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Abstract 1 The present study investigated the environmental variables that define a suitable
climate for the bronze bug, Thaumastocoris peregrinus Carpintero & Dellapé, using
presence-only data, with the aim of identifying areas that have a suitable climate
(and thus high probability) for future colonization and generating a spatially explicit
predictive map of environmental suitability. An occurrence database (293 records) was
compiled mainly from the literature.

2 The environmental data were obtained from the WorldClim 1.3 dataset, and the
models were performed using maxent, version 3.3.3k. Model performance was
evaluated through cross-validation. We used the null models approach to test our
models. For model calibration, two datasets were defined (a non conservative dataset
and a conservative one) by comparing the bioclimatic variables between native and
introduced range using boxplots.

3 According to both models, the range for T. peregrinus will continue to expand. In
South America and Africa, the distribution of the bronze bug may expand mainly to
the north-east and central areas. Special attention should be given to the regions of
southern U.S.A., Central America, and southern China and nearby countries, where
conditions are highly suitable but the bronze bug has not yet been recorded and could
only arrive by human means.

4 Because Eucalyptus species, many of which are highly susceptible to infestation by the
bronze bug, are increasingly being planted around the world, and because the bronze
bug has spread so rapidly over the past 8 years, the bronze bug may be expected to
appear in many areas where it has not yet been recorded.

Keywords Eucalyptus, Heteroptera, invasive species, Maxent, species distribution
modelling, Thaumastocoris peregrinus.

Introduction

Invasive species are a worldwide problem with several different
consequences on human health, the economy and natural ecosys-
tems (Pimentel et al., 2005; Angetter et al., 2011; Bidinger et al.,
2012). Predictive modelling of the geographical distribution of
a species based on the climatic conditions of sites of known
occurrence constitutes an important technique in analytical biol-
ogy (Phillips et al., 2006). When applying this approach, it is
important to distinguish between fundamental, realized and cli-
matic niches. The fundamental niche represents the complete set
of environmental conditions under which a species can persist
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(Hutchinson, 1957); the realized niche is the portion of the fun-
damental where the species occurs at a point in time as a con-
sequence of biotic and abiotic interactions (Wiens et al., 2009);
and the climatic niche consists of the set of climatic conditions
where the species may occur (Quintero & Wiens, 2013). Models
that are based on the relationship between climate parameters and
species response represent the climatic niche of a species, which
is a subset of the fundamental niche (Pearson & Dawson, 2003).
Climatic niche models have been increasingly used for predicting
the potential distribution of invasive species (Jiménez-Valverde
et al., 2011; Zhu et al., 2012a).

Many true bugs (Hemiptera: Heteroptera) have extended their
distributions remarkably over the last century, and some of them
have increased their pest status after introduction beyond their
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native range (Zhu et al., 2012b). Thaumastocoris peregrinus
Carpintero & Dellapé (2006), commonly known as the bronze
bug, is exclusively associated with several Eucalyptus species
and has become an economically important pest of Eucalyptus
not only in Australia (i.e. its native range), but also in South
America, Africa and Europe (Laudonia & Sasso, 2012; Nadel
& Noack, 2012; Garcia et al., 2013). The bronze bug is a
typically gregarious insect that occurs in large groups of both
adults and nymphs on Eucalyptus leaves (Jacobs & Neser,
2005). It has a short life cycle (approximately 35 days) and the
females are capable of lying approximately 60 eggs during their
lifespan (Jacobs & Neser, 2005; Bouvet & Rodríguez 2009), thus
allowing several generations per year. Adults and nymphs can run
fast and unpredictably when disturbed, suggesting that they could
easily be dispersed by many vectors, such as wind, transporting
plants or branches (Ide et al. 2011) and birds (Noack & Rose,
2007). Their rapid reproductive rate and ability to disperse
may facilitate their successful establishment in newly-invaded
environments (Noack & Rose, 2007; Nadel et al., 2009).

