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1 INTRODUCTION

Dealing with clique graphs is not an easy task and most of the problems about them
prove complicated. One example is the problem of clique graph recognition: given a
graph, determine whether it is a clique graph or not. This problem has been proved to be
NP-complete [1] and thus, given the state of affairs, no efficient clique graph recognition
algorithm is known.
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Working on iterated clique graphs (graphs obtained by applying the clique operator
to a graph more than once) might be even more difficult and not much is known about
techniques to determine whether a graph is an iterated clique graph or not.

Let G be the class of all graphs, K be the clique operator and K2 be the composition of
K with itself. In view of the previous paragraph, it is not surprising to learn that it was
unknown whether K(G) = K2(G). The main goal of this paper is to prove that O4, the
clique graph of the octahedral graph O3, is in K(G) but not in K2(G), thus establishing
the falseness of the equality.

For that purpose, some definitions and basic properties are given in Section 2, and
the graphs in K−1(O4) are described in Section 3 thanks to the fact that the octahedron
is an induced subgraph of every graph in K−1(O4). A demonstration of the equal-
ity K−1(O4) ∩ K(G) = ∅ that uses the terminology developed in Section 4 follows in
Section 5, thus establishing that O4 �∈ K2(G).

2 DEFINITIONS, BASICS, AND GOALS

For a simple graph G, the set of vertices of G is denoted by V (G), and E(G) denotes
the set of its edges. A graph G′ is a subgraph of G if V (G′) ⊆ V (G) and E(G′) ⊆ E(G).
The subgraph induced by a subset A of V (G), denoted by G[A], has A as vertex set and
two vertices are adjacent in G[A] if and only if they are adjacent in G. We say that G′ is
an induced subgraph of G if there exists a subset A of V (G) such that G[A] = G′.

For a vertex v ∈ V (G), the (closed) neighborhood of v, denoted by N[v] or NG[v], is the
set composed of v and the vertices adjacent to it. If w is another vertex and N[v] = N[w],
then we say that v and w are twins, symbolized by v ∼ w.

Let F be a family of nonempty sets of vertices of a graph. If F ∈ F , then F is called
a member of F . If v ∈ ⋃

F∈F F , then we say that v is a vertex of F . The family F is
Helly if the intersection of all the members of every subfamily of pairwise intersecting
sets is not empty. The intersection graph of F , denoted L(F ), has the members of F as
vertices, two of them being adjacent if and only if they are not disjoint.

Let A be a set of vertices of F . The notation A � F is used to indicate that there
exists F ∈ F such that A ⊆ F . Similarly, if v1...vn is a sequence of vertices of F , then
v1...vn � F denotes that {v1, ..., vn} � F . Since the Helly property will be used very
frequently, it is suitable to state the following simple proposition:

Proposition 2.1. Let F be a Helly family and E1, ..., En be pairwise intersecting sets
such that Ei � F for 1 ≤ i ≤ n. Then, there exists a vertex v such that Ei ∪ {v} � F for
1 ≤ i ≤ n.

Proof. Let F1, ..., Fn be members ofF such that Ei ⊆ Fi for 1 ≤ i ≤ n. Then, F1, ..., Fn

are pairwise intersecting sets. Since F is Helly, there exists a vertex v such that v ∈ Fi for
all i between 1 and n. Therefore, Ei ∪ {v} ⊆ Fi and hence Ei ∪ {v} � F for every value
of i such that 1 ≤ i ≤ n. �

A subset C of V (G) is complete if its elements are pairwise adjacent vertices. A clique
is defined to be a maximal complete set. The family of all the cliques of G is denoted by
C(G). If C(G) is Helly, then we say that G is a clique-Helly graph.

Journal of Graph Theory DOI 10.1002/jgt



THE IMAGES OF THE CLIQUE OPERATOR AND ITS SQUARE ARE DIFFERENT 41

The clique graph of G is defined as the intersection graph of C(G). Let G be the class
of all graphs. The function K : G → G assigning to each graph its clique graph is called
the clique operator. Every graph in K(G) is called a clique graph.

The most classical characterization of clique graphs is due to Roberts and Spencer:

Theorem 2.2 ([6]). Let G be a graph. Then, G is a clique graph if and only if there
exists a family F of complete sets of G satisfying the following properties:

1. F covers all the edges of G, that is, for all vw ∈ E(G), we have vw � F .
2. F is Helly.

Define the two-section graph S(F ) of a family F as the graph whose vertex set is⋃
F∈F F , where v and w are adjacent in S(F ) if and only if there exists F ∈ F such that

{v, w} ⊆ F . This concept allows us to rewrite Theorem 2.2 as follows:

Theorem 2.3. Let G be a graph. Then, G is a clique graph if and only if there exists a
Helly family F such that S(F ) = G.

For a given graph G, we use K−1(G) instead of K−1({G}) to denote the set of all graphs
that have G as their clique graph (up to isomorphism).

Call F a separating family if, for every ordered pair (v, w) of vertices of F , there
exists F ∈ F such that v ∈ F and w �∈ F . The following characterization of K−1(G) can
be given:

Theorem 2.4 ([3]). Let G be a clique graph. Then, K−1(G) is composed of all the
graphs of the form L(F ), where F is a Helly and separating family such that S(F ) = G.

The exponential notation Kn will indicate the composition of the clique operator with
itself n times, where n is a natural number larger than 0. The operator K0 is set equal to
the identity function on G. For i ≥ 0, the i-th iterated clique graph of G is defined to be
the graph Ki(G). Thus, Ki(G) is the class of i-th iterated clique graphs.

The following result can be easily derived from the definitions and basic set theory:

Proposition 2.5. Let G be a graph. Then, G ∈ K2(G) if and only if K−1(G) ∩ K(G) �= ∅.

For n ≥ 3, define the n-dimensional octahedron On as the graph such that V (On) =
{1, 2, ..., 2n} and E(On) = {i j : i �= j ∧ |i − j| �= n}. If v ∈ V (On), then the definition
implies that N[v] fails to contain only one vertex of the graph, called here the opposite of
v, which will be denoted by v′ in the sequel. For example, upon considering the definition
of O3 or its picture in Fig. 1, we infer that 1′ = 4, 2′ = 5, 3′ = 6, 4′ = 1, 5′ = 2, and
6′ = 3. Back to the general case, it can also be inferred that On has a total of 2n cliques,
each containing n vertices.

As an example of application of Theorem 2.3, let us prove by contradiction that O3 is
not a clique graph. Suppose to the contrary that there exists a Helly family F of sets of
vertices of O3 such that S(F ) = O3. Since 12, 13 and 23 are edges of O3, these edges are
in the two-section graph of F . If {1, 2, 3} were not in F , then {1, 2}, {1, 3}, and {2, 3}
should belong to F to ensure that 12, 13, and 23 are edges of S(F ). But F would not
be Helly in this case because {1, 2}, {1, 3}, and {2, 3} are pairwise intersecting and the
intersection of the three is empty. Therefore, {1, 2, 3} is necessarily in F .

We conclude from the same reasoning that {2, 4, 6} and {3, 4, 5} are in F . Thus,
we obtain a new contradiction, because {1, 2, 3}, {2, 4, 6}, and {3, 4, 5} are pairwise
intersecting but the intersection of the three is empty.
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FIGURE 1. O3 and its clique graph O4. The cliques of O3 are labeled.

