20)
wL

where Epg; is given by Eq. (5), and with ¢ex = %CID@X[.
Consider first @ = 0. Then, if L < L., the only stable
solution is & = 0, and there is no equilibrium phase difference
at the junction. Conversely, if L > L., a spontaneous flux
appears in the loop, together with a phase difference ¢,
at the junction (Fig. 6). When LI. > ¢ (I. is the critical
current of the bijunction), ® ~ :I:g’—;¢m, thus a large loop
stabilizes the two vortex solutions found in Sec. I. If on
the contrary @ = $/2, the loop stabilizes the solutions
D~ %qﬁm,%(ﬁr — ¢m). These two sets of solutions are
equivalent, but the barrier between the two degenerate mimima
are different. For a given set of the parameters gy, g, the highest
barrier is encountered for one or the other of the applied fluxes.
On the other hand, if ®y is not a multiple of ®(/2, the minima
are not equivalent (Fig. 6). Figure 6 shows that one may keep
the two minima at fixed values, say (%¢,,), and vary the

asymmetry parameter gy (Fig. 6, top panels), thus changing
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FIG. 6. (Color online) Total energy of the bijunction inserted in
a single loop, as a function of the phase ¢,; = ¢. The asymmetry
between leads 2 and 3 is weak. Parameters are (left panels) gy =
0.5 and (right panels) gy = 1.5, and from top to bottom @ =
0,0¢/4,Dy/2.

the barrier between the two minima. More interestingly, one
can keep the same bijunction parameters and change the flux
from ®ey = 0 to Dy = Py/2 (Fig. 6, left panels, or right
panels). This switches the pair of minima from (+¢,,) to (¢,
21w — ¢,,), with a strong change of the barrier between them.
Depending on whether gy is smaller or larger than 1, the barrier
may be decreased or increased.

This might offer a way of manipulating the pair of vortex
solutions as a phase qubit, by tuning from three to two energy
minima. Actually, tuning the flux between @y = 0 and Py =
®(/2 keeps two of the three states equally probable but allows
one to switch on or off the tunneling between them. On the
other hand, fixing the flux to a value such as @ = £y /4
favors one or the other minima.

The above discussion shows that for a moderate asymmetry
and a large inductance, this setup allows a spontaneous
current/flux to appear in the loop. Contrary to the simple
-junction where only a flux ®(/2 can be stabilized, here the
induced flux can take any value between 0 and ®,.

B. Two loops

Let us now connect the bijunction with two loops, by
closing for instance the junctions S; — S, and S; — S5 (Fig. 7).
Those loops respectively enclose fluxes @ex; 3 and Py 2. The
quantification condition for each of the loops are

o — e 21
¢12—go 3[2m], ¢13——30 2[27], 21

where ©; = ey p + LIz and $3 = Dy 3 — LI}, are the
total embedded fluxes. Defining ¢ex2 = i—’;@exl,z, Pexi3 =

075432-5



DENIS FEINBERG AND C. A. BALSEIRO

©4

D,/ 3 @,/ 3

)
\/ -

) ©3

FIG. 7. (Color online) Connecting the bijunction with two loops
stabilizes two symmetric spontaneous fluxes. The figure corresponds
to zero external flux, large inductance, and symmetric bijunction. The
blue arrows denote the currents circulating in the junctions.

é—”ﬁ@exw, the total energy then reads

I PR ,
Epj(9) = 87T2L[(¢12 Pext,3)” + (913 + Pexi2)7]

+ Eolgog cos ¢12 + go cos ¢13 + cos(pi3 — Pr2)].
(22)

If L is large, minimizing with respect to ¢, ¢13 gives in the
frustrated regime the two symmetric vortex solutions of Sec. I,
which induce nonzero but equal fluxes in the loops. The fluxes
can take the values ®, = &5 ~ g’—;qﬁm or &, = &3 ~ —‘2’;;¢>m
(Fig. 7). In the symmetric junction case, fluxes (®o/3,D¢/3)
or (—®y/3,—Py/3) can be stabilized. Those flux can be made
dissymmetric either by acting on the junction parameters (with
gates) or with an external flux.

C. Three loops

Finally, the bijunction can be more symmetrically closed
by three loops, each embedding an external flux ®.y; (Fig. 8).

FIG. 8. (Color online) Connecting the bijunction with three loops
globally traps one flux quantum.
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Thus (i = 1,2,3)

2

ij = ach(Sijk[zn']’ D = Doy + Lijbiji, (23)
0

where §;;; is 1 if all 7, j,k are different, and zero otherwise.
The total energy reads

@ >

So2L ;(d)ij — Pext,k0ijk)

+ Eolgog cos ¢12 + go cos P13 + cos(¢piz — Pr2)].
(24)

Epji(¢) =

Large L yields either | = &, = P53 =~ %¢m or o =P, =
5 ~ —%’q&m. For instance, in the fully symmetric case,
each loop carries one third of the flux quantum &,. A
property of the three-loop configuration is that it globally
embeds one flux quantum, ®; 4+ &, + &3 = +P,. This is
a direct manifestation of the phase vorticity induced by
frustration.

IV. CONCLUSION

‘We have shown that a quantum dot carrying a 1 /2 spin, thus
able to generate a Josephson 7 junction, may induce frustration
if inserted in a Josephson bijunction. If the coupling between
two superconductors—say S, and S;—dominates, this results
inthe S, — S3 junction being a 7 -junction, while low asymme-
try leads to frustration and canting of the equilibrium phases.
Conversely, a too small coupling between S, and Sz results in
both S| — S, and S| — §3 being m-junctions, making S, — S3
an effective O-junction. The possibility of continuously tuning
the junction S, — S3 between a 0- and a w-junction is a first
result of this work.

This phenomenon displays an interesting link between
two kinds of magnetism: spin magnetism in the dot, and
orbital magnetism manifesting in spontaneous flux (vortex).
It is remarkable that this is a topological property, related
to the existence of a localized spin and not to its direction.
In fact the direction of the localized spin and the sign of
the stabilized vortex are unrelated. This could be different in
more complicated situations involving an additional spin-orbit
coupling.

The second result is that frustration generates two equiva-
lent states possessing opposite phase vorticities, each of them
breaking time-reversal symmetry. These states can be revealed
by inserting the bijunction in a setup containing one, two or
three loops. In the case of a single loop, the two phase vortex
states result in a spontaneous flux crossing the loop, which is
different from O or 7r. While a zero external flux, or a multiple
of ®y/2, preserve the symmetry of the two vortex states, any
other value lifts the degeneracy and can be used to stabilize
one or the other of these two states.

This might have some consequences in terms of using the
above device for generating flux qubits or flux qutrits [31-33].
Indeed, in the two-loop scheme one may control the two
distinct phases by the external fluxes and the bijunction
parameters. Tunneling through the barrier separating the two
states can be strongly varied if acting on, say, the coupling
between lead 1 and the dot, by split gates for instance.
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Quantum fluctuations of the trapped fluxes occur if the lead-dot
junctions have finite capacitances, for instance if the reservoirs
are Cooper pair boxes. Control of the “longitudinal” and
“transversal” components of this flux qubit is thus possible,
as a basic ingredient for applications. Further investigations
must be carried out to derive an effective qubit model and
check its feasibility.
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