Eucalyptus spp. are the most planted tree species in the world
(FAO, 2006; Corcuera et al., 2010); and, in the tropics, they
represent approximately 50% of the plantation areas (Evans
& Turnbull, 2004). Several Eucalyptus species are susceptible
to infestation by the bronze bug, as reported in several recent
studies (Jacobs & Neser, 2005; Bouvet & Rodríguez, 2009;
COSAVE, 2009; Rodrigues Barbosa et al., 2010; Ide et al., 2011;
Noack et al., 2011; FAO, 2012; Laudonia & Sasso, 2012; Sopow
et al., 2012). To date, the bronze bug has been reported for
14 Eucalyptus species in Australia (Noack et al., 2011); Nadel
et al. (2009); one in New Zealand (Sopow et al., 2012); 26 in
South Africa; 11 in South America (Carpintero & Dellapé, 2006;
Bouvet & Rodríguez, 2009; Martínez & Bianchi, 2010; Wilcken
et al., 2010); and 21 species and hybrids in Europe (Laudonia
& Sasso, 2012; Garcia et al., 2013). Currently, the host range
of the bronze bug includes approximately 43 Eucalyptus species
and hybrids worldwide. Infested Eucalyptus trees show leaf
silvering, ranging from chlorosis to bronzing, giving the bronze
bug its common name (see Supporting information, Doc. S1).
Heavy infestations cause leaves to become red/brown, after
which defoliation occurs.

Subsequent to the dramatic infestation of eucalypts in Sidney
in 2001 (Noack et al., 2011) the bronze bug has rapidly become
established as a severe pest in South America (Carpintero &
Dellapé, 2006; Noack & Coviella, 2006; Martínez & Bianchi,
2010; Rodrigues Barbosa et al., 2010; Wilcken et al., 2010;
Ide et al., 2011; Savaris et al., 2011; Benítez Díaz et al., 2013;
Magalhães Pereira et al., 2013), Africa (Jacobs & Neser, 2005;
Chilima, 2007, 2008; Nadel et al., 2009; Noack et al., 2011),
Europe (Laudonia & Sasso, 2012; Garcia et al., 2013), and New
Zealand (Sopow et al., 2012).

In invasive species management, the areas identified by niche
modelling are those where an invasive species may be present
or where it may appear in the future, and so the results could
be valuable for planning and prioritizing areas for monitoring
(Ward, 2007). Such information can also help to determine the
extent, cost and likelihood of success of control and monitoring
programmes. Thus, the predictive modelling of the potential
distribution of a species is an important tool for invasive species
management (Kadoya et al., 2009).

The present study aimed: (i) to identify the environmental
variables defining suitable climate for the bronze bug using
presence-only data; (ii) to identify areas with suitable climate
(and thus a high probability) for future colonization; and (iii)
to generate a spatially explicit predictive map of environmental
suitability.

Materials and methods

Occurrence data

An occurrence database for the bronze bug was compiled from
a few specimens held at the Museo de La Plata (Argentina) and
from the literature (Jacobs & Neser, 2005; Carpintero & Dellapé,
2006; Noack & Coviella, 2006; Chilima et al., 2008; Bouvet
& Rodríguez, 2009; COSAVE, 2009; Nadel et al., 2009; Noack
et al., 2009, 2011; Martínez & Bianchi, 2010; Rodrigues Barbosa
et al., 2010; Wilcken et al., 2010; Dovey et al., 2011; Ide et al.,
2011; Savaris et al., 2011; Laudonia & Sasso, 2012; Martins
et al., 2012; Mascarin et al., 2012; Nadel & Noack, 2012;
Sopow et al., 2012; Souza et al., 2012; Benítez Díaz et al., 2013;
Garcia et al., 2013; Magalhães Pereira et al., 2013; Oumar et al.,
2013). Some African records reporting the bronze bug lack
locality data: Kenya (Noack et al., 2011), Zimbabwe (Chilima,
2007; Nadel et al., 2009), Mozambique (Nadel & Noack, 2012)
and Malawi (FAO, 2012). We confirmed some localities in Kenya
by personal communication with Mr E. Mutitu (Forestry and
Agricultural Biotechnology Institute, South Africa), who also
informed us of the presence of the bronze bug in Uganda and
Tanzania (the latter was not included in the present study because
of the lack of locality information). From Malawi, locality data
were obtained from a pest alert flyer (Chilima et al., 2008) sent
to us by Dr C. Chilima (Forestry Research Institute of Malawi).