Therefore, a family like F cannot exist and hence O3 is not a clique graph.
It is not difficult to verify that K(O3) = O4. Therefore, O4 ∈ K(G). It is interesting to

note that O3 is an induced subgraph of O4. In Fig. 1, the set {1, 2, 3, 5, 6, 7} of vertices of
O4 induces O3. This fact reveals that it is possible for a graph with a nonclique induced
subgraph to be a clique graph. In other words, the class of clique graphs is not hereditary.

The problem this paper considers is the validity of the equality K(G) = K2(G). This
problem has been open for at least 15 years, with one early paper and one early mention
about it appearing in [3, 7]. It is clear that K2(G) ⊆ K(G), but determining whether the
other inclusion is true or not is the difficult part.

If the equality were true, then the main conclusion would be that the concepts of clique
graph and iterated clique graph are equivalent. To show this, note that for n ≥ 1 we would
have

Kn(G) = Kn−1(K(G)) = Kn−1(K2(G)) = Kn+1(G)

so, by induction, Kn(G) = K(G) for all n larger than or equal to 1.
However, the objective of this paper is to prove that the equality is false, result that is

stated below as a theorem.

Theorem 2.6 (Difference Theorem). K(G) �= K2(G).

Most researchers who considered the problem were inclined to think that K(G) �=
K2(G) and there were some partial results in that respect. For example, it was known that,
assuming the Difference Theorem to be true, every graph in K(G) \ K2(G) should have at
least eight vertices [4]. In fact, one of the candidates to be a graph in K(G) \ K2(G) was O4,
which has just eight vertices. However, all the attempts to prove that O4 ∈ K(G) \ K2(G)

were unsuccessful, this being one of the main reasons why there are not any further
papers on the problem. Nor can a reference to a paper where it is conjectured that
O4 ∈ K(G) \ K2(G) be given.

One of the main difficulties that existed to approach the problem was the fact that (even
now) there exists no known algorithm to decide whether a graph is in K2(G). There are
two alternatives for a graph G not to be in K2(G). One is that G is not a clique graph.
This possibility is generally difficult to evaluate due to the NP-completeness of the clique
graph recognition problem. Otherwise, when it is known that G is in K(G), there exists
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an infinite number of graphs having their clique graphs equal to G. In this case, it is
necessary to prove that none of these graphs is a clique graph to ensure that G �∈ K2(G).
So, if proving that a single graph is not a clique graph is usually complicated, then dealing
with an infinite family of graphs makes things much worse.

The Difference Theorem will be proved by establishing that O4 is indeed in K(G) \
K2(G). In view of Proposition 2.5, a proof of the following theorem will suffice:

Theorem 2.7. K−1(O4) ∩ K(G) = ∅.

That is why the next section is about describing the graphs in K−1(O4).

3 THE GRAPHS IN K −1(O4)

In order to study the structure of the graphs in K−1(O4), it will be highly useful to prove
that every graph in K−1(O4) has O3 as an induced subgraph. In view of Theorem 2.4, it
is sufficient to verify that O3 is an induced subgraph of the intersection graph of every
Helly family F such that S(F ) = O4. Recall that, by the definition of two-section graph,
the condition S(F ) = O4 implies that the elements of every F ∈ F are pairwise adjacent
vertices of O4.

We will first consider those F that are minimal in the sense that no proper subfamily
of F has O4 as its two-section graph. From Lemma 3.1 to Lemma 3.5, the families
considered will be assumed to satisfy this minimality.

Lemma 3.1. No set with exactly two vertices is a member of F .

Proof. Suppose to the contrary that a and b are adjacent vertices of O4 such that
{a, b} ∈ F . As every clique of O4 has size four, we can take another vertex c that is adjacent
to both a and b. Since S(F ) = O4, it follows that ab � F , ac � F and bc � F . Thus,
by Proposition 2.1, there exists a vertex d such that abd � F , acd � F and bcd � F . If
d �= a and d �= b, then the fact that abd � F implies that S(F ) = S(F \ {{a, b}}). This
contradicts the minimality of F . Similarly, when d = a or d = b, the contradiction arises
from the fact that bcd � F or acd � F , respectively.

Therefore, {a, b} �∈ F . �

Lemma 3.2. No set with exactly three vertices is a member of F .

Proof. Suppose to the contrary that a, b, and c are distinct vertices of O4 such that
{a, b, c} ∈ F . Hence, a and b are both adjacent to c. By the structure of O4, both a
and b are adjacent to c′ (the opposite of c) as well. Since S(F ) = O4, it follows that
ab � F , ac′ � F, and bc′ � F . Thus, by Proposition 2.1, there exists a vertex d such
that abd � F , ac′d � F, and bc′d � F . It is clear that d �= c because ac′d � F and c
is not adjacent to c′. If d �= a and d �= b, then it follows from abd � F that ab is also
an edge of S(F \ {{a, b, c}}). The same conclusion can be obtained from bc′d � F or
ac′d � F in case that d = a or d = b, respectively.

We can prove in a similar fashion that ac and bc are edges of S(F \ {{a, b, c}}). Thus,
S(F ) = S(F \ {{a, b, c}}), which contradicts the minimality of F .

Therefore, {a, b, c} cannot be a member of F . �
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Corollary 3.3. |F| = 4 for all F ∈ F .

Lemma 3.4. Let F and F ′ be two members of F . Then, |F ∩ F ′| is even.

Proof. We first prove that |F ∩ F ′| �= 1.
Suppose to the contrary that F = {a, b, c, d} and that F ∩ F ′ = {a}, that is, F ′ =

{a, b′, c′, d′}. Take F ′′ ∈ F such that {a′, b} ⊆ F ′′. Then, neither c′ nor d′ can be elements
of F ′′; otherwise F , F ′, and F ′′ would be pairwise intersecting sets such that F ∩ F ′ ∩
F ′′ = ∅. Therefore, by Corollary 3.3, F ′′ = {a′, b, c, d}.

As abcd � F , ab′c′d′ � F and b′c � F , we deduce from Proposition 2.1 that there
exists a vertex v such that abcdv � F , ab′c′d′v � F and b′cv � F . Since abcdv � F ,
it follows that v cannot be equal to a′, b′, c′, or d′. Similarly, v cannot be equal to b, c, or
d because ab′c′d′v � F . Therefore v = a, which yields that ab′c � F .

If we now consider that abcd � F , ab′c′d′ � F, and bc′ � F , then Proposition 2.1
yields that abc′ � F . It is a consequence of similar reasonings that abd′ � F .

Let F ′ = {H ∈ F : H = F ′′ ∨ {a, b′, c} ⊆ H ∨ {a, b, c′} ⊆ H ∨ {a, b, d′} ⊆ H}. The
members of this subfamily are pairwise intersecting. AsF is Helly, there exists a common
vertex v for all the members of F ′. Since

⋃
F∈F ′ F = V (O4) and all the members of F ′

are complete sets of O4, we have that N[v] = V (O4). By the structure of O4, there is no
vertex with that neighborhood, so we have a contradiction.

