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Virial theorem and exact properties of density functionals for periodic systems
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In the framework of density functional theory, scaling and the virial theorem are essential tools for deriving
the exact properties of density functionals. Preexisting mathematical difficulties in deriving the virial theorem
via scaling for periodic systems are resolved via a particular scaling technique. This methodology is employed
to derive universal properties of the exchange-correlation energy functional for periodic systems.
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Presently, Kohn-Sham (KS) density functional theory
(DFT) [1,2] is the state-of-the-art ab initio method for
predicting the electronic properties of materials due to its
balance between accuracy and computational efficiency. It
relies on the mapping of the interacting many-body system
onto a noninteracting system of KS electrons that yields
the true density. This is achieved by introducing a local,
one-body potential, the KS potential, mimicking all interelec-
tronic interactions via Hartree and exchange-correlation (XC)
contributions. Although being formally exact, in practice the
XC piece needs to be approximated. For electronic structure
calculations of periodic systems, most commonly, the local
density approximation (LDA) [2] or generalized gradient
approximations (GGAs) [3] are applied. Such calculations are
performed either at zero or finite temperature [4,5].

Nonempirical improvements upon these approximations
rely on exact properties of the XC functional that provide
guidance for constructing accurate approximations. But so far
exact properties of the XC functional have only been derived
for localized systems [6]. As we demonstrate in this Rapid
Communication, some exact properties of the XC functional
change for periodic systems—a fact that has been neglected
for functional construction so far. The quantum mechanical
virial theorem (VT) and uniform coordinate scaling (UCS)
have been essential mathematical tools for deriving such exact
properties for localized systems [7].

In quantum mechanics, the VT was derived in different
ways [8]. At zero temperature, within the Born-Oppenheimer
approximation, for all Coulombic matter with the electronic
Hamiltonian

Ĥ�1 = T̂ + Ŵ + V̂ �1 , Ĥ�1 ��1 = E�1 ��1 , (1)

and under the assumption of hydrostatic pressure, the VT states
that

2T �1 + W�1 + V �1 = −D�1∂�E�|�=�1 . (2)

As it will be shown later, one cannot derive Eq. (2) for
periodic systems by a uniform coordinate scaling method
[6]. In this Rapid Communication we derive Eq. (2), in
particular for periodic systems, by introducing and using
uniform coordinate and potential scaling (UCPS). In Eq. (2),
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T �1 = 〈��1 |T̂ |��1〉�1 , W�1 = 〈��1 |Ŵ |��1〉�1 , and V �1 =
〈��1 |V̂ �1 |��1〉�1 denote the expectation values of the ki-
netic, interelectronic interaction, and external potential energy
operators. Antisymmetric wave functions ��1 are eigenstates
of Ĥ�1 which is defined on volume �1. The subscript �1

of the expectation values indicates the volume in which the
operators are evaluated, and D denotes the dimensionality
of space [9]. This general form of the VT is valid for
localized systems (atoms and molecules), strictly confined
systems (particles in a box with hard walls), and peri-
odic systems (solids): As an example, consider diatomic
molecules [10] for which the right-hand side (RHS) of Eq. (2)
reduces to −R1 ∂RER|R=R1 , where R1 denotes the distance
between the nuclei. For strictly confined systems [11] the
RHS of Eq. (2) becomes −L1 ∂LEL|L=L1 , where L1 denotes
the distance between the walls. For the homogeneous electron
gas (HEG) [12], a very crude approximation to a periodic
system, the RHS of Eq. (2) is −rs,1 ∂rs

Ers |rs=rs,1 , where rs,1

is the radius of a sphere that contains one electron. In the
VT for a periodic system, which we address in this work,
�1 is generally considered as the volume of the unit cell.
In the case of localized systems the RHS of Eq. (2) is
proportional to the force that keeps the nuclei away from their
equilibrium positions, whereas for periodic systems the RHS
of Eq. (2) contains an additional contribution of kinetic and
interelectronic interaction energy, a so-called surface term [8].
Here we derive the most general form of the VT valid for
periodic systems under the hydrostatic assumption. This is
done via a scaling technique developed in the following that
relies on UCS, which in turn was used to obtain the VT, but
only for localized systems [13,14].

