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Any multichannel problem can be reduced to a succession of two-body events. However, these basic
building blocks of many-body theories do not correspond to elastic processes but are off-the-energy-
shell. In view of this difficulty, the great majority of the Distorted-Wave models includes a subsidiary
approximation where these off-shell terms are arbitrarily forced to lie on the energy shell. At a first
glance, since the energy deficiency is negligible for high enough velocities, the on-shell assumption seems
to be completely justified. However, for the case of Coulomb interactions, the two-body off-shell distor-
tions have branch-point singularities on the on-shell limit. In this article we demonstrate that these sin-
gularities might produce sizeable distortions of multiple scattering amplitudes, mainly when dealing
with ion-ion collisions. Finally, we propose a method of including these distortions that might lead to bet-
ter results that removing them completely.

� 2017 Elsevier B.V. All rights reserved.
1. Introduction

A non-relativistic many-body theory was first formulated in the
1950s by Kenneth M. Watson [1]. In the following decade Ludvig
Dmitrievich Faddeev [2–4] introduced a celebrated three-body
symmetric version of Watson’s theory, and provided a clear and
mathematically complete analysis of its convergence. Through
these theories, any multichannel collision can be iteratively
reduced to two-body scattering processes. The catch, however, is
that these two-body collisions are off-the-energy-shell. This means
that in each of them, the initial, intermediate and final energies are
not necessarily equal to each other, as they should be if the process
were elastic.

This leads to some serious difficulties when Coulomb interac-
tions are involved. It is fair to say that these difficulties do not arise
from their calculation, since mathematically well defined repre-
sentations of off-shell two-body Coulomb wave functions and tran-
sition matrix elements are known [5], but from an anomalous on-
the-energy-shell limiting behavior, namely a branch-point singu-
larity, that is characteristic of any long-range interaction. The
energy deficiency is negligible for high enough velocities [6], but
the presence of this branch-point leaves this on-shell limit unde-
fined, and therefore replacing the off-shell Coulomb wave function
by its on-shell version is not valid.

Already in the early 1970s it was known that these singularities
produce the leading contributions to multiple-scattering ampli-
tudes in rearrangement and scattering collisions at high energies
[7–9]. However, in following years, this problem failed to be dully
analyzed and in the end became discarded and even ignored. For
instance, the very same definition of the initial and final states in
Continuum Distorted Wave (CDW) theories (see, e.g., [10] and cit-
ing articles), where the two-body distortions are incorporated as
multiplicative factor (i.e. Confluent Hypergeometric Functions)
instead of convolutions of their off-shell counterparts over some
intermediate momenta, is an unmistakable fingerprint of this on-
shell assumption.

One of the few theoretical studies where this problem was
taken into account was the Channel–Distorted Strong-Potential
Born (DSPB) approximation for highly asymmetric mechanical
and radiative ion-atom charge-exchange processes [11–16]. In
these models, the on-shell singularities of the intermediate states
were shown to produce a sizeable effect, even though the separa-
tion from the energy shell was small. Against this argument, it
was argued that the Coulomb singularities are nonphysical, since
the interactions are always screened at large enough distances
[17,18]. However, even for moderate screening ranges, the differ-
ence between the off-shell and on-shell approximations is known
to produce very strong distortions of multiple-scattering ampli-
tudes [11,16]. In most cases, approximating these distortions by
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means of actual Coulomb singularities was shown to produce
much better results that removing them completely.

In this paper, we present a general framework for the descrip-
tion of off-shell effects in Atomic Collisions. Even though we
restrict ourselves to consider three-body phenomena, the theory
can be straightforwardly extended to more general few-body
phenomena.
2. The on-shell approximation revisited

Let us consider a three-body system consisting of an electron
and an ion of charge Z0 and mass M0 in a bound state / with (neg-
ative) energy �, and another ion of charge Z and massM in the con-
tinuum with momentum P (i.e. velocity v ¼ P=l) with respect to
the center-of-mass of the bound state. Here l ¼ Mð1þM0Þ=M0M
is a reduced mass of the three-body system (atomic units are used
throughout this article). For pedagogical and briefness reasons we
will not study the ionization channel (i.e. with the three particles
in the continuum). Coming back to the system under considera-
tion, its exact outgoing (þ) or ingoing (�) stationary scattering
states read (see, e.g. [19]),

j/;P�i ¼ 1þ G �þ P2

2l
� ic

 !
ðVo � V 0Þ

" #
j/;Pi; ð1Þ

where j/;Pi represents the system when the ion and the atom are
infinitely separated in space representation. The full Green operator

reads GðzÞ ¼ z� Ho � Voð Þ�1, where Ho is the total kinetic energy
operator, Vo ¼ VðrÞ þ V 0ðr0Þ þ ZZ0=jr� r0j is the total potential energy
between the three particles; and VðrÞ ¼ �Z=r and V 0ðr0Þ ¼ �Z0=r0 are
the Coulomb interactions between the electron and the ions, while
c is a positive infinitesimal. Now, without any loss of generality, let
us write,