Therefore, |F ∩ F ′| �= 1.
Now suppose that |F ∩ F ′| = 3, with F = {a, b, c, d} and F ′ = {a, b, c, d′}. Let F ′′

be a member of F such that {a′, b′} ⊆ F ′′. If F ′′ = {a′, b′, c′, d} or F ′′ = {a′, b′, c, d′},
then |F ∩ F ′′| = 1. If F ′′ = {a′, b′, c, d} or F ′′ = {a′, b′, c′, d′}, then |F ′ ∩ F ′′| = 1. Both
cases contradict the previous part of the proof.

Therefore, |F ∩ F ′| equals 0, 2, or 4. �

Lemma 3.5. Let {a, b, c, d} be a member of F . Then, the set of opposites {a′, b′, c′, d′}
is also a member of F .

Proof. Suppose to the contrary that {a′, b′, c′, d′} �∈ F . Since a′b′ � F , a′c′ � F,

and a′d′ � F and, by the previous lemma, the intersection between {a, b, c, d} and
every member of F containing {a′, b′}, {a′, c′}, or {a′, d′} must have even cardinality,
{a′, b′, c, d}, {a′, c′, b, d}, {a′, d′, b, c} ∈ F . These three sets and {a, b, c, d} form a sub-
family of F of pairwise intersecting sets with no common vertex, thus contradicting that
F is Helly.

Therefore, {a′, b′, c′, d′} ∈ F . �
It is now possible to prove the first major result.

Theorem 3.6. Let G be a graph such that K(G) = O4. Then, O3 is an induced subgraph
of G.

Proof. By Theorem 2.4, there exists a Helly family F such that L(F ) = G and
S(F ) = O4. Among all the subfamilies of F with two-section graph equal to O4, take F ′

minimal with respect to inclusion. The case that F = F ′ is not discarded.
Let {a, b, c, d} be a member of F ′. Then, by Lemma 3.5, {a′, b′, c′, d′} ∈ F ′, and

Lemma 3.4 implies that every other member of F ′ has exactly two elements in common
with {a, b, c, d}. We can suppose without loss of generality that {a, b, c′, d′} ∈ F ′, so
{a′, b′, c, d} ∈ F ′ as well.
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Let F be a member of F ′ such that {a, b′} ⊆ F . Since |{a, b, c, d} ∩ F| = 2, it follows
that F = {a, b′, c, d′} or F = {a, b′, c′, d}.

If F = {a, b′, c, d′}, then {a′, b, c′, d} ∈ F ′ and {a, b, c, d},{a′, b′, c′, d′},{a, b, c′, d′},
{a′, b′, c, d},{a, b′, c, d′}, {a′, b, c′, d} induce O3 as a subgraph of L(F ). The reasoning is
similar if F = {a, b′, c′, d}.

Therefore, O3 is an induced subgraph of G. �
It is interesting to note that, in case that G �= O3, Theorem 3.6 tells us that G has an

induced subgraph with fewer vertices, namely O3, whose clique graph also equals O4.
Now that we know that every graph in K−1(O4) has O3 as an induced subgraph, let us

see what effects this fact has on the structure of the cliques of the graphs in K−1(O4).
Let G be any graph such that K(G) = O4 and let V ′ be a subset of V (G) such that

G[V ′] = O3. Define the clique-to-clique function f as follows: for each clique C of G[V ′],
let f (C) be a clique of G containing C. The next property will be very useful for us:

Proposition 3.7. The clique-to-clique function f is a bijection between C(G[V ′]) and
C(G).

Proof. Let C and C′ be two different cliques of G[V ′]. Then, there exists a vertex u
such that u ∈ C \ C′ because otherwise we would have that C ⊆ C′. As u is not in C′,
there must be a vertex v ∈ C′ that is not adjacent to u, because otherwise C′ ∪ {u} would
be a complete set larger than C′. It follows that u ∈ f (C) and v ∈ f (C′), thus forcing
f (C) and f (C′) to be different. Hence, f is a one to one function from C(G[V ]) to C(G).

Since the clique graphs of G[V ′] and G are both equal to O4, we have that |C(G[V ′])| =
|C(G)| = 8. Therefore, f is a bijection. �

In words, Proposition 3.7 means that the cliques of G are obtained as an extension of
the cliques of G[V ′] (that extension is not necessary for cliques of G[V ′] that are also
cliques of G). Some important structural consequences of this fact are found below:

Proposition 3.8. Let G be a graph in K−1(O4) and V ′ be a subset of V (G) such that
G[V ′] = O3 and v, w be two vertices of G. Then:

(a) N[v] ∩ V ′ �= ∅.
(b) If N[v] ∩ V ′ ⊆ N[w] ∩ V ′, then N[v] ⊆ N[w].
(c) If N[v] ∩ V ′ = N[w] ∩ V ′, then v ∼ w.
(d) N[v] ∩ V ′ �= V ′.

Proof. It is a consequence of Proposition 3.7 that every clique of G contains vertices
of V ′. Let C be a clique of G containing v. Thus, C ∩ V ′ �= ∅ implies N[v] ∩ V ′ �= ∅. This
proves (a).

Now suppose that N[v] ∩ V ′ ⊆ N[w] ∩ V ′ and let u be any element of N[v]. Take
C ∈ C(G) such that {u, v} ⊆ C. Let f be the clique-to-clique function of the previous
proposition. Since f −1(C) ⊆ N[v] ∩ V ′ ⊆ N[w] ∩ V ′, we infer that f −1(C) ∪ {w} is a
complete set of G. Let C′ be a clique of G such that f −1(C) ∪ {w} ⊆ C′. This inclusion
and the definition of f imply that f −1(C) ∪ f −1(C′) ⊆ C′. Hence, f −1(C) ∪ f −1(C′) is a
complete set of G, and of G[V ′] as well. Furthermore, f −1(C) and f −1(C′) are cliques of
G[V ′]. The maximality involved in the definition of clique and the inclusions f −1(C) ⊆
f −1(C) ∪ f −1(C′) and f −1(C′) ⊆ f −1(C) ∪ f −1(C′) imply that f −1(C) = f −1(C′) =
f −1(C) ∪ f −1(C′). Hence C = f ( f −1(C)) = f ( f −1(C′)) = C′. Since we knew that u ∈
C and w ∈ C′, we have that {u, w} ⊆ C. Thus u ∈ N[w].
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It follows that N[v] ⊆ N[w], which proves part (b). Part (c) is a direct consequence
of (b).

In order to prove (d), suppose to the contrary that N[v] ∩ V ′ = V ′. We can use part (b)
to deduce that N[u] ⊆ N[v] for all u ∈ V (G), that is, N[v] = V (G). Thus, v is in every
clique of G and K(G) is a complete graph, which contradicts that K(G) = O4. Therefore,
N[v] ∩ V ′ �= V ′. �

Proposition 3.8, part (c) especially, will play a very important role in the proof of
Theorem 2.7.

4 CLASSIFYING FAMILIES OF CLIQUES OF O3

The information obtained from Section 3 leaves us in a good position to prove that
O4 �∈ K2(G). Since the proof will involve many structures of the graph O3, it is appropriate
to have this section to define them and show some of their characteristics.

A castle is defined to be a subfamily A of C(O3) such that |A| = 3 and |C ∩ C′| = 1
for every pair C,C′ of distinct members of A. Castles can always be characterized as in
the next proposition:

Proposition 4.1. Let A be a castle of O3. Then, there exists C′ ∈ C(O3) such that
A = {C ∈ C(O3) : |C ∩ C′| = 2}.

