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We generalize the derivative expansion (DE) approach to the interaction between almost-flat smooth
surfaces, to the case of surfaces which are optimally described in cylindrical coordinates. As in the original
form of the DE, the obtained method does not depend on the nature of the interaction. We apply our results
to the study of the static, zero-temperature Casimir effect between two cylindrical surfaces, obtaining
approximate expressions which are reliable under the assumption that the distance between those surfaces
is always much smaller than their local curvature radii. To obtain the zero-point energy, we apply known
results about the thermal Casimir effect for a planar geometry. To that effect, we relate the time coordinate
in the latter to the angular variable in the cylindrical case, as well as the temperature to the radius of the
cylinders. We study the dependence of the applicability of the DE on the kind of interaction, considering the
particular cases where Dirichlet or Neumann conditions are applied to a scalar field.
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I. INTRODUCTION

The Casimir effect has been justly regarded as one of the
most startling macroscopic manifestations of fluctuations,
be them quantum mechanical or thermal, of a field [1].
To make predictions about the Casimir effect, typically

involves evaluating the influence of nontrivial boundary
conditions on the vacuum (or thermal) expectation values of
the relevant observables. That task is, except when highly
symmetrical geometries are considered, rather involved. One
of the main reasons for that is that those expectation values
usually do not satisfy a superposition principle, when
regarded as functionals of the boundary. Thus, it is not
possible, in general, to calculate the total energy in the
presence of a given boundary, by adding the contributions
due to each one of the possible pairs of surface elements into
which the boundary may be decomposed [2]. As a conse-
quence, rather few “universal” (i.e., applicable to an arbitrary
surface) properties of the Casimir effect are known.
The motivation to develop approximate methods to deal

with rather general geometries hardly needs to be emphas-
ised. One of those methods, of much wider applicability
than the Casimir effect, is the so called proximity force
approximation (PFA), originally introduced by B. Derjaguin
in 1934 [3], within the context of the interaction between
interfaces. This method has subsequently been applied to
several unrelated areas, like nuclear physics [4,5], Van der
Waals interactions and, lately, the Casimir effect [1], with
varying degree of success.
In its most frequently used version, the PFA is applied to

a setup consisting of two interacting surfaces, L and R, such

that L is assumed to be a plane, and R, which (also by
assumption) can be represented by means of a single
function, ψðx∥Þ, the height of R at each point x∥ of L.
Then, EPFA, the PFA approximation to the interaction

energy E between the surfaces, is:

EPFA ≡
Z

dσE∥½ψðx∥Þ�; ð1Þ

where dσ is the area element at a point x∥ on L, and E∥ðhÞ
denotes the energy per unit area for two parallel surfaces,
i.e., for ψðx∥Þ≡ h, where h is a constant.1

Until quite recently, there were no known controlled
ways of generalizing the PFA, so as to include shape-
dependent corrections in an ordered perturbative expansion.
A step in that direction has been taken with the introduction
of the derivative expansion (DE) [6–10], an approach that
leads to a modification of (1) whereby the surface energy
density function includes derivatives of ψ , meant to account
for a dependence on the surface’s local curvature.
Successive terms in the expansion have an increasing
numbers of derivatives of ψ ; the PFA being reinterpreted
as the zeroth (leading) order term in that expansion.
This kind of approach is quite independent of the nature

of the interaction, what makes its potential range of
applicability rather wide. However, the implementation
of the DE for surfaces that cannot be described by using
a single Monge patch is problematic, in part because of the
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1The approximation above can be generalized to two curved
surfaces whenever they may be both represented by two func-
tions, ψL, ψR, which measure the respective height about a
common reference surface.
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seemingly important role played by the Fourier trans-
formation of the distance function ψ , when written in
Cartesian coordinates [11], and also because of the different
topology of the manifolds. This article presents an answer
to that point, for the specific case of two cylindrical
surfaces. Besides implementing the DE, we also show that
the functions that define it may be derived from known
results obtained for a planar system at a finite temperature
[10], by relating the periodicity of the imaginary time to the
one of the angular variable.
Next-to-leading order corrections to the PFA have

already been calculated for particular cases of almost-
cylindrical surfaces, for instance, in [12,13]. This kind of
geometry is also interesting from the experimental point of
view, since it can be used to create configurations that allow
us to measure lateral Casimir forces, as it is analyzed in
these references.
This paper is organized as follows: in Sec. II, after briefly

reviewing the DE in its usual, single Monge patch formu-
lation in II A, we present in II B the analogous construction
for cylindrical surfaces. Technical details of the derivation
are presented in an Appendix.
In Sec. III, we apply the DE to the Casimir energy for a

quantum real scalar field satisfying either Dirichlet or
Neumann conditions. Finally, in Sec. IV, we summarize
our conclusions.

II. THE DERIVATIVE EXPANSION

A. Standard formularion

We begin by reviewing the main features of the DE in its
simplest setup: two surfaces, L and R, as the ones
mentioned in the previous Section. More specifically, we
assume that a Cartesian coordinate system has been chosen
such that L and R occupy the regions (subsets of R3) given
by: sL ≡ fðx1; x2; 0Þg and sR ¼ fðx1; x2;ψðx∥ÞÞg, respec-
tively. Here, x∥ ≡ ðx1; x2Þ and ψ is a smooth function of x∥.
Let F½ψ � denote the interaction energy between the two
surfaces (not necessarily originated in the Casimir effect)
written as a functional of ψ . The DE yields an approxi-
mation to F as a series of local terms, ordered according to
their increasing number of derivatives of ψ . Up to the
second order2:

F½ψ � ¼ F0½ψ � þ F2½ψ � þ � � � ð2Þ
with

F0½ψ �¼
Z
x∥

Vðψðx∥ÞÞ; F2½ψ �¼
Z
x∥

Zðψðx∥ÞÞj∇ψ j2 ð3Þ

(see, for example, [11]).

Once the functions V and Z are determined, by any
suitable method, the previous equations may then be used
to obtain approximate values for the interaction energy
between surfaces having different geometries, namely,
defined by different functions ψ .
One can see that the zeroth order term F0½ψ � above does

reduce to the PFA. Indeed, considering a (temporarily)
finite integration area S, and a constant ψðx∥Þ ¼ a, all the
terms but the first one vanish. Hence, the function V may be
determined as follows:

VðaÞ ¼ lim
S→∞

�
F½a�
S

�
: ð4Þ

Thus,

F0½ψ � ¼
Z
xjj
Vðψðx∥ÞÞ; ð5Þ

which agrees, mutatis mutandis with the PFA (1).
The next-to-leading-order (NTLO) term F2, is in turn

determined by the Z function, which may be obtained in an
analogous way. For, example, one can evaluate F½ψ � for
ψðx∥Þ ¼ aþ ηðx∥Þ, where η is a function of x∥, whose
mean value is 0, while a is the average distance between the
two surfaces. Expanding F up to the second order in η, Z
may be extracted from the second order term in a
momentum expansion of the Fourier transform of F [11].