j/;P�i ¼
Z

dp 1þ G �þ P2

2l
� ic

 !
ðVo � V 0Þ

" #
jp;Pi~/ðpÞ: ð2Þ

where ~/ðpÞ ¼ hpj/i is the Fourier transform of the bound state /. It
is clear that the intermediate state

jp;P� ide ¼ 1þ G �þ P2

2l
� ic

 !
ðVo � V 0Þ

" #
jp;Pi ð3Þ

is off the energy shell by an amount de ¼ p2=2� �. As it was previ-
ously explained, it is a standard practice in the vast majority of the
perturbative models to assume that this ‘‘energy deficiency” de is
very small, and therefore to approximate the previous intermedi-
ate state by its on-shell version

jp;P�i ¼ 1þ G
p2

2
þ P2

2l
� ic

 !
ðVo � V 0Þ

" #
jp;Pi: ð4Þ

In particular, this represents the starting point for every Contin-
uum Distorted Wave (CDW) theory [10]. Let us assume, for
instance, the validity of Wick’s argument [20], so as to disregard
the ion-ion interaction, and consider the following CDW
approximation

hr0;Rjp;P�i � D�ðr;kÞhr0;Rjp;Pi

¼ 1

ð2pÞ3
D�ðr;kÞ exp iðp � r0 þ P � RÞð Þ; ð5Þ

where

D�ðr;kÞ ¼ e�pn=2Cð1� inÞ1F1 ð�in;1;�iðkr � k � rÞÞ; ð6Þ
is the distortion factor of the two-body Coulomb Continuum Sta-
tionary State in space representation for the interaction of the elec-
tron and the ion in the continuum, namely [21]

hrjk�i ¼ 1

ð2pÞ3=2
D�ðr;kÞ expðik � rÞ: ð7Þ

Here n ¼ �Z=kand 1F1ða; c; zÞ is the Confluent Hypergeometric
Function [22].

This CDW approximation is intended to improve the description
of the motion of an electron attached to an ion by incorporating a
continuum distortion produced by another ion. Initially created for
studying charge exchange collisions, CDW theories were subse-
quently generalized in different contexts and applied to ionization
collisions and other reactions, and for a large variety of collision
partners, ranging from electrons and positrons to highly charged
ions. However, it is clear that, in all their different variations
[23], CDW theories implicitly incorporate an on-shell
approximation.

However, even though in most applications it might be sound to
assume that the energy deficiency is small, this does not necessary
implies that the on-shell limit 4 would be valid. The reason is that
for Coulomb interactions, the on-shell limit is not well-defined. In
fact, as it is explained in the following section, it present a branch-
point singularity whose effect on the analysis of multichannel col-
lision processes should not be ignored.

3. Two-body off-shell coulomb continuum states

Let us now consider the same two-body state jk�i of the previ-
ous section, but allowing for a difference between the energy in the
Green operator and that of the plane wave, namely

jk� ide ¼ 1þ ðk2=2� de� ic� HÞ�1
V

� �
jki; ð8Þ

with H ¼ �r2
r=2� Z=r.

For most quantum-mechanical systems, this off-shell contin-
uum state can not be evaluated in close form. However, mathemat-
ically well defined, even analytical expressions of this state and the
corresponding T-matrix element are well known and have been
extensively described in the literature (see, e.g. [8]). Here we are
not interested in these analytical representations for arbitrary val-
ues of k and de, but only for their expressions in the vicinity of the
on-shell limit de ! 0. Actually, in this limit, the incoming (�) and
outgoing (þ) off-shell scattering states can be approximated by
[24]

jk� ide � g�ðk; deÞjk�i; ð9Þ
where

g�ðk; deÞ ¼ Cð1� inÞ
epn=2

de� ic
2k2 � ic

 !�in

: ð10Þ

This simple result implies that g�ðk; deÞ does not approaches
unity for de ! 0 but reaches different values on each side of the
branch-point at the on-shell limit, namely

g�ðk; deÞ � e�pn=2Cð1� inÞ de
2k2

����
����
�in

ð11Þ

for de > 0 and

g�ðk; deÞ � epn=2Cð1� inÞ de
2k2

����
����
�in

ð12Þ

for de < 0. Thus, even though in most applications it might be
sound to assume that the energy deficiency is small, the effect of
the branch-point singularities is not necessarily so, and therefore



Fig. 1. Off-shell distortion factor jMðmÞj2 and its linear approximation (dashed line),
as a function of the dimensionless parameter m ¼ �Z=v . The case of negative ions
(i.e. m > 0) has also been included.
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has to be taken into account, something that CDW approximations,
by only incorporating a Coulomb distortion factor D�ðr;kÞ, do not.
Instead, we are proposing a method to correct on-shell perturba-
tive approximations, by multiplying any distortion factor
D�ðr; kÞ by a term g�ðk; deÞ, namely,

� Replace D�ðr;kÞ by g�ðk; deÞ � D�ðr;kÞ,

in order to take into account the corresponding branch-point sin-
gularity. This is the main result of the present article.