Proof. Let C1,C2,C3 be the members of A and v1, v2, v3 be vertices such that v1 ∈
C1 ∩ C2, v2 ∈ C1 ∩ C3, and v3 ∈ C2 ∩ C3.

Suppose that v1 = v2. Then, v1 ∈ C1 ∩ C2 ∩ C3 and, by the inclusion-exclusion princi-
ple, we can get that |C1 ∪ C2 ∪ C3| = 7, thus contradicting that O3 has only six vertices.
Therefore, v1 �= v2. Similarly, vi �= v j for i �= j.

It also holds that {v1, v2, v3} is complete. Since every clique of O3 has exactly three
vertices, {v1, v2, v3} is a clique, call it C′. It is easy to verify that the family {C ∈ C(O3) :
|C ∩ C′| = 2} consists of three cliques. As C1,C2,C3 are members of this family, the
equality in the statement of this proposition follows. �

Proposition 4.1 is useful for counting purposes. It is a consequence of it that O3 has
eight different castles, that is, there are as many castles as cliques O3 has.

A family A of cliques is said to be castled if it contains a castle as a subfamily. We
have the following result regarding castled families:

Proposition 4.2. Let A be a subfamily of C(O3) such that |A| ≥ 5. Then, A is castled.

Proof. We prove the contrapositive.
Suppose that A is not castled. For each C ∈ C(O3), let AC = {C′ ∈ C(O3) : |C ∩ C′| =

2} ∩ A. In words, the members of AC are the cliques that are in A and share two vertices
with C.

Since each clique shares two vertices with three other cliques in O3, we have that
|A| = 1

3

∑
C∈C(O3) |AC|.

Note that |AC| �= 3 for every C ∈ C(O3); otherwise AC would be a castle, thus contra-
dicting that A is not castled. We now consider two cases:

� |AC| ≤ 1 for all C ∈ C(O3):
Since O3 has eight cliques, the formula we found for |A| yields that |A| ≤ 8

3 .
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FIGURE 2. A graphical representation of the second case of the proof of
Proposition 4.2.

FIGURE 3. Graphical representation of the families defined in this section.

� There exists C ∈ C(O3) such that |AC| = 2:
Let C = {a, b, c} and suppose without loss of generality that AC =
{{a, b′, c}, {a, b, c′}}. This equality implies that {a′, b, c} is not in A. Further-
more, {a′, b′, c′} is not in A, otherwise this clique together with {a, b′, c} and
{a, b, c′} would form a castle contained in A. Thus, A{a′,b′,c} = {a, b′, c} and
A{a′,b,c′} = {a, b, c′} (see Fig. 2). Hence |A{a′,b′,c}| = |A{a′,b,c′}| = 1.
We can now use the formula for |A| to obtain that |A| ≤ 1

3 (2.6 + 1.2) = 14
3 .

In either case, |A| < 5, as desired. �

Proposition 4.2 is equivalent to stating that every noncastled subfamily of C(O3) has at
most four members. The following classification for non-castled subfamilies is proposed
(see also Figure 3):

We just say that A is empty if |A| = 0. It is a triangle if |A| = 1.
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FIGURE 4. A graph in K−1(O4). The set {1,2,3,4,5,6} induces O3. The families N7
and N8 are both rhombi. Vertices 7 and 8 are adjacent because {4, 5, 6} is in

N7 ∩ N8.

In case that |A| = 2, with A = {C,C′}, the subfamily A is a rhombus if |C ∩ C′| = 2,
is a bow if |C ∩ C′| = 1 or is an opposite pair if C ∩ C′ = ∅.

In case that |A| = 3, the subfamily A is an umbrella if it contains an opposite pair or
is a fan if the intersection of all its members is nonempty.

In case that |A| = 4, we say that A is a round if the intersection of all its members is
nonempty; A is a worm if its members can be listed in such a way that two of them are
consecutive if and only if they share two vertices; and A is a rhombic circle if it contains
two distinct opposite pairs.

The terminology that has just been introduced allows a complete and quite short
characterization of K−1(O4):

Lemma 4.3. The collection C of all triangles, rhombi, and rounds of O3 is Helly.

Proof. For each clique {x, y, z} of O3, let Txyz be the triangle whose only member is
that clique.

There exists a correspondence between the edges of O3 and its rhombi. For each
xy ∈ E(O3), let Rxy be the rhombus {{x, y, z}, {x, y, z′}}, where z is one of the vertices of
O3 adjacent to both x and y.

Finally, for each x ∈ V (O3), let Rx be the round such that the intersection of all its
members is {x}.

Thus C = {Txyz}{x,y,z}∈C(O3) ∪ {Rxy}xy∈E(O3) ∪ {Rx}x∈V (O3).
It is not difficult to prove that the intersection of two members of C is not empty if and

only if we cannot find opposite vertices in their indexes. Furthermore, given a clique C
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of O3 and a member of C, we have that C is in that member if and only if C contains all
the vertices in the index of the member.

Let C′ be a subcollection of C whose members are pairwise intersecting. By the
previous paragraph, the set of vertices appearing in at least one index of a member of C′

is a complete set of O3. Let {a, b, c} be a clique of O3 containing that complete set. Then,
{a, b, c} is in all the members of C′.

Therefore, C is Helly. �

Proposition 4.4. Let G be a graph and V ′ be a subset of V (G) such that G[V ′] = O3.
Then, K(G) = O4 if and only if the following two conditions are satisfied:

1. For all v ∈ V (G), the family Nv of cliques of G[V ′] contained in N[v] is a triangle,
a rhombus or a round.

2. For all v, w ∈ V (G) such that v �= w, we have that v and w are adjacent in G if
and only if Nv ∩ Nw �= ∅.

Proof. Assume that K(G) = O4. Let v be a vertex of G and f be the clique-to-clique
function. Take a clique C ∈ C(G) such that v ∈ C. Then f −1(C) ⊆ N[v] and hence Nv is
not empty.

If |Nv| = 1, then Nv is a triangle.
Now suppose that |Nv| = 2. Then, Nv cannot be a bow, since the set of vertices in at

least one member of a fixed bow contains three cliques of G[V ′]. Nor can it be an opposite
pair, because that would make v contradict part (d) of Proposition 3.8. Therefore, Nv is
a rhombus.

Otherwise, by the same reasons as in the previous paragraph,Nv cannot be an umbrella,
a fan, a worm, a rhombic circle or be castled. Hence, Nv is a round.

Consider two different vertices v and w of G. Suppose that Nv ∩ Nw �= ∅. Let C ∈
Nv ∩ Nw. Thus, f (C) is a clique of G containing v and w, so the two vertices are
adjacent. Conversely, suppose that v and w are adjacent and let C′ be a clique of G
containing both vertices. Then, f −1(C′) ∈ Nv ∩ Nw. Therefore, Nv ∩ Nw �= ∅.

Conversely, suppose that conditions 1 and 2 of the proposition are satisfied. For every
C ∈ C(G[V ′]), let C′ = {v ∈ V (G) : C ∈ Nv}. The next step is to prove that C(G) = {C′ :
C ∈ C(G[V ′])}.