In UCS the D-dimensional position vectors of the electrons
are scaled as ri → γ ri , whereas other length scales of the
system stay fixed. This defines

��1
γ (r1, . . . ,rN ) = γ DN/2 ��1 (γ r1, . . . ,γ rN ), (3)

where the prefactor is determined by requiring the normaliza-
tion of the scaled wave function on the scaled volume �γ =
γ −D�1. Recall that for localized systems the normalization
volume is taken as infinite (�∞). and is therefore not affected
by scaling. Employing the extremum principle,

∂γ

〈
��∞

γ

∣∣Ĥ�∞
∣∣��∞

γ

〉
�∞

∣∣
γ=1 = 0, (4)

and considering the scaling of expectation values, T �∞
γ =

γ 2T �∞ , W�∞
γ = γW�∞ , and V �∞

γ = ∫
dDr n�∞ (r)v�∞ (r/γ )
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yields the VT for localized systems, i.e., Eq. (2) becomes

2T �∞ + W�∞ −
∫

�∞
dDr n�∞ (r)r · ∇v�∞ (r) = 0. (5)

But, as we will show, Eq. (4) is not a valid starting point for
deriving the VT for periodic systems. The problem of deriving
the general VT via UCS has also been pointed out elsewhere
[15,16]. Despite that fact, just the VT for localized systems has
been used to derive the exact properties of the XC functional
[6], upon which most nonempirical approximations rely.

In this Rapid Communication we (i) pinpoint the mathe-
matical difficulties of deriving the VT via UCS for periodic
systems, (ii) consequently, introduce a scaling technique
that resolves the mathematical issues of UCS and derive
the most general form of the VT, (iii) derive fundamental
scaling relations that steer the construction of functional
approximations, (iv) find that the adiabatic connection remains
unchanged for periodic systems, and (v) generalize the derived
VT to finite temperature.

The key difference of localized versus periodic systems
is in the treatment of the external potential. To show that
we consider a scaling factor, arbitrarily close to 1, i.e.,
γM = (M + 1)/M with M ∈ N and M � 1. For localized
systems, M can be chosen to be sufficiently large such that
the difference between the scaled and unscaled wave function
becomes significant only at very large distances away from
the center of mass of the atom or molecule not affecting the
energy expectation value. Contrarily, this is generally not valid
anymore in the case of periodic systems where the expectation
values are evaluated on a finite volume �1. Scaling the wave
function, then, defines a Born–von Karman cell of the size ML,
where L is the size of the chemical unit cell determined by the
positions of the nuclei. This is shown for a one-dimensional
system in Fig. 1. The external potential energy per unit cell
evaluated on scaled wave functions then becomes

uL
M+1
M

= M + 1

M2

∫ ML

0
dx n

(
M + 1

M
x

)
vL(x). (6)

Considering a particular unit cell (denoted by index i), the
electronic density with a scaled argument n(x(M + 1)/M) is
related to a density with an appropriately shifted argument
n(x + iL/M); by construction, these densities coincide at one
border of the unit cell and their overall difference is of the
order of 1/M . Therefore the external potential energy per unit

FIG. 1. (Color online) Sketch of coordinate-scaled densities on
an unscaled external potential. Born–von Karman cells are denoted
by the gray-shaded areas.

cell is

uL
M+1
M

= M + 1

ML

M∑
i=1

L

M

∫ L

0
dx n

(
x + i

L

M

)
vL(x) (7)

up to corrections of order O(1/M). In the limit M → ∞ the
sum becomes an integral and

lim
M→∞

uL
M+1
M

= n

∫ L

0
dx vL(x), (8)

where n is the average density. In general, Eq. (8) is not equal
to the expectation value of the external potential evaluated
on the unscaled wave function, i.e., while the kinetic and
interelectronic interaction energy change smoothly with γ ,
the external potential energy and consequently the total energy
are discontinuous at γ = 1. This poses a problem, because it
implies that

∂γ E
�1
γ,UCS

∣∣
γ=1 = ∂γ

〈
��1

γ

∣∣Ĥ�1
∣∣��1

γ

〉
�1

∣∣
γ=1

/
M (9)

is an illegitimate starting point for deriving the VT in the case
of periodic systems. This problem shows up every time an r
operator appears as in Eq. (5), making integration ill defined
for periodic systems—a well-known fact that has also been
addressed in the modern theory of polarization [17].