B. DE for cylindrical surfaces

We present here the conventions and results about the
DE, when applied to cylindrical surfaces, assuming their
geometries may be naturally described in terms of cylin-
drical coordinates ðρ;φ; zÞ. Details regarding the derivation
of this result are presented in the Appendix.
The geometry corresponds again to two surfaces, which

we now denote by I and O. We retain the property that one
of them is a coordinate surface, and the other can be defined
by giving the distance of each one of its points to the first
one. Indeed, we assume now sI to be a constant-ρ
coordinate surface, namely, a circular cylinder of radius
ρ ¼ a, while R occupies a region sO such that, for any
given value of φ and z, its radius is determined by a single
function ψ : ρ ¼ ψðφ; zÞ. As in the previous subsection, we
decompose ψ into its average and its departure about
it: ψðφ; zÞ ¼ bþ ηðφ; zÞ.
The procedure outlined in the Appendix shows that the

DE, up to the second order, is given by the expression:

F½ψ � ¼ F0½ψ � þ F2½ψ � þ � � � ð6Þ

where

F0½ψ � ¼
Z
x
bF 0ðbþ ηðxÞÞ ð7Þ

2Although in principle one could consider an arbitrary number
of orders, the number of terms involved and the complexity
involved in their calculation grows rather fast.
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and

F2½ψ � ¼
Z
x
fZ1ðψðxÞÞð∂zψÞ2 þ Z2ðψðxÞÞð∂φψÞ2

þ Z12ðψðxÞÞð∂φψÞð∂zψÞg: ð8Þ
This result relies upon the same assumptions as the
Cartesian case, except for an extra condition, namely, that
ψ and its derivatives are periodic functions of the angular
variable. Besides, we have kept a mixed term involving
derivatives with respect to the angle and z. The reason to
keep that term is that one might want to apply the
approximation to systems where an external field breaks,
for example, the invariance under φ → −φ. One may
imagine, for example, the existence of an external magnetic
field along z. When there are sufficient symmetries, that
term will of course vanish.

III. APPLICATIONS

In this section, we apply the DE for cylindrical surfaces
to the interaction energy resulting from the Casimir energy
for a real scalar field. We work within the functional
integral approach, in the imaginary time formulation, where
the spacetime metric becomes the identity matrix when
Cartesian coordinates x ¼ ðx0; x1; x2; x3Þ are adopted, x0
denoting the Euclidean (imaginary) time. Spatial coordi-
nates are denoted collectively by x.
The vacuum energy, which we shall denote by E0, may

be obtained as the zero-temperature limit of the free energy
(see, e.g., [14]), by means of the expression

E0 ¼ − lim
β→∞

β−1 logZ; ð9Þ

where Z denotes the canonical partition function for a
temperature T ¼ β−1 (natural units where kB ¼ 1 have
been adopted). This expression must not be mistaken for
the energy of the free vacuum, since boundary conditions
may—and will—be included in Z.
To include such boundary conditions, we will use two

δ-functionals: δI and δO, respectively. Z, which will be a
functional of ψ , can then be written as follows:

Z½ψ � ¼
Z

DϕδI½ϕ�δO½ϕ�e−S0½ϕ�; ð10Þ

where the integral is over ϕ configurations which are
periodic in the time interval ½− β

2
; β
2
�, and S0½ϕ� is the free

Euclidean action. This shall be given by:

S0½ϕ� ¼
1

2

Z
d4xð∂ϕÞ2; ð11Þ

where the x0 integral runs from − β
2
to þ β

2
. Similarly, we

define Z0 as the partition function when no boundary
conditions are applied.

A. Scalar field with Dirichlet conditions

We first consider a real scalar field ϕ and approximately
cylindrical surfaces, upon which Dirichlet conditions are
imposed. The world volumes swept by those surfaces will
be parametrized as sI ¼ fðx0;ρcosφ;ρ sinφ; zÞ∶ρ¼ ag and
sO¼fðx0;ρcosφ;ρsinφ;zÞ∶ρ¼ψðφ;zÞg. Here, φ∈ ½−π;πÞ,
x0 ∈ ð−∞;∞Þ, and z ∈ ð−∞;∞Þ.
We assume that ψðφ; zÞ ¼ bþ ηðφ; zÞ, with b > a, and

η a differentiable function such that jηðφ; zÞj ≪ b − a,
∀ φ; z. Following the derivation in the Appendix, we
choose b so that

Z
π

−π
dφ

Z
∞

−∞
dzηðφ; zÞ ¼ 0; ð12Þ

and hence the surface sO is, on average, a cylinder of radius
b, and the first order term in the functional expansion in
powers of η, vanishes.
To impose the condition ϕsI ;sO ¼ 0, we insert in Z½ψ � the

functionals δI½ϕ� and δO½ϕ�, defined in terms of auxiliary
fields ξIðyÞ and ξOðyÞ as:

δI½ϕ� ¼
Z

DξI exp

�
i
Z
y
ξIðyÞϕðyÞδðρ − aÞ

�
ð13Þ

δO½ϕ� ¼
Z

DξO exp

�
i
Z
y

ffiffiffiffiffiffiffiffiffiffiffi
gðyjjÞ

q
ξOðyÞϕðyÞ

δðρ−ψðyjjÞÞ
ρ

�
;

ð14Þ

where y≡ ðx0; ρ;φ; zÞ, yjj≡ðx0;φ;zÞ,
R
y≡

R
π
−πdφ

R∞
−∞dz×R∞

−∞dx0
R∞
0 ρdρ and gðyjjÞ is the determinant of the metric

induced on sO.
Integrating out ϕ, we see that:

Z½ψ �
Z0

¼
Z

DξIDξOexp

�
−
1

2

Z
yjj;y0jj

ξAðyjjÞTABðyjj;y0jjÞξBðy0jjÞ
�
;

ð15Þ

where A and B may be I or O, and TABðyjj; y0jjÞ are the

components of a matrix kernel T , defined as Tðyjj; y0jjÞ ¼
MðyjjÞDðyjj; y0jjÞMðy0jjÞ, with

MðyjjÞ ¼
�a 0

0
ffiffiffiffiffiffiffiffiffiffiffi
gðyjjÞ

q �

¼
�a 0

0
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð∂ϕψÞ2 þ ψ2ð1þ ð∂zψÞ2Þ

q �
; ð16Þ

and Dðyjj; y0jjÞ ¼
�
DII
DOI

DIO
DOO

�
. The latter are
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DIIðyjj; y0jjÞ ¼ hyjj; ajð−∂2Þ−1jy0jj; ai
DIOðyjj; y0jjÞ ¼ hyjj; ajð−∂2Þ−1jy0jj;ψðφ0; z0Þi
DOIðyjj; y0jjÞ ¼ hyjj;ψðφ; zÞjð−∂2Þ−1jy0jj; ai
DOOðyjj; y0jjÞ ¼ hyjj;ψðφ; zÞjð−∂2Þ−1jy0jj;ψðφ0; z0Þi ð17Þ

where hyjj;ρjð−∂2Þ−1jy0jj;ρ0i is the (free) ϕ-field propagator.
Thus, neglecting irrelevant contributions:

E0 ¼ lim
β→∞

1

2β
Tr log T : ð18Þ

In the following subsections, we consider the different
terms in the expansion of (18) in powers of η which are
needed to construct the DE.