Let C1 be a clique of G[V ′]. It is clear from condition 2 that C′
1 is a complete set of

vertices of G. Let C2 be another clique of G[V ′]. Since for i ∈ {1, 2} no vertex of V ′ \ Ci

is adjacent to all the vertices of Ci, it holds that C′
i ∩ V ′ = Ci. Thus, C′

1 �= C′
2 and neither

contains the other.
Let D be a clique of G. By conditions 1 and 2, {Nv}v∈D is a collection whose members

are pairwise intersecting and such that every member is a triangle, a rhombus or a round
of G[V ′]. By Lemma 4.3, there exists C ∈ C(G[V ′]) that is in every member of {Nv}v∈D.
Therefore, D ⊆ C′. As D is a clique of G, it follows that C′ = D.

We conclude from the previous paragraph that C(G) is a subfamily of {C′ : C ∈
C(G[V ′])}. Moreover, we already know that no member of {C′ : C ∈ C(G[V ′])} contains
another member. Therefore, C(G) = {C′ : C ∈ C(G[V ′])}.

Now, given cliques C1 and C2 of G[V ′], we prove that C1 ∩ C2 �= ∅ if and only if
C′

1 ∩ C′
2 �= ∅. Since Ci ⊆ C′

i for i ∈ {1, 2}, it is true that C1 ∩ C2 �= ∅ implies C′
1 ∩ C′

2 �= ∅.
Now suppose that C′

1 ∩ C′
2 �= ∅. Let v ∈ C′

1 ∩ C′
2. Then, C′

1 ∪ C′
2 ⊆ N[v] and hence

C1 ∪ C2 ⊆ N[v].
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FIGURE 5. If F = {{a, a′, b, c}, {b, c′}, {a′, b′.c′}}, then C(F ,V ′) is an umbrella
composed of the cliques {a, b, c}, {a′, b, c}, and {a′, b′, c′}. The first two cliques

are contained in F1 and the last clique is contained in F3.

If C1 ∩ C2 = ∅, then C1 ∪ C2 = V ′. This implies that V ′ ⊆ N[v], which contradicts part
(d) of Proposition 3.8. Therefore, C1 ∩ C2 �= ∅.

We can now conclude that K(G) = K(G[V ′]). Therefore, K(G) = K(O3) = O4. �
An example of a graph in K−1(O4), and how it satisfies the conditions of Proposition

4.4, appears in Figure 4. Although Proposition 4.4 tells us in full detail what the graphs
of K−1(O4) are like, we will not use it for the proof of Theorem 2.7. Proposition 3.8 will
be enough for our purposes.

5 PROOF OF THEOREM 2.7

We will prove that K−1(O4) ∩ K(G) = ∅ by contradiction.
Let us suppose to the contrary that there exists a graph G in K(G) ∩ K−1(O4). As

G ∈ K(G), there exists by Theorem 2.3 a Helly family F of sets of vertices of G such that
S(F ) = G. On the other side, as G ∈ K−1(O4), we have that O3 is an induced subgraph
of G.

For each set V ′ = {a, a′, b, b′, c, c′} such that G[V ′] = O3, let C(F,V ′) = {C ∈
C(G[V ′]) : C � F} (see example in Fig. 5). We also choose, for each clique {x, y, z}
of G[V ′], a vertex vxyz that is in every member of F that contains {x, y}, {x, z}, or {y, z}.
Such a vertex can always be found because F is Helly.

Remark 1. It is useful to note that two of these vertices are adjacent (or equal) if their
indexes share two vertices. For example, vxyz ∈ N[vxyz′] because both vxyz and vxyz′ are in
every member of F containing {x, y}.

In order to obtain a contradiction, we will prove that C(F,V ′) cannot equal any of the
families defined in Section 4, which will be done by considering several cases that appear
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below. The main strategy to succeed will be using Proposition 3.8 to find twin vertices in
V ′ for the vertices of the form vxyz. This will allow to find contradictions quite directly to
discard some of the cases. Otherwise, it will allow to find other induced O3 in G and see
how their cliques are covered by F . As a result, there will be a reduction to the previous
discarded cases.

Some of the reasonings to be used will be formulated as lemmas. They will appear
between cases as they become necessary.

C(F,V ′) is not castled:
Suppose to the contrary that C1,C2,C3 are members of C(F,V ′) forming a castle. Let

F1, F2, F3 be members of F such that Ci ⊆ Fi for 1 ≤ i ≤ 3. Then, F1, F2, F3 are pairwise
intersecting and, as F is Helly, we can take v ∈ V (G) such that v ∈ F1 ∩ F2 ∩ F3. We
can deduce from Proposition 4.1 that C1 ∪ C2 ∪ C3 = V ′, so V ′ ⊆ F1 ∪ F2 ∪ F3. Since
F1 ∪ F2 ∪ F3 is contained in the neighborhood of v in S(F ), we infer that V ′ is contained
in the neighborhood of v in G, thus contradicting part (d) of Proposition 3.8.

Therefore C(F,V ′) is not castled.

Lemma 5.1. Let w, x, y, z be four different vertices of V ′ such that {x, y, z} is a clique of
G[V ′]. Then,

1. {x, y, z} ⊆ N[vxyz]
2. If wxy � F , then w ∈ N[vxyz].

Proof.

1. Since x and y are adjacent in G and S(F ) = G, there exists F ∈ F such that
{x, y} ⊆ F . By the definition of vxyz, it follows that {x, y, vxyz} ⊆ F . Hence, x and y
are in the neighborhood of vxyz in S(F ), that is, {x, y} ⊆ NG[vxyz]. We can similarly
prove that z ∈ NG[vxyz].

2. Assume that wxy � F . Let F ∈ F be such that {w, x, y} ⊆ F . By the definition of
vxyz, it follows that {w, x, y, vxyz} ⊆ F . Hence, w is in the neighborhood of vxyz in
S(F ), that is, w ∈ NG[vxyz].

�

C(F,V ′) does not contain an umbrella:
Suppose to the contrary that C(F,V ′) contains an umbrella with members {a, b, c},

{a′, b′, c} and {a′, b′, c′}. Then, by Lemma 5.1 and the facts that abc � F and a′b′c � F ,
we have that {a, a′, b, b′, c} ⊆ N[vab′c]. We deduce from part (c) of Proposition 3.8 that
vab′c ∼ c.

Furthermore, {a, a′, b′, c′} ⊆ N[vab′c′] due to Lemma 5.1 and the fact that a′b′c′ � F ,
and vab′c′ ∈ N[vab′c] due to Remark 1. Since N[vab′c] = N[c], we have that vab′c′ ∈ N[c].
It follows that {a, a′, b′, c, c′} ⊆ N[vab′c′] and hence, by Proposition 3.8, vab′c′ ∼ b′.

We can prove with similar reasonings that va′bc ∼ c and that {a′, b, b′, c′} ⊆ N[va′bc′].
By Remark 1, va′bc and va′bc′ are adjacent, so c is also in N[va′bc′]. Consequently, by
Proposition 3.8, va′bc′ ∼ a′.

We can infer from Lemma 5.1 that {a, b, c, c′} ⊆ N[vabc′]. Moreover, by Remark 1, vabc′

is adjacent to vab′c′ . This fact implies that vabc′ is adjacent to b′ as well. Thus, Proposition
3.8 yields that vabc′ ∼ a. This contradicts that va′bc′ and vabc′ are neighbors because we
had obtained that these vertices are twins of a′ and a, respectively.