To cure this problem, we introduce the methodology of
uniform coordinate and potential scaling (UCPS) under which
we recover the differentiability of E

�1
γ,UCS at γ = 1 essentially

by scaling the external potential V̂ �1 . In detail, UCPS means
the following: The electronic coordinate and wave function
change according to UCS. Accordingly the external potential
is scaled such that its periodicity coincides with the scaled
wave function, V̂ �1 → V̂ �γ . The periodicity of a scaled
wave function and the scaled external potential coincide and
consequently Eq. (6) is a smooth function of γ [18]. It is useful
to translate the concept of scaling to operators. The identity〈

��1
γ

∣∣Ôγ

∣∣��1
γ

〉
�γ

= 〈
�

�1
1

∣∣Ô∣∣��1
1

〉
�1

(10)

defines a scaled operator Ôγ , where we denote unscaled (γ =
1) quantities explicitly by a subscript. The scaled operators for
the kinetic and interelectronic interaction energy are simply
related to their unscaled counterparts via

T̂γ = T̂ /γ 2, Ŵγ = Ŵ/γ. (11)

The spatial kernel of the external potential operator scales
according to v

�γ

γ (r) = v�γ (γ r).
We now apply UCPS and obtain a well-defined expectation

value

E�1
γ = 〈

��1
γ

∣∣Ĥ�γ
∣∣��1

γ

〉
�γ

= 〈
�

�1
1

∣∣Ĥ�γ

1/γ

∣∣��1
1

〉
�1

, (12)

where the last equality follows from Eq. (10). Due to the
scaling of the external potential the derivative with respect
to γ does now exist at γ = 1, but, in contrast to the case of
localized systems, it does not vanish in general. This is due to
the fact that ��1

γ is defined on a different volume �γ for each
γ and therefore the extremum principle cannot be applied.
However, we can relate the derivative with respect to the scale
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parameter to the pressure P of the system,

− P = lim
ε→0

1

ε

(
E

�1+ε
1 − E

�1
1

)
, (13)

where E
�1+ε
1 = 〈��1+ε

1 |Ĥ�1+ε|��1+ε
1 〉�1+ε and E

�1
1 =

〈��1
1 |Ĥ�1 |��1

1 〉�1 . Since �
�1+ε
1 and �

�1
1 are defined on

different volumes, this complicates the use of perturbation
theory. A way out of this dilemma is found by applying
Eq. (10) to E

�1+ε
1 with the scale factor

γ̃ = [(�1 + ε)/(�1)]D. (14)

Then, E
�1+ε
1 can be calculated as the first order correction

to E
�1
1 under the perturbation �Ĥ = Ĥ

�γ̃

γ̃ − Ĥ
�1
1 . Since we

have ensured that the first order derivative with respect to γ

exists, we find

∂γ E�1
γ

∣∣
γ=1 = −D �1∂�E�

1

∣∣
�=�1

. (15)

Alternatively, this can be written as

2T �1 + W�1 +
∫

�1

dDr n�1 (r) ∂γ v�γ (r/γ )|γ=1

= −D �1 ∂�E�
1 |�=�1 , (16)

which reduces to Eq. (2) for Coulombic matter. Both Eqs. (15)
and (16), relating the change of the energy under a change of
volume with a change in the scale parameter, yield the most
general expression for the VT. This is one of our main results.

We demonstrate the consistency of the VT for periodic
systems that we just derived with an elementary example
of a solid explicitly. Consider the simplified Kronig-Penney
model [19]—a one-dimensional lattice of Dirac delta functions
of strength α separated by a distance L—given by the
Hamiltonian

H (x) = −1

2
∂2
x − α

L

∑
ν

δ(x − L(ν − 1/2)). (17)

A simple solution for positive energies is φ(x) ∝ cos(qx/L),
where q is determined from q = q cos(q) − α sin(q). For a
single particle in this state the energy is

EL
1 = q2/(2L2). (18)

The expectation values of the scaled kinetic and potential
energy are related to the unscaled quantities simply by〈

φL
γ

∣∣T̂ ∣∣φL
γ

〉
Lγ

= γ 2
〈
φL

1

∣∣T̂ ∣∣φL
1

〉
L
, (19)

〈
φL

γ

∣∣V̂ Lγ |φγ 〉Lγ
= γ 2

〈
φL

1

∣∣V̂ L
∣∣φL

1

〉
L
. (20)

Due to the specific form of the external potential there is a
quadratic dependence on the scaling parameter relating the
scaled and unscaled potential energy. Now we explicitly check
Eq. (15). With Eqs. (18)–(20), the left-hand side yields

∂γ EL
γ

∣∣
γ=1 = q2/L2. (21)

Using Eq. (18), the RHS of Eq. (15) is then simply shown to
be identical to Eq. (21).