We assembled 293 occurrence localities: 171 from South
America, 59 from Africa, four from Europe and 59 from Oceania
(see Supporting information, Doc. S2). When coordinates were
published, we used them but, in most cases, only localities were
mentioned, and the geographical coordinates were obtained from
Google Earth. If only distributional maps were available, the
localities were geo-referenced using arcmap, version 10 (ESRI,
2011).

There were variations in the occurrence data in different con-
tinents for spatial density, which depends on sampling inten-
sity, mainly because of the proximity of the tree plantations
to roads. Therefore, to avoid overemphasizing a sampled area,
we selected points for model calibration using a subsampling
regime to reduce sampling bias and spatial autocorrelation that
could distort potential distributional models (Dormann et al.,
2007; Veloz, 2009; Nuñez & Medley, 2011; Zhu et al., 2012a,b).
In accordance with Nuñez & Medley (2011) and Zhu et al.
(2012a,b), we developed a model for each continent (except
Europe, where there were only four records) using all occur-
rence points, and spatial autocorrelation was defined among
pseudo-residuals (1− probability of occurrence generated by
model) by calculating Moran’s I at multiple distance classes
using sam, version 4.0 (Rangel et al., 2010). Significance was
determined by permutation tests.

Distances where spatial autocorrelation was minimal differed
by continent: South America, 258 km; Africa, 188 km; and
Oceania, 716 km. Grids were created for each continent with
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the cell dimensions of the minimal distances detected and one
occurrence point per cell was selected. As a result, the dataset
was reduced from 293 to 51 occurrence points: 25 from South
America, 15 from Africa, seven from Oceania and four from
Europe. This procedure greatly reduced sampling bias and spatial
autocorrelation, resulting in evenly distributed occurrence points
across space. We used all 51 occurrence points from native and
introduced records for model calibration.

Selection of variables

Environmental dimensions in which to characterize ecological
niches were selected by considering the climate, which has
been recognized as the main characteristic that is significantly
associated with invasive species across biological groups (Hayes
& Barry, 2008; Bomford et al., 2009; Elith et al., 2010). The
environmental data were obtained from a set of 19 bioclimatic
variables in the WorldClim 1.3 dataset (Hijmans et al., 2005).
WorldClim contains climate data (monthly precipitation and
monthly mean, minimum and maximum temperature) at a spatial
resolution of 2.5 arcmin (approximately 5 km2) obtained by
interpolation of climate station records from 1950 to 2000.
To exclude correlated variables used for modelling, Pearson’s
correlation coefficient (r) was calculated between each pair of the
19 WorldClim variables for all the points from the geographical
extent. For each comparison with r ≥ 0.90 one variable was
selected for modelling.