Now, in order to quantify this off-shell distortion, study its rel-
evance and analyze whether and under which conditions it can be
disregarded or has be taken into account, in the following section
we make some sensible approximations so as to obtain a simple
estimation of its magnitude.

4. Off-shell distortion factor

Let us apply the previous theory to a general transition matrix
element either in post or prior forms,

Tþ ¼ hWf jVf j/;Pþi ð13Þ

and

T� ¼ h/;P� jVijWii: ð14Þ
Here jWf i (jWii) and Vf (Vi) are the asymptotic state and poten-

tial of the final (initial) channel [19]. Now, let us assume that we
apply a CDW correction on the state j/;P�i. In this case, as
explained in the previous section and due to the implicit on-shell
approximation, we should incorporate the corresponding g� fac-
tors, namely

Tþ �
Z

dpgþðk; deÞhWf jVf jp;Pþi~/ðpÞ ð15Þ

or

T� �
Z

dpg�ðk; eÞ~/	ðpÞhp;P� jVijWii; ð16Þ

Now, by applying a full peaking approximation [16], where p is
ignored compared to the projectile velocity v, we obtain

T� � M� � T�
IA; ð17Þ

where

Tþ
IA ¼ hWf jVf j0;Pþi

Z
dp~/ðpÞ ð18Þ

and

T�
IA ¼ h0;P� jVijWii

Z
dp~/	ðpÞ; ð19Þ

are the so called Impulse Approximations (IA), which are valid at
sufficiently high velocities [16]. On the other hand, the distortion
factors

Mþ ¼ M	
� ¼

Z
dpgþðk; deÞ~/ðpÞ

�Z
dp~/ðpÞ; ð20Þ

incorporate the effect of the off-shell distortion on the electron–ion
continuum.

For a 1s state, and assuming that v is large enough so that
j�j 
 v2=2, a straightforward calculation shows that

M� ¼ 1ffiffiffiffi
p

p j�j
2v2

� ��im C 1=2� imð Þ
epm=2 1� imð Þ ; ð21Þ

where we have defined m ¼ �Z=v . Its squared modulus reads,
jM�j2 ¼ 2
1þ m2ð Þð1þ e2pmÞ : ð22Þ

We see in Fig. 1 that this off-shell distortion factor goes to zero
for small energies (i.e. large values of m) and tends to 1 for large
energies (i.e. small values of m). It reaches its maximum value,

jMj2 � 1:60387 for m � �0:35.
The j�j 
 v2=2 condition establishes an upper limit to the range

of values of m for which Eqs. 21 and 22 are valid. However, we
clearly see in Fig. 1 that even in the most astringent cases, large

departures from the on-shell limit jMj2 ¼ 1 can be reached for very
small values of jmj. Let us consider, for instance, the following linear
approximation,

jMj2 � 1� pm: ð23Þ
We see, for instance, that a departure of more than 20% from the

on-shell limit can be reaches by velocities as large as v � 15Z (i.e.
jmj � 0:067), well into the perturbative regime. Even the value at
the maximum corresponds to a velocity v � 2:86Z .
5. Conclusions

The simple results obtained in the previous section demonstrate
that standard Impulsive and Continuum Distorted Wave models,
by approximating the intermediate Coulomb states by their on-
shell versions, might be incorporating a sizable systematic error
in the evaluation of multichannel cross sections which should be
pondered and eventually corrected by means of the simple pro-
posal stated at the end of Section 3.

In order to further exemplify this assertion, in Fig. 2 we show

the off-shell distortion factor jMj2 for a system consisting of a nude
Carbon ion of relative velocity v (i.e. energy E ¼ v2=2) with respect
to a Hydrogen atom in its ground state. It is clearly seen that the
magnitude of the off-shell distortion might be over 40 % for inter-
mediate and large energies.

Let us finally note that in some variations of the continuum dis-
torted wave model, the Coulomb distortion might be applied onto
a couple of intermediate two-body systems. In the framework of
the procedure proposed in the present article, each of both Cou-
lomb distortion D should have to be corrected by the correspond-
ing off-shell factor g in order to take into account the branch-point
singularities at the on-shell limits. In this case, the calculation of
the distortion factor M follows, mutatis mutandis, the same proce-
dure implemented in the present article. In particular, it can be



Fig. 2. Off-shell distortion factor jMj2 for a C6+ + H (1s) system as a function of the
relative energy E.
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demonstrated that if one of the two parameters m corresponding to
each of the two Coulomb continuum distortions is equal to zero,
we recover the expression for a single distortion, as described in
Section 3.
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