In the framework of DFT, as was mentioned before, only
the VT for localized systems has been considered. Equipped
with our scaling technique we are now able to derive the exact

properties of the XC functional valid for periodic systems. We
apply Eq. (15) to an interacting and a noninteracting system
(KS system) of the same density. Taking the difference of two
VTs and thereby expressing the interelectronic interaction in
terms of KS quantities, i.e., W�1 = U�1 + E

�1
XC − T

�1
C , yields

T
�1

C + U�1 + E
�1
XC + D �1 ∂�

(
E�

1 − E�
S

)∣∣
�=�1

= −
∫

�1

dDr n�1 (r)∂γ

[
v�γ

(
r
γ

)
− v

�γ

S

(
r
γ

)]∣∣∣∣
γ=1

, (22)

where U�1 denotes the Hartree, E
�1
XC the XC, and T

�1
C =

T �1 − T
�1

S the kinetic correlation energies. The KS and
external potential are scaled along the lines of Eq. (10) and

v
�1
S (r) − v�1 (r) = v

�1
XC(r) + v

�1
H (r), (23)

where v
�1
XC(r) = δE

�1
XC/δn(r) denotes the XC potential and

vH(r) = ∫
�∞

dDr ′ n�1 (r′)/|r − r′| the Hartree potential. With
Eq. (23) and using the fact that all terms containing Hartree
and exchange contributions cancel each other, we obtain the
following virial relation for the kinetic correlation energy:

T
�1

C = −E
�1
C +

∫
�1

dDr n�1 (r) ∂γ v
�γ

C (r/γ )|γ=1

−D�1∂�

[
E�

C −
∫

�

dDr n�(r)v�
C (r)

]∣∣∣∣
�=�1

. (24)

The analysis of the slowly varying limit of Eq. (24) sheds
some light on the differences in the present work with the
previous ones. For this, we need to use that ∂γ v

�γ

C (r/γ )|γ=1 ≈
∂γ v

�γ

C (r)|γ=1 = −D �1∂�v�
C (r)|�=�1 , which is exact for the

HEG, and approximately valid for systems with a slowly
varying density. In this limit, Eq. (24) may be accordingly
expressed as

T
�1

C ≈ −E
�1
C − D�1∂�E�

C

∣∣
�=�1

+D�1

[
∂�

∫
�

dDr n�1 (r)v�1
C (r)

]∣∣∣∣
�=�1

+D�1

∫
�1

dDr[∂�n�(r)|�=�1 ] v
�1
C (r). (25)

For the HEG case, n�(r) = n� = N/�, and v�
C (r) = v�

C =
vC(n�); the last two terms on the RHS cancel with each other,
while the second term may be expressed as in Eq. (2), using that
�1 = 4πr3

s /3N . For the evaluation of Eq. (25) in the LDA, one
needs to consider that E�

C = ∫
�

dDr n�(r)εC[n�(r)], and that
v�

C (r) = vC[n�(r)]. Proceeding along the lines of Ref. [20],
we obtain the following well-known expression of Levy and
Perdew (LP) [6],

T
�1

C ≈ −4 E
�1
C + 3

∫
�1

d3r n�1 (r)vC[n�1 (r)]. (26)

Equation (26), whose local version reads tC[n�1 (r)] =
−4 εC[n�1 (r)] + 3 vC[n�1 (r)], has been obtained in Ref. [6]
restricting the analysis to the case of localized systems, where,
as discussed above, the normalization volume can be taken as
�∞ and then is not affected by scaling. Here, proceeding
from the extended or periodic scenario, we have arrived
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TABLE I. Numerical values for the kinetic correlation energy TC

in Eq. (24), computed for a set of realistic periodic systems [21]
in LDA and GGA. All values are given in Ry/formula unit. �TC

is the difference between this exact form and the approximate one
derived by Levy and Perdew [Eq. (26)] evaluated on LDA quantities
(energies, densities, and potentials). The already excellent agreement
further improves (see �T ∗

C ) by including GGA corrections on vC

using the PBE XC functional (this difference is of the same order of
magnitude of the estimated numerical accuracy of the calculations
and therefore should be read as zero).

TC �TC/10−2 �T ∗
C /10−5

Pressure 200 GPa 200 GPa 200 GPa

Diamond 12.65 13.83 −2.12 −1.49 8.46 11.2
LiF 10.99 14.14 −1.19 −1.53 8.20 10.5
Graphite 3.80 4.62 −0.99 −1.10 − 0.31 − 0.46
LiFeAs 4.65 4.78 −0.20 −0.29 3.36 3.41
Ar 4.62 5.56 −0.58 −0.83 4.17 5.01
PdH 9.78 10.49 −1.33 −1.83 26.3 27.6
NaCl 14.57 20.29 −1.13 −2.36 5.17 7.29

to the same result. This is, however, reasonable, since the
distinction between a system as localized or extended becomes
progressively less clear as the system approaches the truly
slowly varying limit. Note, however, that the HEG limit cannot
be reached under the assumptions of Ref. [6], while it is exactly
reproduced by our general approach.