Direct climate comparisons

The climatic similarity of the invaded area compared with
the source ecosystem is often a useful predictor (Peterson &
Vieglais, 2001; Bomford et al., 2009; Rödder & Lötters, 2010).
Zhu et al. (2012b) hypothesized that, if the environmental dimen-
sions selected are those with low discrepancy between native and
introduced populations, then niche model transferability might
be improved among these areas, and thus more accurate models
might be obtained. This is valid for species that are conservative
of their niche during the invasion of new areas, although a cli-
matic niche shift could also be expected. We defined two datasets
to consider the two possibilities: that the bronze bug will be con-
servative of its niche during biological invasion or that climatic
niche shift will occur. Accordingly, we analyzed the similarities
of the environmental dimensions between native and introduced
populations. Raw environmental data were extracted from envi-
ronmental rasters in species’ occurrence records using diva-gis
(http://www.diva-gis.org/) and compared in boxplots. By com-
parison of the boxplots, we were able to identify those variables
with low discrepancy between native and introduced populations
(variables with overlapping columns). With this information, we
defined two datasets: one highly dimensional (non conservative)
and a simpler one with only those variables with low discrep-
ancy between native and introduced populations (highly conser-
vative). Both datasets were used to calibrate the models.

Ecological niche modelling

Presence/absence models are frequently used to predict species
distribution, although there is a common problem related to

the uncertainty in determining absences (Phillips et al., 2006),
especially where the species does not occupy all available
suitable habitats (Gibson et al., 2007). This is frequently the
case in invasive species (Kadoya et al., 2009) whose distribution
ranges are still spreading. In such cases, methods to model
presence-only data such as maximum entropy modelling are
powerful tools for predicting the potential distributions of species
across new areas (Elith et al., 2006; Hernandez et al., 2006;
Phillips et al., 2006; Pearson et al., 2007; Raes & ter Steege,
2007).

The models were performed using maxent, version 3.3.3k
(Phillips et al., 2006), which was specifically developed to model
species distributions with presence only data and has outper-
formed most other modelling applications. Default settings were
used to run the models and were built through cross-validation.
We used a 10-fold cross validation, which leaves out 10% of the
data as a testing set at each of 10 iterations, building the model
on the remaining 90% of the data in each iteration. Model eval-
uation was carried out via the area under the curve (AUC). We
used the null models approach to test whether our models provide
a better fit than would be expected by chance. Ninety-nine null
models were built by drawing random occurrence points without
replacement. Each null model was based on an equal number of
occurrence points and modelled under the same conditions as the
real models. The AUC of these null models were used to test the
significance of the real models. If the AUC of the real models
fell in or above the highest 5% of the AUCs of the null models,
the real models were considered statistically significantly better
than random (Raes & ter Steege, 2007).

Results

Pearson results

The exploratory analysis to identify the environmental vari-
ables defining suitable climate led to a combination of 14 min-
imally correlated variables (see Supporting information, Doc.
S3). These are: annual mean temperature (BIO1), mean monthly
temperature range (BIO2), isothermality (BIO3), temperature
seasonality (BIO4), minimum temperature of coldest month
(BIO6), mean temperature of wettest quarter (BIO8), mean tem-
perature of driest quarter (BIO9), mean temperature of warmest
quarter (BIO10), annual precipitation (BIO12), precipitation sea-
sonality (BIO15), precipitation of wettest quarter (BIO16), pre-
cipitation of driest quarter (BIO17), precipitation of warmest
quarter (BIO18) and precipitation of coldest quarter (BIO19).

Direct comparisons

Figure 1 provides an overview of climate conditions at sites with
records of native and introduced bronze bug. From the visual
comparison of the boxplots of the 14 variables occupied by
native and introduced populations, we were able to identify nine
variables with low discrepancy in which the interquartile range
overlaps. These are: BIO1, BIO2, BIO8, BIO10, BIO12, BIO15,
BIO16, BIO17 and BIO19. These results allowed us to define
the two datasets used for model calibration; dataset I, which
includes 14 variables (the only variables excluded are the highly
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Figure 1 Direct comparison of the bronze bug occurrence-associated variables between native and introduced distributional areas. Asterisk (*) indicates
variables with overlapping columns (i.e. interquartile range) between the two areas, representing variables of low discrepancy; variables of high discrepancy
were excluded from Dataset II. BIO1, annual mean temperature; BIO2, mean monthly temperature range; BIO3, isothermality; BIO4, temperature
seasonality; BIO6, minimum temperature of coldest month; BIO8, mean temperature of wettest quarter; BIO9, mean temperature of driest quarter;
BIO10, mean temperature of warmest quarter; BIO12, annual precipitation; BIO15, precipitation seasonality; BIO16, precipitation of wettest quarter;
BIO17, precipitation of driest quarter; BIO18, precipitation of warmest quarter; and BIO19, precipitation of coldest quarter.
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correlated ones), and dataset II, which includes the nine variables
with reduced discrepancy between native and introduced range.