Therefore, C(F,V ′) does not contain an umbrella.
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Given the classification of Section 4, the families that contain umbrellas are worms,
rhombic circles and umbrellas themselves. Therefore, C(F,V ′) belongs to none of those
classes.

Lemma 5.2. Let x, y, z be vertices of G such that x ∈ N[y] and z ∈ V ′. Then, z ∈
N[x] ∩ N[y] or z′ ∈ N[x] ∩ N[y].

Proof. Since x and y are adjacent, there exists a clique C in G that contains x and
y. Let f be the clique-to-clique function. Then, f −1(C) is a clique of G[V ′] contained
in N[x] ∩ N[y]. By the structure of O3, we have that z ∈ f −1(C) or z′ ∈ f −1(C). Hence
z ∈ C or z′ ∈ C, which is sufficient to complete the proof. �

Lemma 5.3. Let x, y, z be three vertices in V ′ such that {x, y, z} is a clique of G[V ′] and
xyz � F . Then, xyvxyz′ � F , xvxyz′z � F and vxyz′yz � F .

Proof. Let F ∈ F be such that {x, y, z} ⊆ F . By the definition of vxyz′ , we have that
{x, y, z, vxyz′ } ⊆ F , from which the lemma follows. �

C(F,V ′) is not a round:
Suppose to the contrary that C(F,V ′) is a round with members {a, b, c}, {a, b, c′},

{a, b′, c}, and {a, b′, c′}. Then, by Lemma 5.1, {a, a′, b′, c} ⊆ N[va′b′c] and {a, a′, b, c} ⊆
N[va′bc]. As va′b′c ∈ N[va′bc], we can apply Lemma 5.2 to infer that b ∈ N[va′b′c] ∩ N[va′bc]
or b′ ∈ N[va′b′c] ∩ N[va′bc]. If the former holds, then {a, a′, b, b′, c} ⊆ N[va′b′c]. If the latter
holds, then {a, a′, b, b′, c} ⊆ N[va′bc]. Thus, by Proposition 3.8, va′b′c ∼ c or va′bc ∼ c.

If va′b′c is a twin of c, let V ′′ = {a, a′, b, b′, va′b′c, c′}. Then, G[V ′′] = O3 and
{a, b, c′} and {a, b′, c′} are members of C(F,V ′′). We infer from the definition of
va′b′c that {a′, b′, va′b′c} ∈ C(F,V ′′). Furthermore, Lemma 5.3 and ab′c � F imply that
{a, b′, va′b′c} ∈ C(F,V ′′). Thus, C(F,V ′′) contains a worm of G[V ′′] and hence contains
an umbrella, which contradicts the previous case of the proof.

If va′bc ∼ c, let now V ′′ = {a, a′, b, b′, va′bc, c′}. Thus, {a, b, c′} and {a, b′, c′} are again
members of C(F,V ′′). By the definition of va′bc, we have that {a′, b, va′bc} is another
member of C(F,V ′′). Furthermore, Lemma 5.3 and abc � F imply that {a, b, va′bc} ∈
C(F,V ′′). Hence we have the same contradiction as in the previous paragraph.

Therefore, C(F,V ′) is not a round.
It is possible to conclude from the cases considered so far that |C(F,V ′)| cannot be

larger than 3. Now we study the remaining possibilities for the cardinality of |C(F,V ′)|.
|C(F,V ′)| �= 3:
It is already known that C(F,V ′) is not an umbrella. Therefore, it remains to investigate

the possibility that C(F,V ′) is a fan.
C(F,V ′) is not a fan:
Suppose to the contrary that C(F,V ′) is a fan with members {a, b, c}, {a, b′, c}, and

{a, b′, c′}. Then, by Lemma 5.1, we have that {a, a′, b′, c} ⊆ N[va′b′c] and {a, a′, b, c} ⊆
N[va′bc]. Since va′b′c ∈ N[va′bc], we can apply Lemma 5.2 to infer that b ∈ N[va′b′c] ∩
N[va′bc] or b′ ∈ N[va′b′c] ∩ N[va′bc]. We deduce from Proposition 3.8 that va′b′c ∼ c or
va′bc ∼ c. We can infer that va′b′c ∼ b′ or va′b′c′ ∼ b′ through a similar chain of reasonings.

If va′bc ∼ c, set V ′′ = {a, a′, b, b′, va′bc, c′}. Then, {a, b′, c′} ∈ C(F,V ′′). By the defi-
nition of va′bc, Lemma 5.3 and abc � F , we have that {a′, b, va′bc} and {a, b, va′bc} are
other members of C(F,V ′′). Thus, C(F,V ′′) contains an umbrella of G[V ′′], which is a
contradiction.
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If va′b′c′ ∼ b′, set V ′′ = {a, a′, b, va′b′c′, c, c′}. Then, {a, b, c} ∈ C(F,V ′′). By the defi-
nition of va′b′c′ , Lemma 5.3 and ab′c′ � F , we have that {a′, va′b′c′, c′} and {a, va′b′c′, c′}
are other members of C(F,V ′′). We thus obtain the same contradiction as in the previous
paragraph.

It is not possible that neither va′bc ∼ c nor va′b′c′ ∼ b′; otherwise va′b′c ∼ c and va′b′c ∼
b′, which is a contradiction.

Therefore, C(F,V ′) is not a fan.
|C(F,V ′)| �= 2:
C(F,V ′) is not a bow:
Suppose to the contrary that C(F,V ′) is a bow and that {a, b, c} and {a, b′, c′} are

its members. The proof will be organized as a series of statements, each having its
justification between brackets.

(i) vab′c ∼ a [abc � F , ab′c′ � F , Lemma 5.1 and Proposition 3.8]

(ii) {a′, b′, c} ⊆ N[va′b′c] [Lemma 5.1]

(iii) vabc′ ∼ a [abc � F , ab′c′ � F , Lemma 5.1 and Proposition 3.8]

(iv) {a, a′, b, c} ⊆ N[va′bc] [abc � F and Lemma 5.1]

(v) {a, a′, b′, c′} ⊆ N[va′b′c′ ] [ab′c′ � F and Lemma 5.1]

(vi) {a′, b, c′} ⊆ N[va′bc′ ] [Lemma 5.1]

(vii) vab′c ∈ N[va′b′c] [Remark 1]

(viii) {a, a′, b′, c} ⊆ N[va′b′c] [(i), (ii) and (vii)]
(ix) vabc′ ∈ N[va′bc′ ] [Remark 1]

(x) {a, a′, b, c′} ⊆ N[va′bc′ ] [(iii), (vi) and (ix)]
(xi) va′b′c′ ∈ N[va′b′c] [Remark 1]

(xii) va′b′c′ ∼ b′ or va′b′c ∼ b′ [(v), (viii), (xi), Lemma 5.2 and Proposition 3.8]

(xiii) va′bc ∈ N[va′b′c] [Remark 1]

(xiv) va′bc ∼ c or va′b′c ∼ c [(iv), (viii), (xiii), Lemma 5.2 and Proposition 3.8]

(xv) va′bc ∈ N[va′bc′ ] [Remark 1]

(xvi) va′bc ∼ b or va′bc′ ∼ b [(iv), (x), (xv), Lemma 5.2 and Proposition 3.8]

(xvii) va′b′c′ ∈ N[va′bc′ ] [Remark 1]

(xviii) va′b′c′ ∼ c′ or va′bc′ ∼ c′ [(v), (x), (xvii), Lemma 5.2 and Proposition 3.8]

If va′b′c′ ∼ b′, combine (xiv), (xvi), and (xviii) to obtain that va′bc′ ∼ c′, va′bc ∼ b and
va′b′c ∼ c. Set V ′′ = {a, a′, va′bc, b′, c, va′bc′ }. Then, by Lemma 5.3 and the definitions of
va′bc and va′bc′ , we have that {a, va′bc, c}, {a′, va′bc, c}, and {a′, va′bc, va′bc′ } are members of
C(F,V ′′). Thus, |C(F,V ′′)| ≥ 3, which is a contradiction.