The expression in Eq. (24) for the kinetic correlation energy
derived in this work is formally exact and equally valid for
extended and localized systems, for both slowly and rapidly
varying densities. We compare the exact expression in Eq. (24)
with the LP simplified form given in Eq. (26) by computing
their difference for a set of real crystals of different chemical
properties at low and high pressure [21]. In Table I we evaluate
the difference between Eqs. (24) and (26) on LDA (�TC) and
GGA (�T ∗

C ) quantities (energies, densities, and potentials).
As shown in Table I, the difference within LDA is very small,
of the order of 10−2 Ry per formula unit. This difference is
hardly relevant for chemical application, and does not increase
even when high pressure is applied. When we turn to the GGA
results, the difference in TC goes further down, by two orders of
magnitude (below the estimated numerical error). This means
that just by including the gradient corrections to vC the LP
formula gives essentially the exact TC. Note, however, that
according to Eq. (9) in Ref. [20], the correct GGA for the
kinetic correlation energy has more contributions than just
those obtained from replacing EC and vC by the corresponding
GGA quantities in Eq. (26).

We note in passing that the very important adiabatic
connection formula [22], which gives the XC energy func-
tional as a coupling-constant integral of the coupling-constant
dependent expectation value of the interelectronic interaction
[W in Eq. (1)], remains unchanged for periodic systems,
since the adiabatic coupling-constant technique employed in
its derivation does not change the periodicity of the density and
Hamiltonian. This is consistent with the fact that the coupling-
constant wave function may be expressed as ��1

γ [n1/γ ], which
does not leave the domain of the Hamiltonian.

Equation (15) is valid not only for the ground state, but
for all eigenstates �

�1
i of Ĥ�1 . This enables us to derive

corresponding versions of Eq. (15) for canonical and grand-
canonical ensembles in the following.

Considering the canonical ensemble first, the equilibrium
is defined as the state with minimal free energy F�1 =
E�1 − 1/βS�1 , where S�1 is the entropy and β = 1/(kBτ )
is a measure for the temperature τ , kB being Boltzmann’s
constant. A general quantum state is described by a statistical
density operator �̂�1 , a weighted sum of projection operators
on the underlying Hilbert space �̂�1 = ∑

i w
�1
i |��1

i 〉〈��1
i |

(w�1
i > 0,

∑
i w

�1
i = 1). The minimizing weights are then

given by w
�1
i = e−βE

�1
i /Z, where E

�1
i is the ith eigenvalue

of Ĥ�1 and Z is the normalization constant, i.e., the partition
function. This, in connection with Eq. (12), leads to the
following definition for the free energy in UCPS:

F�1
γ =

∑
i

[
w

�1
i

〈
�

�1
i γ

∣∣Ĥ�γ
∣∣��1

i γ

〉 + ln
(
w

�1
i

)]
. (27)

A coordinate scaling of the wave functions does not affect
the weights w

�1
i and therefore leaves the entropic contribution

invariant. Furthermore, Eq. (27), by definition, is minimal for
the particular choice of weights. The derivative with respect
to volume therefore only yields contributions from the volume
dependence of the energy expectation value. Combining these
two findings we are lead to

∂γ F�1
γ

∣∣
γ=1 = −D �1∂�F�

1

∣∣
�=�1

, (28)

which is the equivalent of Eq. (15) for canonical ensembles.
The same arguments can also be applied to the case

of grand-canonical ensembles and its main thermodynamic
variable, the grand potential ��1 = E�1 − μN − 1/βS�1 ,
where the additional coupling to a particle bath is governed by
the chemical potential μ, N being the particle number,

∂γ ��1
γ

∣∣
γ=1 = −D �1∂���

1

∣∣
�=�1

. (29)

In this work we present the theoretical formalism of uniform
coordinate and potential scaling in order to tackle a long-
standing problem in DFT: the formulation of a correct VT
valid both for molecular (localized) systems and for infinite
periodic solids. However, our numerical implementation and
calculation for a set of realisitic periodic systems shows that
corrections by our exact formulation are extremely small. And,
hence, the localized form of the VT in the slowly varying
limit is sufficiently accurate for solid state applications. Still
there could be exotic cases in which the corrections become
relevant. Moreover, our scaling technique may find application
in describing properties of extended periodic systems at finite
temperature, such as phase transitions.
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