1. 0th-order term

To this order, we need to take ψ ≡ b, and find the
resulting matrix elements T . These may be obtained using
the propagator definition explicitly, writing the momenta
kjj ¼ ðk1; k2Þ in polar coordinates, and using the identities

eix cos α ¼
X∞

m¼−∞
imJmðxÞemα ð19Þ

and

Z
∞

0

ds
s

k2
jj þ s2

J2nðsaÞ ¼ InðjkjjjaÞKnðjkjjjaÞ; ð20Þ

which is valid for every n ∈ Z. In these expressions, Jn are
Bessel functions of order n, while In and Kn denote
modified Bessel functions. This leads to the result:

Tðyjj; y0jjÞ ¼
Z
kjj
eikjjðyjj−y0jjÞ 1

2π

X
n

einðφ−φ0Þ ~Tðkjj; nÞ; ð21Þ

with

~Tðkjj; nÞ

¼
� a2InðjkjjjaÞKnðjkjjjaÞ abInðjkjjjaÞKnðjkjjjbÞ
abInðjkjjjaÞKnðjkjjjbÞ b2InðjkjjjbÞKnðjkjjjbÞ

�
;

ð22Þ

and yjj ≡ ðx0; zÞ.
Thus, the interaction energy per unit length El

0 becomes:

El
0 ¼ lim

β→∞;L→∞

1

2βL
Tr log T

¼ 1

2

Z
kjj

X
n

log det ~Tðkjj; nÞ: ð23Þ

Evaluating the determinant, and discarding contributions
which represent self-energy terms (i.e., depending on each
separate surface), we arrive to the result:

El
0 ¼

1

2

Z
kjj

X
n

log

�
1 −

InðjkjjjaÞKnðjkjjjbÞ
InðjkjjjbÞKnðjkjjjaÞ

�
; ð24Þ

which is valid for any a < b. This agrees with the known
result for this case [15].
We know that the energy per unit area corresponding to

the above result should approach the analogous result for a
couple of parallel planes when the cylinders are sufficiently
close to each other. Let us study this now, deriving at an
intermediate step an approximate expression, which is
neither the result for cylinders nor for planes: it will
correspond to planes with a periodic coordinate, related
to the angular variable. When d≡ b − a ≪ a, we can use
the n → ∞ approximations [16,17]:

InðnzÞ ≈
ffiffiffiffiffiffiffiffi
t

2πn

r
enξðzÞ ð25Þ

and

KnðnzÞ ≈
ffiffiffiffiffiffi
πt
2n

r
e−nξðzÞ; ð26Þ

where t ¼ 1ffiffiffiffiffiffiffiffi
1þz2

p and ξðzÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ z2

p
þ logð z

1þ
ffiffiffiffiffiffiffiffi
1þz2

p Þ.
Thus, when d ≪ a, the ratio in (24) can be approximated

as follows

InðjkjjjaÞKnðjkjjjbÞ
InðjkjjjbÞKnðjkjjjaÞ

≈ e2n½ξðz1Þ−ξðz2Þ�

¼e−2nð
ffiffiffiffiffiffiffiffi
1þz2

2

p
−

ffiffiffiffiffiffiffiffi
1þz2

1

p Þe
−2nlog

�
z2
z1

1þ
ffiffiffiffiffiffi
1þz2

1

p
1þ

ffiffiffiffiffiffi
1þz2

2

p
�
;

ð27Þ

with z1 ¼ jkjjja=n and z2 ¼ jkjjjb=n. Next, expanding the
exponents in (27) for d ≪ a, we have found that the most
accurate way to do so is to write the result in terms of d and
r ¼ ðbþ aÞ=2, obtaining:

InðjkjjjaÞKnðjkjjjbÞ
InðjkjjjbÞKnðjkjjjaÞ

≈ e
−2d

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðn=rÞ2þk2

jj
p

: ð28Þ

Therefore,

El
0 ≈

1

2

Z
kjj

X
n

log
�
1 − e

−2d
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðn=rÞ2þk2

jj
p �

; ð29Þ

which is the intermediate expression mentioned above;
indeed, it contains a sum over a discrete “momentum,”
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corresponding to the angular variable. This expression,
when divided by 2πr, yields the energy per unit area E0ðrÞ.
Moreover, it tends to the proper limit, i.e., to the parallel
planes result when r → ∞:

E0ð∞Þ ¼ lim
r→∞

E0ðrÞ ¼
1

2

Z
kjj
log ð1 − e−2djkjjjÞ: ð30Þ

The way in which the limit is reached, may be studied by
considering the difference between these two magnitudes,

E0ðrÞ − E0ð∞Þ

¼ 2r
Z

∞

−∞

1

2π

Z
dt
Z
ðk0;k1Þ

log
�
1 − e−2d

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2
0
þk2

1
−ðϵþitÞ2

p �
e2πrðϵþitÞ − 1

;

ð31Þ

(where we converted the series to an integral), which is not
analytic at r → ∞, since eαx has an essential singularity at
x → ∞. Namely, it is not possible to expand E0ðrÞ − E0ð∞Þ
as a series in powers of 1=r.

2. 2nd order

To obtain the function Z2 in the DE, we evaluate in this
subsection the second order term in the energy. We do this
by applying the analogy between the cylindrical geometry
and a planar system at a finite temperature, in the limit
d ≪ r. The approximation will be checked in the concrete
example for which the exact result is known, namely, that
of eccentric cylinders.
To perform this comparison, we consider the partition

functionsZP½ψ � for approximately flat surfaces described in
Cartesian coordinates, and ZC½ψ �, for cylindrical surfaces:

ZP½ψ �
ZP

0

¼
Z

DξLDξR exp

�
−
1

2

Z
xjj;x0jj

ξAðxjjÞKABðxjj; x0jjÞξBðx0jjÞ
�

ð32Þ

ZC½ψ �
ZC

0

¼
Z

DξIDξO exp

�
−
1

2

Z
yjj;y0jj

ξAðyjjÞTABðyjj; y0jjÞξBðy0jjÞ
�
:

ð33Þ

These expressions are evidently different; indeed, even
since the components of xjj and yjj have different dimen-
sions. To make the comparison less awkward, we replace φ
by xN ¼ rφ ∈ ½−πr; πrÞ. This implies that, at least in the
r → ∞ limit, the two partition functions should agree.