Model comparisons: predicted range of suitable climates
for the bronze bug

The two environmental datasets, dataset I (non conservative)
and dataset II (highly conservative) showed very good model
projection. For dataset I, the average test AUC was 0.957, the
standard deviation was 0.031 and the AUC ranged from 0.876
to 0.981. For dataset II, the average test AUC was 0.951, the
standard deviation was 0.032 and the AUC ranged from 0.862
to 0.979. Both models provide a significantly better fit than
expected by chance alone (see Supporting information, Doc. S2).
Models trained on the two datasets showed the same general
pattern of distribution, although dataset I was more reduced
(Fig. 2). The model built with environmental dimensions with
low discrepancy between native and introduced populations
(highly conservative) (Fig. 3) shows larger areas of climatic
suitability for the bronze bug, mainly in southern U.S.A., along
the north-east of the Andes in South America, in central Africa
and in south-eastern Europe. The climatic variables that appear
to constrain the distribution of the bronze bug are mostly related
to temperature (BIO3, BIO4, BIO6 and BIO9).

According to our models (Figs 2 and 3), in Oceania, climate
conditions are suitable in southern and eastern Australia, Tasma-
nia and New Zealand. In Africa, climate conditions are suitable
in south-east South Africa, Madagascar, middle-east Africa, and
coastal regions of Morocco, Algeria and Tunisia; and the most
suitable conditions are found where the bronze bug is already
established, extending to the north mainly in Ethiopia. In Asia,
climatic conditions are suitable for the bronze bug in southern
China, Myanmar, Cambodia, Laos and India.

In South America, suitable climatic conditions for the bronze
bug primarily include the currently known range of the species,
extending northward along the Brazilian coast, and to the
west to Paraguay, Bolivia and northern Argentina. A narrow
suitable area also appears along the east of the Andes from
Bolivia to Venezuela. In Chile, the suitable area spans south
from known records of the bronze bug. In North and Central
America, conditions are suitable from southern North America
to Nicaragua, on most of Caribbean Islands, and along a narrow
fringe on the west coast of U.S.A.

In Europe, climate conditions are suitable in most of western
and southern Europe; the most suitable areas being in Italy,
France, Spain and Portugal.

Discussion

Climatic model predictions are an important tool and a valid
first approach to the potential magnitude and distributional pat-
tern of future impact of invasive species, although they should
be interpreted carefully because they do not consider impor-
tant factors other than climate, such as biotic interactions. Thus,
populations will not necessarily become successfully established
in an area predicted as climatically suitable because other fac-
tors may be unsuitable (e.g. an absence of their host plant or
the presence of competitors, predators or pathogens). More-
over, these models cannot predict the full extent of the inva-
sion in the new range. There are several examples of invasive
species occupying new niches during biological invasion (Broen-
nimann et al., 2007; Angetter et al., 2011; Bidinger et al., 2012).
There is as yet insufficient evidence to confirm whether the
bronze bug is conservative of its niche or if a climatic niche
shift could be expected during the invasion. These two pos-
sibilities are considered in the two datasets that we used to

Figure 2 Niche models based on 51 records (white dots) and transferred worldwide. Based on dataset I. Black dots represent occurrences of the
bronze bug excluded from model calibration. Darker tone /red colour represents high suitability, lighter tone/green colour indicates low suitability.
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Figure 3 Niche models based on 51 records (white dots) and transferred worldwide. Based on dataset II. Black dots represent occurrences of the
bronze bug excluded from model calibration. Darker tone /red colour represents high suitability, lighter tone/green colour indicates low suitability.

build our models. According to both models, the most proba-
ble scenario is that the range of the bronze bug will continue
to expand. In South America and Africa, the distribution of the
bronze bug may expand mainly to the north-east and central
areas. Special attention should be given to the regions of south-
ern U.S.A., Central America, and southern China and nearby
countries, where conditions are highly suitable but the bronze
bug has not yet been recorded and could only arrive by human
means.