If va′b′c ∼ b′, then the combination of (xiv), (xvi), and (xviii) now yields that va′bc ∼ c,
va′bc′ ∼ b, and va′b′c′ ∼ c′. Set V ′′ = {a, a′, b, va′b′c, c, va′b′c′ }. Then, {a, b, c} ∈ C(F,V ′′).
The sets {a′, va′b′c, c} and {a′, va′b′c, va′b′c′ } are also members of C(F,V ′′) because of the
definitions of va′b′c and va′b′c′ . Hence we have the same contradiction as in the previous
paragraph.

Therefore, C(F,V ′) is not a bow.
C(F,V ′) is not an opposite pair:
Suppose to the contrary that C(F,V ′) is an opposite pair with members {a, b, c} and

{a′, b′, c′}. Then, by Lemma 5.1, we have that {a, b, b′, c} ⊆ N[vab′c], {a, a′, b′, c′} ⊆
N[vab′c′], and {a′, b′, c, c′} ⊆ N[va′b′c].

It is clear from Remark 1 that vab′c is adjacent to both vab′c′ and va′b′c. Furthermore, any
member ofF containing {a′, b′, c′} must have vab′c′ and va′b′c as elements. We conclude that
{vab′c, vab′c′, va′b′c} is a complete set. Let C be a clique of G containing {vab′c, vab′c′, va′b′c}
and f be the clique-to-clique function.
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We now prove that C �= f ({a, b, c}). Suppose to the contrary that the equality holds.
Then, the vertices a, b and c are in N[vab′c′] because vab′c′ ∈ C. Combine this fact with
what we knew from the beginning to infer that V ′ ⊆ N[vab′c′], thus contradicting part (d)
of Proposition 3.8. Therefore, C �= f ({a, b, c}).

We can conclude after similar reasonings that C �= f ({a, b, c′}), C �= f ({a′, b, c}),
C �= f ({a′, b, c′}), and C �= f ({a′, b′, c′}).

As a consequence of Proposition 3.7, the remaining possibilities are C = f ({a, b′, c′}),
C = f ({a, b′, c}), and C = f ({a′, b′, c}).

If C = f ({a, b′, c′}), then {a, b, b′, c, c′} ⊆ N[vab′c] and hence vab′c ∼ a. Set V ′′ =
{vab′c, a′, b, b′, c, c′}. Thus, {a′, b′, c′} ∈ C(F,V ′′) and we get from Lemma 5.3 and the
definition of vab′c that {vab′c, b, c} and {vab′c, b′, c} are other members of C(F,V ′′).

If C = f ({a, b′, c}), then {a, a′, b′, c, c′} ⊆ N[vab′c′] and hence vab′c′ ∼ b′. Set V ′′ =
{a, a′, b, vab′c′, c, c′}. Thus, {a, b, c} ∈ C(F,V ′′) and we get from the definition of vab′c′

and Lemma 5.3 that {a, vab′c′, c′} and {a′, vab′c′, c′} are other members of C(F,V ′′).
If C = f ({a′, b′, c}), then {a, a′, b, b′, c} ⊆ N[vab′c] and hence vab′c ∼ c. Set V ′′ =

{a, a′, b, b′, vab′c, c′}. Thus, {a′, b′, c′} ∈ C(F,V ′′) and we get from Lemma 5.3 and the
definition of vab′c that {a, b, vab′c} and {a, b′, vab′c} are other members of C(F,V ′′).

We have that |C(F,V ′′)| ≥ 3 in every case, which is a contradiction. Therefore,
C(F,V ′) is not an opposite pair.

C(F,V ′) is not a rhombus:
Suppose to the contrary that C(F,V ′) is a rhombus and that {a, b, c} and {a, b′, c} are

its members. Then,

(i) {a, b′, c, c′} ⊆ N[vab′c′ ] [ab′c � F and Lemma 5.1]

(ii) {a, a′, b′, c} ⊆ N[va′b′c] [ab′c � F and Lemma 5.1]

(iii) {a, b, c, c′} ⊆ N[vabc′ ] [abc � F and Lemma 5.1]

(iv) {a, a′, b, c} ⊆ N[va′bc] [abc � F and Lemma 5.1]

(v) vab′c′ ∈ N[vabc′ ] [Remark 1]

(vi) va′b′c ∈ N[va′bc] [Remark 1]

(vii) vab′c′ ∼ a or vabc′ ∼ a [(i), (iii), (v), Lemma 5.2 and Proposition 3.8]

(viii) va′b′c ∼ c or va′bc ∼ c [(ii), (iv), (vi), Lemma 5.2 and Proposition 3.8]

Combining (vii) and (viii) yields four possibilities.
If vab′c′ ∼ a and va′b′c ∼ c, set V ′′ = {vab′c′, a′, b, b′, va′b′c, c′}. By the definitions of vab′c′

and va′b′c, we have that {vab′c′, b′, c′} and {a′, b′, va′b′c} are members of C(F,V ′′). Since
ab′c � F , we deduce that {vab′c′, b′, va′b′c} is another member of C(F,V ′′). Consequently,
|C(F,V ′′)| ≥ 3.

If vabc′ ∼ a and va′bc ∼ c, set V ′′ = {vabc′, a′, b, b′, va′bc, c′}. By the definitions of vabc′

and va′bc, we have that {vabc′, b, c′} and {a′, b, va′bc} are members of C(F,V ′′). Since
abc � F , we deduce that {vabc′, b, va′bc} is another member of C(F,V ′′), so |C(F,V ′′)| ≥
3 for this case as well.

If vab′c′ ∼ a and va′bc ∼ c, set V ′′ = {vab′c′, a′, b, b′, va′bc, c′}. By the definitions of vab′c′

and va′bc, we have that {vab′c′, b′, c′} and {a′, b, va′bc} are members of C(F,V ′′). We
conclude that C(F,V ′′) is an opposite pair or that |C(F,V ′′)| ≥ 3.

If vabc′ ∼ a and va′b′c ∼ c, set V ′′ = {vabc′, a′, b, b′, va′b′c, c′}. By the definitions of vabc′

and va′b′c, we have that {vabc′, b, c′} and {a′, b′, va′b′c} are members of C(F,V ′′). The
conclusion is identical to that of the previous case.