Performing that change of variables in (33), we obtain an
additional r2 factor, which leads to the conclusion that
ZP½ψ �=ZP

0 ¼ ZC½ψ �=ZC
0 is equivalent to the equality

between the kernels

TABðyjj; y0jjÞ
r2

¼ KABðxjj; x0jjÞ: ð34Þ

When r is much larger than d but still finite, the integral of
one of the momenta in the calculation of TAB should be
replaced by a sum over discrete momenta, as it happened
for the 0th order, since one of the coordinates is periodic.
We have at our disposal the calculation for one such
system: two almost planar surfaces at a finite temperature
T. In that kind of system, the fields are periodic in
the imaginary time: x0 ∈ ½−1=2T; 1=2T�, where T is the
temperature. Therefore, to use the results of such calcu-
lation, it is enough to replace β by 2πr.
The second order of ΓP ≡ − logZP, which may be

extracted from [10], is:

Γð2Þ
P ½ψ � ¼ 1

2β

X
n

Z
kjj≡ðk1;k2Þ

fð2Þðn;kjjÞj~ηPðn;kjjÞj2; ð35Þ

with

~ηPðn;kjjÞ ¼
Z
ðx0;x1;x2Þ≡ðx0;xjjÞ

ηPðx0;xjjÞe−ikjj:xjje−iðn=rÞx0

ð36Þ

and

fð2Þðn;kjjÞ ¼ −
1

πrd4
X
m

Z
pjj≡ðp1;p2Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðmd=rÞ2 þ p2

jj
q

×
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½ðmþ nÞd=r�2 þ ðpjj þ ljjÞ2

q

×
1

1 − e
−2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðmd=rÞ2þp2

jj
p

×
1

e2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½ðmþnÞd=r�2þðpjjþljjÞ2

p
− 1

; ð37Þ

with ljj ¼ dkjj.
Let us apply (III A 2) to a concrete example, that of two

eccentric cylinders. This will allow us to find the explicit
form of the function Z2 involved in the proposed DE. We
consider the external cylinder to be perturbed by a function
ηCðφÞ ¼ ϵ cosφ. In the limit ϵ ≪ d, this describes two
slightly eccentric cylinders, whose axes are separated by a
distance ϵ.
To obtain the interaction energy, we need ~ηPðn;kjjÞ.

Setting ηCðφÞ ¼ ηPðxNÞ, we see that

j~ηPðn;kjjÞj2 ¼ ð2πÞ2r2L2δðkjjÞπ2ϵ2ðδn;1 þ δn;−1Þ: ð38Þ
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Thus:

lim
L→∞

Γð2Þ
P ½ψ �
L2

¼ πr
4
ϵ2½fð2Þð1; 0Þ þ fð2Þð−1; 0Þ�: ð39Þ

Then we can use polar coordinates to perform the integral
over pjj in Eq. (37). Defining ρ ¼ x=ðα − 1Þ, with α ¼ b=a,
we may then write the second order in η of the interaction
energy per unit length, as

Eð2Þl
0 ½ψ � ¼ −

ϵ2

8πa4
X
m

Z
∞

0

dρ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½2m=ðαþ 1Þ�2 þ ρ2

p
1 − e−2ðα−1Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½2m=ðαþ1Þ�2þρ2

p

×

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½2ðmþ 1Þ=ðαþ 1Þ�2 þ ρ2

p
e2ðα−1Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½2ðmþ1Þ=ðαþ1Þ�2þρ2

p
− 1

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½2ðm − 1Þ=ðαþ 1Þ�2 þ ρ2

p
e2ðα−1Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½2ðm−1Þ=ðαþ1Þ�2þρ2

p
− 1

�
; ð40Þ

which in the limit α ≈ 1 (d ≪ r) reduces to:

Eð2Þl
0 ½ψ �¼−

ϵ2

8πa4
X
m

Z
∞

0

dρ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2þρ2

p
1−e−2ðα−1Þ

ffiffiffiffiffiffiffiffiffiffi
m2þρ2

p

×

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðmþ1Þ2þρ2

p
e2ðα−1Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðmþ1Þ2þρ2

p
−1

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðm−1Þ2þρ2

p
e2ðα−1Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðm−1Þ2þρ2

p
−1

�
:

ð41Þ

The value of Eð2Þl½ψ � thus obtained may be compared
with the second order term which follows from the exact
result in [15], where it is denoted as ETM=L, since it
corresponds to the transverse magnetic mode of the EM
field. The second order of this exact solution is given by:

ETMð2Þ

L
¼ −

ϵ2

4πa4
X
n

Z
∞

0

dρρ3
1

1 −DTM;cc
n;n

×

�
DTM

n þ N TM
n

1 −DTM;cc
nþ1;nþ1

�
; ð42Þ

where

DTM
n ¼DTM;cc

n;n

2
þ InðρÞ
4KnðρÞ

�
Kn−1ðαρÞ
In−1ðαρÞ

þKnþ1ðαρÞ
Inþ1ðαρÞ

�
ð43Þ

N TM
n ¼ InðρÞInþ1ðρÞ

4KnðρÞKnþ1ðρÞ
�
Kn1ðαρÞ
In1ðαρÞ

þKnþ1ðαρÞ
Inþ1ðαρÞ

�
2

ð44Þ

DTM;cc
n;n ¼ InðρÞKnðαρÞ

KnðρÞInðαρÞ
; ð45Þ

and where ϵ is again the eccentricity of the cylinders. To
perform the comparison with our approximate expression,
we first divided them by ϵ2=a4.

Performing the sums and integrals numerically, we have
found that while (40) is indeed a better approximation than
(41) for α ¼ 1.1 and bigger, they are quite similar for
smaller values. In Table I, we show the comparison
between (41) and (42). The error in the approximate
expression decreases when α → 1, staying below 0.3%
when α < 1.01.
Finally, let us obtain the function Z2 of the DE for this

case, based also on the example of eccentric cylinders. For
ψ ¼ ψðφÞ, this expansion reduces to:

E0½ψ � ¼
Z

2π

0

dφ

�
VðψðφÞÞ þ Z2ðψðφÞÞ

�∂ψ
∂φ

�
2
�
: ð46Þ

Now, setting ψðφÞ ¼ bþ ηðφÞ, with jηj ≪ b − a, and
expanding up to second order in η:

E0½bþ η�≃
Z

2π

0

dφ

�
VðbÞ þ V 0ðbÞηðφÞ þ 1

2
V 00ðbÞη2ðφÞ

þ Z2ðbÞ
�∂η
∂φ

�
2
�
: ð47Þ

Setting now ηðφÞ ¼ ϵ cosφ, we arrive to:

E0½ψ �≃ 2πVðbÞ þ πϵ2

2
V 00ðbÞ þ πϵ2Z2ðbÞ: ð48Þ

Hence we can extract the function Z2ðbÞ:

Z2ðbÞ ¼
1

πϵ2

�
E0½ψ � − 2πVðbÞ − πϵ2

2
V 00ðbÞ

�
: ð49Þ

At this point, it is useful to separate the total energy E0 as a
sum of its different orders in ϵ. Doing so, we can see that
the zeroth-order term equals 2πVðbÞ. Hence, we are left
with the following reduced expression:

Z2ðbÞ ¼
1

πϵ2

�
Eð2Þ
0 ½ψ � − πϵ2

2
V00ðbÞ

�
; ð50Þ

where Eð2Þ
0 ½ψ � is the second order term (in ϵ) of the energy.