In Asia, there is no record of the bronze bug, although
particular attention must be paid to regions where Eucalyptus
is cultivated and our models predict good climatic suitability.
These regions are located in India, China, and Myanmar. India
has over 3.9 million ha of Eucalyptus plantations, ranking second
in the world (Booth, 2012). In China, the Eucalyptus plantation
industry has undergone rapid development, and there are over
2.6 million ha of these plantations, ranking third in the world
(Booth, 2012). In this vast country, the region endangered,
according to our results, is the Yunnan province (Figs 2 and 3),
where Eucalyptus plantations cover more than 60 000 ha (Wang
et al., 2011).

In the U.S.A., where there is increasing interest in establishing
short rotation eucalypt plantations in the south-eastern region
to meet biofuel needs (Booth, 2012), special care should be
taken to prevent the introduction of the bronze bug. Historically,
the use of eucalypts in southern U.S.A. has been limited by
their freeze tolerance (Meskimen et al., 1987; Rockwood et al.,
2008), although selection and genetic modification are increasing
that range (Gordon et al., 2012). The demand for hardwood,
pulp and bio-energy in southern U.S.A. is increasing and, in
the specific case of bio-energy and pulp demand for biomass
from eucalypts, the projection by 2022 could approach 20 million
tons/year (Dougherty & Wright, 2012).

In Central America, mainly in Mexico, Eucalyptus globulus
and Eucalyptus camaldulensis are the most common species
(Kiwanja, 2007), both of which are susceptible to infestation
by the bronze bug. At present, these trees are used for vari-
ous purposes, including windbreaks, aesthetic purposes, cellu-
lose for paper production and, in some rural areas, fuel (Álvarez
Zagoya & González Lozano, 2012). Although only approxi-
mately 25 000 ha are currently cultivated, the number is increas-
ing every year (Pérez-Vera et al., 2005). Some studies report that
Mexico has 11 million ha suitable for cultivation of Eucalyptus,
mainly in the south-east of the country (Martínez Ruiz et al.,
2006).

In Europe, where the bronze bug is only known from a few
localities in Italy and Portugal, the climatic suitability predicted
shows that there could be a major increase in its range. In these
two countries and Spain, Eucalyptus spp. are cultivated on a
large scale for industrial purposes (Tomé et al., 2001; Facciotto
& Mughini, 2003; Tolosana et al., 2010). The Mediterranean
region, where highly susceptible species of Eucalyptus are
common (e.g. E. camaldulensis), would be the most highly
threatened area. Laudonia & Sasso (2012) have warned that
the bronze bug may become a serious pest for the eucalyptus
plantation industry, as well as in parks and urban areas. Some
studies (Laudonia & Sasso, 2012; Garcia et al., 2013) suggest
that South America and South Africa are the source of the pest
through the importation of wood; the hypothesis of introduction
via South America is reinforced by the discovery in Portugal of
a South American neuropteran predator of the bronze bug.

Because Eucalyptus plantations are increasing worldwide, and
the most commonly planted species are highly susceptible to
infestation (Jacobs & Neser, 2005; Bouvet & Rodríguez, 2009;
Laudonia & Sasso, 2012), and because the dispersion of the
bronze bug has increased rapidly over the last 8 years, the
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occurrence of this invasive species should be expected in many
areas where it has not yet been recorded.
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