Each of the four cases resulted in a contradiction. Therefore, C(F,V ′) is not a rhombus.
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|C(F,V ′)| �= 1:
Suppose to the contrary that C(F,V ′) is a triangle consisting of {a, b, c}.
Apply Lemma 5.1 to obtain that {a, b, b′, c} ⊆ N[vab′c], {a, b′, c′} ⊆ N[vab′c′],

{a′, b′, c} ⊆ N[va′b′c], {a, b, c, c′} ⊆ N[vabc′] and {a, a′, b, c} ⊆ N[va′bc]. Further-
more, abc � F implies that abcvab′cvabc′va′bc � F . Thus, {vab′c, vab′c′, vabc′ } and
{vab′c, va′b′c, va′bc} are complete. LetC andC′ be cliques of G such that {vab′c, vab′c′, vabc′ } ⊆
C and {vab′c, va′b′c, va′bc} ⊆ C′.

Reason like in the case that C(F,V ′) is not an opposite pair to deduce that C is equal to
f ({a, b, c}), f ({a, b′, c′}), f ({a, b′, c}), or f ({a, b, c′}) and that C′ is equal to f ({a, b, c}),
f ({a, b′, c}), f ({a′, b′, c}), or f ({a′, b, c}).

If C = C′ = f ({a, b, c}), then {a, b, b′, c, c′} ⊆ N[vab′c′] and {a, a′, b, b′, c} ⊆
N[va′b′c]. It follows from Proposition 3.8 that vab′c′ ∼ a and va′b′c ∼ c. Set V ′′ =
{vab′c′, a′, b, b′, va′b′c, c′}. Thus, we deduce from the definitions of vab′c′ and va′b′c that
{vab′c′, b′, c′} and {a′, b′, va′b′c} are members of C(F,V ′′).

If C = f ({a, b′, c′}), then {a, b, b′, c, c′} ⊆ N[vab′c] and hence vab′c ∼ a. Set V ′′ =
{vab′c, a′, b, b′, c, c′}. By the definition of vab′c, we have that {vab′c, b′, c} ∈ C(F,V ′′).
Moreover, abc � F and Lemma 5.3 imply that {vab′c, b, c} is another member of
C(F,V ′′).

If C = f ({a, b′, c}), then {a, b, b′, c, c′} ⊆ N[vabc′] and hence vabc′ ∼ a. Set V ′′ =
{vabc′, a′, b, b′, c, c′}. By the definition of vabc′ , we have that {vabc′, b, c′} ∈ C(F,V ′′).
Moreover, abc � F and Lemma 5.3 imply that {vabc′, b, c} is another member of
C(F,V ′′).

If C = f ({a, b, c′}), then {a, b, b′, c, c′} ⊆ N[vab′c]. Hence vab′c ∼ a, case which has
already been considered.

If C′ �= f ({a, b, c}), then C′ is equal to f ({a, b′, c}), f ({a′, b′, c}), or f ({a′, b, c}).
Reasoning like in the previous cases, it can be verified that vab′c ∼ c or va′bc ∼ c.

If vab′c ∼ c, set V ′′ = {a, a′, b, b′, vab′c, c′}. By the definition of vab′c, we have that
{a, b′, vab′c} ∈ C(F,V ′′). Moreover, abc � F and Lemma 5.3 imply that {a, b, vab′c} is
another member of C(F,V ′′).

If va′bc ∼ c, set V ′′ = {a, a′, b, b′, va′bc, c′}. By the definition of va′bc, we have that
{a′, b, va′bc} ∈ C(F,V ′′). Moreover, abc � F and Lemma 5.3 imply that {a, b, va′bc} is
another member of C(F,V ′′).

We got that |C(F,V ′′)| ≥ 2 in every case, which is a contradiction. Therefore, C(F,V ′)
is not a triangle.

C(F,V ′) is not empty:
Suppose to the contrary that C(F,V ′) is empty. We know that vabc ∈ N[vab′c], so

we can take C ∈ C(G) such that {vabc, vab′c} ⊆ C. It is clear that C �= f ({a′, b′, c′}) and
C �= f ({a′, b, c′}); otherwise V ′ would be contained in the neighborhood of vabc or vab′c,
thus contradicting Proposition 3.8.

If C = f ({a, b′, c′}), then {a, b, b′, c, c′} ⊆ N[vabc] and hence vabc ∼ a. Set V ′′ =
{vabc, a′, b, b′, c, c′}. Thus, we get from the definition of vabc that {vabc, b, c} is a member
of C(F,V ′′), which is a contradiction. Therefore, C �= f ({a, b′, c′}).

We can conclude from similar reasonings that C �= f ({a′, b′, c}), C �= f ({a, b, c′}),
and C �= f ({a′, b, c}). Therefore, C = f ({a, b, c}) or C = f ({a, b′, c}).

Suppose without loss of generality that C = f ({a, b, c}). Then, {a, b, b′, c} ⊆ N[vab′c].
Let C′ ∈ C(G) be such that {vab′c′, vab′c} ⊆ C′. Reasoning as before, we can infer that
C′ = f ({a, b′, c′}) or C′ = f ({a, b′, c}).
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If C′ = f ({a, b′, c′}), then {a, b, b′, c, c′} ⊆ N[vab′c] and hence vab′c ∼ a. We set V ′′ =
{vab′c, a′, b, b′, c, c′} to conclude that {vab′c, b′, c} is a member of C(F,V ′′), which is a
contradiction. Therefore, C′ = f ({a, b′, c}) and hence {a, b′, c, c′} ⊆ N[vab′c′].

We now write a couple of statements based on arguments like those of the previous
paragraph.

Vertices va′b′c and vab′c are both contained in f ({a, b′, c}) and hence {a, a′, b′, c} ⊆
N[va′b′c].

Vertices va′b′c′ and vab′c′ are both contained in f ({a, b′, c′}) and hence {a, a′, b′, c′} ⊆
N[va′b′c′].

Now consider the vertices va′b′c′ and va′b′c. If both vertices are contained in f ({a′, b′, c}),
then {a, a′, b′, c, c′} ⊆ N[va′b′c′] and hence va′b′c′ ∼ b′. Set V ′′ = {a, a′, b, va′b′c′, c, c′}. We
get from the definition of va′b′c′ that {a′, va′b′c′, c′} ∈ C(F,V ′′), which is a contradiction.

If va′b′c′ and va′b′c are contained in f ({a′, b′, c′}), then {a, a′, b′, c, c′} ⊆ N[va′b′c] and
hence va′b′c ∼ b′. This yields a contradiction similar to the one of the previous paragraph.

All the contradictions we found leave no other alternative. Therefore, C(F,V ′) is not
empty.

Overall, there is no set that C(F,V ′) can equal. This contradiction comes from as-
suming the existence of a graph in K(G) ∩ K−1(O4). Therefore, K(G) ∩ K−1(O4) =
∅. Q.E.D.

6 CONCLUDING REMARKS

After proving that K(G) �= K2(G), many other questions can naturally arise. We can be
more general and wonder, given any natural number n, if the equality Kn(G) = Kn+1(G)

is true.
It is not difficult to prove that K(On) = O2n−1 [2, 5], so all the iterated clique graphs

of O3 are octahedral. It is tempting to conjecture that Kn(O3) ∈ Kn(G) \ Kn+1(G) for
n ≥ 1, which would imply that the equality Kn(G) = Kn+1(G) is always false.

It is also interesting to consider the intersection
⋂∞

n=1 Kn(G). This class contains, for
example, all the clique Helly graphs, but we are far from knowing what all the graphs it
contains are.

A deeper knowledge on iterated clique graphs should be developed to gain insight into
these and other questions.
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