TABLE I. Comparison, for different values of α, between (41)
and (42). The fourth column contains the error, defined as:

100 × 2 × ðETMð2Þ=L − Eð2Þl
0 Þ=ðETMð2Þ=Lþ Eð2Þl

0 Þ.
α jEð2Þl

0 j=ðϵ2=a4Þ jETMð2Þ=Lj=ðϵ2=a4Þ Error (%)

1.1 12 933.6 13 557.6 4.7
1.01 6.60 × 108 6.62 × 108 0.3
1.001 7.2034 × 1012 7.2058 × 1012 0.03
1.0001 7.21003 × 1016 7.21012 × 1016 0.001
1.00001 7.21010 × 1020 7.21012 × 1020 0.0003
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At this time, we note that we can extract this term either
from [15], or from the approximation (41). We just need to
evaluate the second derivative of VðbÞ with respect to b.
Using our approximate expression for concentric cylinders
we obtain:

VðbÞ ¼ L
4π

X
n

Z
kjj
log

�
1 − e

−2d
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðn=rÞ2þk2

jj
p �

: ð51Þ

Finally, we arrive to:

V 00ðbÞ ¼ −
L

8π2r4
X
n

Z
∞

0

dρρðρ2 þ n2Þ

× cosech2
�
ðα − 1Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ρ2 þ n2

q �
; ð52Þ

with α ¼ b=a.
Z2ðbÞ may then be obtained by using our results for the

energy.

Z2ðbÞ ¼
L
4π2

X
n

Z
∞

0

dρ

	
ρðρ2 þ n2Þ

4r4
cosech2

�
ðα − 1Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ρ2 þ n2

q �

−
1

2a4

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðmþ 1Þ2 þ ρ2

p
1 − e−2ðα−1Þ

ffiffiffiffiffiffiffiffiffiffi
m2þρ2

p
� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðmþ 1Þ2 þ ρ2
p

e2ðα−1Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðmþ1Þ2þρ2

p
− 1

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðm − 1Þ2 þ ρ2

p
e2ðα−1Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðm−1Þ2þρ2

p
− 1

�

: ð53Þ

To sum up, equations (46), (51) and (53) determine the
second order DE for the Dirichlet case.

B. Scalar field: Neumann conditions

The same calculations can be performed when Neumann
conditions are imposed. For this purpose, we choose the
following boundary conditions:

∂ρϕðyÞjsI ¼ 0 ð54Þ

∂nϕðyÞjsO ¼ 0; ð55Þ

with ∂n ≡ nμ∂μ and ∂μ ≡ ∂
∂xμ, where nμðyjjÞ is a unit vector

perpendicular to sO, and xμ are usual Cartesian coordinates:

nμðyjjÞ ¼
NμðyjjÞ
jNμðyjjÞj

; ð56Þ

with

NμðyjjÞ ¼

8>>><
>>>:

0 ðμ ¼ 0Þ
∂φψ sinφþ ψ cosφ ðμ ¼ 1Þ
−∂φψ cosφþ ψ sinφ ðμ ¼ 2Þ
−ψ∂zψ ðμ ¼ 3Þ

: ð57Þ

Again, we can include the boundary condition using
functionals δI½ϕ� and δO½ϕ�:

δI½ϕ�¼
Z

DξI exp

�
i
Z
y
ξIðyÞδðρ−aÞ∂ρϕðyÞ

�

δO½ϕ�¼
Z
DξOexp

�
i
Z
y

ffiffiffiffiffiffiffiffiffiffiffi
gðyjjÞ

q
ξOðyÞ

δðρ−ψðyjjÞÞ
ρ

∂nϕðyÞ
�
:

ð58Þ

Following analogous steps to those in Sec. III A, Z may be
written in a familiar form:

Z½ψ �
Z0

¼
Z
DξIDξOexp

�
−
1

2

Z
yjj;y0jj

ξAðyjjÞNABðyjj;y0jjÞξBðy0jjÞ
�
;

ð59Þ

where

NIIðyjj; y0jjÞ ¼ a2½∂ρ∂ 0
ρhyjð−∂2Þ−1jy0i�ρ¼ρ0¼a ð60Þ

NIOðyjj; y0jjÞ ¼ a½∂ρ∂ 0
Nhyjð−∂2Þ−1jy0i�ρ¼a;ρ0¼ψðy0jjÞ

ð61Þ

NOIðyjj; y0jjÞ ¼ a½∂N∂ 0
ρhyjð−∂2Þ−1jy0i�ρ¼ψðyjjÞ;ρ0¼a ð62Þ

NOOðyjj; y0jjÞ ¼ ½∂N∂ 0
Nhyjð−∂2Þ−1jy0i�ρ¼ψðyjjÞ;ρ0¼ψðy0jjÞ; ð63Þ

with ∂ 0
ρ ≡ ∂

∂ρ0 and ∂ 0
N ≡ Nμðy0jjÞ∂μ. As before, this allows us

to calculate the first orders in η of the interaction energy.

1. Order 0 in η

We start again with the order 0 in η. Following similar
steps as before, we obtain that the matrix Nðyjj; y0jjÞ may be
written as:

Nðyjj; y0jjÞ ¼
Z
kjj
eikjj:ðyjj−yjjÞ 1

2π

X
n

einðφ−φ0Þ ~Nðn;kjjÞ; ð64Þ

where
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~Nðn;kjjÞ

¼ k2
jj

� a2I0nðjkjjjaÞK0
nðjkjjjaÞ abI0nðjkjjjaÞK0

nðjkjjjbÞ
abI0nðjkjjjaÞK0

nðjkjjjbÞ b2I0nðjkjjjbÞK0
nðjkjjjbÞ

�
:

ð65Þ

This matrix leads to the interaction energy per unit area:

Eð0Þ
0 ¼ 1

4πr

Z
kjj

X
n

log det ~Nðn; jkjjjÞ

¼ 1

4πr

Z
kjj

X
n

log
�
1 −

I0nðjkjjjaÞK0
nðjkjjjbÞ

I0nðjkjjjbÞK0
nðjkjjjaÞ

�
; ð66Þ

which coincides with the exact solution for concentric
cylinders, computed in [15].
On the other hand, one again expects thematricesU andN

to satisfy an analogous relation to (34) in the limit d≪r, i.e.,

Nðyjj; y0jjÞ
r2

≈ Uðxjj; x0jjÞ; ð67Þ

whereU is the equivalent to the matrixK in (32), in the case
whereNeumann conditions are imposed. At order 0 in η, this
relation can be proved approximating theBessel functions as
in (26), which gives:

Nð0Þðyjj; y0jjÞ≈−
r
4π

Z
kjj

X
n

eikjjðyjj−y
0
jjÞjkjjj

�
1 e−djkjjj

e−djkjjj 1

�
;

ð68Þ

where, as before, kjj ≡ ðωn;kjjÞ, withωn ¼ n=r. Finally, we
can use this to calculate the interaction energy per unit
length:

El
0 ≈

1

2

Z
kjj

X
n

log
�
1 − e

−2d
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðn=rÞ2þk2

jj
p �

: ð69Þ

As it happens when Dirichlet conditions are imposed, if we
divide this expression by 2πr and take the limit r → ∞, we
again obtain the energy density per unit area between
parallel planes. On the other hand, Eq. (69) leads to the
same value of El

0 obtained with Dirichlet conditions, in the
limit d ≪ r. Then, in that limit, the energy per unit length of
the electromagnetic field coupled to perfect conductors
shaped as sI and sO must be the following:

ElðEMÞ
0 ¼ ElðDirichletÞ

0 þ ElðNeumannÞ
0 ¼ 2ElðDirichletÞ

0

≈
Z
kjj

X
n

log
�
1 − e

−2d
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðn=rÞ2þk2

jj
p �

; ð70Þ

which coincides with the limit d ≪ r of the exact solution
(see [15]).

2. Order 2 in η

We consider here the second order term. We shall see
that, when Neumann boundary conditions are imposed on
sI and sO, depending on the variables upon which η
depends, the energy can have nonanalytic properties that
may render the DE not applicable in certain cases.
The second order term from ΓP½ψ �, calculated in [10], is

Γð2Þ
P ½ψ � ¼ 1

2β

X
n

Z
kjj
gð2Þðn;kjjÞj~ηPðn;kjjÞj2; ð71Þ

with

gð2Þðn;kjjÞ ¼ −
1

πrd4
X
m

Z
pjj

½mðmþ nÞðd=rÞ2 þ pjj:ðpjj þ ljjÞ�2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðmd=rÞ2 þ p2

jj
q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

½ðmþ nÞd=r�2 þ ðpjj þ ljjÞ2
q

×
1

1 − e
−2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðmd=rÞ2þp2

jj
p 1

e2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½ðmþnÞd=r�2þðpjjþljjÞ2

p
− 1

; ð72Þ

where ljj ¼ dkjj, and β ¼ 2πr as before.
The expansion of gð2Þ close to zero momentum can be

used to obtain the different orders in derivatives of η, which
is not possible if gð2Þðn;kjjÞ is not analytic in a neighbour-
hood of ðn;kjjÞ ¼ ð0; 0Þ. One way to verify this kind of
issue is to study the behavior of the function gð2Þð0;kjjÞ
around kjj ¼ 0. Examining Eq. (72), we can see that the
terms with m ≠ 0 will be analytic, since they are integrals
of quotients of analytic integrable functions that do not
vanish. We still have to see the term with m ¼ 0, for which

we define gðkjjÞ as the term with m ¼ 0 in (72) when
n ¼ 0. Namely,

gðkjjÞ ¼ −
1

πrd4

Z
pjj

½pjj:ðpjj þ ljjÞ�2
jpjjjjpjj þ ljjj

1

1− e−2jpjjj
1

e2jpjjþljjj − 1
:

ð73Þ

A long calculation that involves dimensional regularization
proves that, close to kjj ¼ 0, this function behaves as
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gðkjjÞ ≈ gð0Þ − 1

32π2r

k2
jj

d2
log ðk2

jjd
2Þ þOðk2

jjÞ; ð74Þ

where the term of order k2
jj is finite.

Replacing it in Eq. (71), a term proportional to
k2
jj logðk2

jjd
2Þ would give rise to contributions to the energy

proportional to

Z
xjj

Z
φ;z

ηðφ; zÞ∂2
z log ð−d2∂2

zÞηðφ; zÞ; ð75Þ

and therefore the proposed DE would not be applicable to
this case. If η does not depend on z, however, j~ηPðn;kjjÞj2
results to be proportional to δðkjjÞ, which nullifies the
contribution of terms such as k2

jj logðk2
jjd

2Þ whose limit as

kjj → 0 is 0. Consequently, the applicability of the DE
depends in this case on the analyticity of gð2Þðn; 0Þ as a
function of n. On the other hand, these problems with kjj do
not appear when Dirichlet conditions are fixed, since in that
case the zero-momentum expansion of the function equiv-
alent to gðkjjÞ has only the Oðk2

jjÞ term, apart from the

constant one.

IV. CONCLUSIONS

We have constructed a version of the DE which is
suitable for application to cylindrical surfaces, and for a
rather general interaction. That expansion has then been
applied to the Casimir effect at zero temperature, for a real
scalar field satisfying either Dirichlet or Neumann con-
ditions on two surfaces. We have shown how, in the limit
where the DE yields approximate results, one can deter-
mine the functions appearing in the DE approximation just
from the knowledge of results for planar surfaces at finite
temperature. The role of the temperature is here of course
rather fictitious, since it is used (via the Matsubara
formalism) to have a periodic coordinate. We have checked
numerically the intuitive idea that, when two cylindrical
surfaces are very close in comparison with the curvature
radius, the predictions coming from exact results are
essentially the same as the ones coming from planes with
a periodic coordinate. We may say that, at least to the
second order, the DE is sensitive to the topology (perio-
dicity) of the system, albeit not to the detailed geometry
(the metric tensor).
In the Neumann case, the same known nonanalyticity

found at finite temperature for planes arises. However, one
can also show explicitly that, if the surfaces are translation
invariant in z, the nonanalyticity disappears from the final
expression.
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APPENDIX: DERIVATION OF THE DE
FOR TWO CYLINDRICAL SURFACES

We derive here the DE shown in Sec. II B for cylindrical
surfaces [Eqs. (6) to (8)]. For this, we consider two
surfaces: I, which corresponds to ρ¼a, andO to ψðφ; zÞ ¼
bþ ηðφ; zÞ, with b > a.
As in the case of Cartesian coordinates, we begin by

assuming that the functional F½ψ �, that represents the
interaction energy, may be expanded in a functional
Taylor series:

F½ψ � ¼
X
n≥0

1

n!

Z
x1;…;xn

ΓðnÞðx1;…; xnÞηðx1Þ…ηðxnÞ; ðA1Þ

where we have used a shorthand notation x≡ ðφ; zÞ for the
integration variables. Namely,

Z
x1;…;xn

…≡
Z

∞

−∞
dz1

Z
π

−π
dφ1…

Z
∞

−∞
dzn

Z
π

−π
dφn… ðA2Þ

Since we want to deal with smooth functions, η (and
therefore ψ ) must be 2π-periodic in its angular argument φ.
The functional derivatives evaluated at the expan-

sion point have been denoted by ΓðnÞðx1;…; xnÞ ¼
½ δnF
δηðx1Þ…δηðxnÞ�η≡0

, ∀n ≥ 1, and Γð0Þ ≡ F½b�. Since those

functional derivatives are evaluated at ψ ¼ b, they must
exhibit the same symmetries that leave the geometry of that
system (two concentric circular cylinders) invariant. The
symmetry group contains translations in z and rotations in
φ. Therefore, we conclude that Γð1Þ can only be a constant
function, and that Γð2Þðx1; x2Þ may only depend on the
difference x1 − x2. Furthermore, for n > 2, one can show
that ΓðnÞ may be written in terms of just n − 1 independent
variables, for instance, ðx1 − x2; x2 − x3;…; xn−2 − xn−1;
x1 þ � � � þ xn−1 − ðn − 1ÞxnÞ.
To proceed, as in the case of Cartesian coordinates, we

assume that the radius b has been chosen in such a way thatR
x ηðxÞ ¼ 0; with this choice, the n ¼ 1 term vanishes.
Thus, introducing the Fourier transform of η:

ηðφ; zÞ ¼ 1

2π

X∞
n¼−∞

Z
k
~ηðk; nÞeikzeinφ; ðA3Þ

with
R
k ≡

R∞
−∞

dk
2π, we see that:
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F½ψ �¼F½b�

þ
X
n≥2

1

ð2πÞn
X

m1;…;mn

Z
k1;…;kn

hðnÞðk1;…;kn;m1;…;mnÞ

× ~ηðk1;m1Þ…~ηðkn;mnÞδðk1þ���þknÞ
×δðm1þ���þmnÞ; ðA4Þ

where hðnÞðk1;…; kn; m1;…; mnÞ are the symmetrized
form factors.
Based on the previous expressions, we now deal with the

zeroth and second order terms in the DE (the first order one
vanishes by the proper choice of b).

1. Zeroth order in derivatives

When η becomes sufficiently smooth, ~ηðk;mÞ is con-
centrated around zero momentum, namely, ðk ¼ 0; m ¼ 0Þ.
The leading term in this expansion amounts to keeping just
that component, namely, to replacing in (A4) the form
factors by their zero-momentum limits.
Hence,

F½ψ �≃ F0½ψ �

≡ F½b� þ
X
n≥2

hðnÞð0;…; 0Þ
Z
x1;…;xn

1

ð2πÞn

×
X

m1;…;mn

Z
k1;…;kn

ηðx1Þ…ηðxnÞ

× e−i
P

n
j¼1

kjzje−i
P

n
j¼1

mjφjδðk1 þ � � � þ knÞ
× δðm1 þ � � � þmnÞ: ðA5Þ

By taking into account the presence of the delta functions,
we can perform both the integral over kn and the sum over
mn, obtaining:

F0½ψ � ¼ F½b� þ
Z
x

X
n≥2

hðnÞð0;…; 0Þ
ð2πÞ2 ηðxÞn: ðA6Þ

Let us now deal with the evaluation of the sum

X
n≥2

hðnÞð0;…; 0ÞðηðxÞÞn=ð2πÞ2 ðA7Þ

as a function of x, considering a constant η≡ η0, for which
we get

F 0ðbþ η0Þ ¼ F 0ðbÞ þ
1

b

X
n≥2

hðnÞð0;…; 0Þ
ð2πÞ2 ηn0; ðA8Þ

where F 0ðbÞ denotes the function:

F 0ðbÞ ¼ lim
L→∞

F½b�
Sb;L

; ðA9Þ

where Sb;L denotes the total area of the cylinder r ¼ b and
length L.
Hence, we extract the relation:

1

b

X
n≥2

hðnÞð0;…;0Þ
ð2πÞ2 ηðxÞn¼F 0ðbþηðxÞÞ−F 0ðbÞ: ðA10Þ

Using the expression above in (A6), we see that:

F0½ψ � ¼
Z
x
bF 0ðbþ ηðxÞÞ

¼
Z

π

−π
dφ

Z
∞

−∞
dzbF 0ðbþ ηðφ; zÞÞ: ðA11Þ

Note that the expression above is quite different to the
would-be zeroth order result for the DE based on planar
surfaces. In fact, that would mean to integrate the energy
per unit area for planes, FP

0 , over a planar surface L.
Indeed, for a physical problem described by two surfaces
defined in cylindrical coordinates by ρ ¼ r1 and ρ ¼
r2 þ ηðz;φÞ, this planar PFA yields

FP
0 ¼

Z
S
FP

0 ðr2 þ ηðz;φÞ − r1Þ; ðA12Þ

where S is some intermediate surface, and, clearly, the
result will in general depend on the choice of the surface S.
This is not so for F0.
The reason for the difference between the two

approaches is of course the fact that the density F 0

generally depends on both b and a independently, not just
on their difference like it necessarily happens for FP

0 . As a
simple example of this situation, we recall the case of the
electrostatic interaction between two conducting surfaces,
held at a constant potential difference, where F 0 is a
function of logðb=aÞ.

2. Higher orders

To obtain higher order terms in the expansion in
derivatives, we need the corresponding terms in the
Taylor expansion of the momentum space form factors
at zero momentum. Assuming the expansion is well
defined,

hðnÞðk1;…; kn;m1;…; mnÞ
¼ hðnÞð0;…; 0Þ þ AðnÞiki þ BðnÞimi þ CðnÞijkikj
þDðnÞijmimj þ EðnÞijmikj þ � � � : ðA13Þ

Besides, the variables mi are integers. However, the
analyticity of hðnÞ for mi regarded as real variables is a
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sufficient condition for the validity and unicity of the
expansion (A13).
To study the consequences of (A13), we may first note that

the coefficients CðnÞij and DðnÞij can be regarded as invariant
under the exchange of arbitrary i and j, since they are
multiplied respectively by kikj andmimj. On the other hand,

hðnÞðfkig; fmigÞmust be invariant under the exchange of any
two pairs ðkl; mlÞ and ðks; msÞ. Therefore, using (A13), we
can calculate the difference between hðnÞ and the same factor
when two such pairs are exchanged, up to order 2 in
fmig; fkig. This gives the following relation for every l, s:

0 ¼ ðAl − AsÞðkl − ksÞ þ ðBl − BsÞðml −msÞ þ ðCll − CssÞðklkl − ksksÞ þ 2
X
i≠s;l

kiðkl − ksÞðCil − CisÞ

þ 2
X
i≠s;l

miðml −msÞðDil −DisÞ þ
X
j≠s;l

kjðml −msÞðElj − EsjÞ

þ
X
i≠s;l

½miðkl − ksÞðEil − EisÞ þ ðEls − EslÞðmlks −msklÞ þ ðEll − EssÞðmlkl −msksÞ�; ðA14Þ

where the indices (n) have been omitted. Using this
equation, we can obtain useful relations involving the
coefficients Ai, Bi, Cij, Dij, and Eij. For instance, setting
ki ¼ 0 except for kl and ks, and every mi equal to 0, we
obtain:

0 ¼ ðAl − AsÞðkl − ksÞ þ ðCll −CssÞðklkl − ksksÞ; ðA15Þ

from where Al ¼ As and Cll ¼ Css for every l, s, since
otherwise the functions ðkl − ksÞ and ðklkl − ksksÞ would
be linearly dependent. In a similar fashion, another set of
relations may be obtained:

Al ¼ As; Bl ¼ Bs; Cll ¼ Css; Dll ¼ Dss;

Ell ¼ Ess; Els ¼ Esl ∀ l; s ðA16Þ

Crl ¼ Crs; Drl ¼ Drs;

Erl ¼ Ers ∀ l; s; r=l ≠ s; s ≠ r; l ≠ r: ðA17Þ

Using this result, Eq. (A13) may be rendered as

hðnÞðk1;…;kn;m1;…;mnÞ
¼ hðnÞð0;…;0ÞþAðnÞX

i

kiþBðnÞX
i

mi

þ
�
CðnÞ
1

X
i

kikiþCðnÞ
2

X
i>j

kikjþDðnÞ
1

X
i

mimi

þDðnÞ
2

X
i>j

mimjþEðnÞ
1

X
i

mikiþEðnÞ
2

X
i>j

mikjþmjki
2

�

þ�� � ðA18Þ

Replacing this in Eq. (A4), we can see that the term
hðnÞð0;…; 0Þ gives rise to the functional F0 already
calculated in (4). On the other hand, the linear terms are
multiplied by δðk1 þ � � � þ knÞδðm1 þ…mnÞ, and there-
fore their contribution vanishes. We are finally left with the
order-2 terms, highlighted between brackets in (A18).
Performing analogous steps to those followed in the
previous section, we obtain that these produce a contribu-
tion F2½ψ � given by

F2½ψ � ¼ −
1

ð2πÞ2
X
n≥2

Z
x
½CðnÞ

1 nηðxÞn−1∂2
zηðxÞ þ CðnÞ

2 nðn − 1ÞηðxÞn−2ð∂zηðxÞÞ2 þDðnÞ
1 nηðxÞn−1∂2

φηðxÞ

þDðnÞ
2 nðn − 1ÞηðxÞn−2ð∂φηðxÞÞ2 þ EðnÞ

1 nηðxÞn−1∂z∂φηðxÞ þ EðnÞ
2 nðn − 1ÞηðxÞn−2ð∂zηðxÞÞð∂φηðxÞÞ�: ðA19Þ

Now we can perform an integration by parts of the terms that are proportional to CðnÞ
1 ,DðnÞ

1 and EðnÞ
1 . For instance, for those

proportional to CðnÞ
1 , we may do what follows:

Z
π

−π
dφ

Z
∞

−∞
dzηðxÞn−1∂2

zηðxÞ ¼ −ðn − 1Þ
Z

π

−π
dφ

Z
∞

−∞
dzηðxÞn−2ð∂zηðxÞÞ2 þ

Z
π

−π
dφ½ηðxÞn−1∂zηðxÞ�∞−∞

¼ −ðn − 1Þ
Z

π

−π
dφ

Z
∞

−∞
dzηðxÞn−2ð∂zηðxÞÞ2; ðA20Þ
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if ηðφ; zÞ or ∂zηðφ; zÞ vanish as jzj → ∞. A similar

procedure can be done for the term proportional to DðnÞ
1 ,

in the case that ηðφ; zÞ and ∂φηðφ; zÞ are periodic functions
in φ, with period 2π. Doing the same with the term

proportional to EðnÞ
1 , we arrive to the desired expression

for the order 2 of F½ψ � in derivatives of η:

F2½ψ � ¼
Z
x
fZ1ðψðxÞÞð∂zψÞ2 þ Z2ðψðxÞÞð∂φψÞ2

þ Z12ðψðxÞÞð∂φψÞð∂zψÞg; ðA21Þ

where the functions Z1ðbþ dÞ, Z2ðbþ dÞ and Z12ðbþ dÞ
are defined as:

Z1ðbþ dÞ ¼
X
n≥2

nðn − 1Þ
ð2πÞ2 ½CðnÞ

1 − CðnÞ
2 �dn−2; ðA22Þ

Z2ðbþ dÞ ¼
X
n≥2

nðn − 1Þ
ð2πÞ2 ½DðnÞ

1 −DðnÞ
2 �dn−2; ðA23Þ

Z12ðbþ dÞ ¼
X
n≥2

nðn − 1Þ
ð2πÞ2 ½EðnÞ

1 − EðnÞ
2 �dn−2: ðA24Þ

To calculate these functions in a simpler way, we may
evaluate them for d ¼ 0, which gives us their value in b:

Z1ðbÞ ¼
1

2π2
½Cð2Þ

1 ðbÞ − Cð2Þ
2 ðbÞ�; ðA25Þ

Z2ðbÞ ¼
1

2π2
½Dð2Þ

1 ðbÞ −Dð2Þ
2 ðbÞ�; ðA26Þ

Z12ðbÞ ¼
1

2π2
½Eð2Þ

1 ðbÞ − Eð2Þ
2 ðbÞ�: ðA27Þ

Finally, to obtain the order two of F½ψ �, it is enough to
change b for ψðxÞ in the argument of these functions, and to
replace them in Eq. (A21).
Thus, the second order DE is

F½ψ � ¼
Z
x
bF 0ðbþ ηðxÞÞ

þ
Z
x
fZ1ðψðxÞÞð∂zψÞ2 þ Z2ðψðxÞÞð∂φψÞ2

þ Z12ðψðxÞÞð∂φψÞð∂zψÞg: ðA28Þ

We recall that we have assumed F½ψ � to be analytic (as a
functional) in a neighbourhood of ψ ≡ a as well as the form
factors hðnÞ at zero momenta. On the other hand, η and ∂zη
must tend to 0 as jzj → ∞. Finally, ψ and ∂φψ are periodic
functions of φ, with period 2π. Except for the last
condition, the other are equivalent to those required to
apply the DE in Cartesian coordinates [11]. In addition, the
method provides a tool to calculate the following orders,
namely, by including higher order products of ki and mi in
the expansion (A13).
Note that, from (A28), the order 2 we obtain is not

proportional to the square of the gradient of ψ , as it
happened in Cartesian coordinates. This is because, when
considering the interaction energy between two planes
x3 ¼ 0 and x3 ¼ ψðx1; x2Þ in an isotropic space, the func-
tional F½ψ � must be invariant under rotations in the argu-
ment of ψ , this is, if ðx1; x2ÞT is replaced by R:ðx1; x2ÞT,
with R ∈ SOð2Þ. This symmetry is however lost when
considering functions ψðφ; zÞ, which justifies the mixed
term in (A28). In the presence of extra symmetries (which
may even be discrete), one could of course say more about
the vanishing of one or more terms in DE.
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