
3822 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 62, NO. 15, AUGUST 1, 2014

Adaptive Radar Detection Algorithm Based on an
Autoregressive GARCH-2D Clutter Model
Juan P. Pascual, Nicolás von Ellenrieder, Member, IEEE, Martín Hurtado, Member, IEEE, and

Carlos H. Muravchik, Senior Member, IEEE

Abstract—We propose a model for radar clutter that combines
an autoregressive (AR) process with a two-dimensional generalized
autoregressive conditional heteroscedastic (GARCH-2D) process.
Based on this model, we derive an adaptive detection test, called
AR-GARCH-2D detector, for a target with known Doppler fre-
quency and unknown complex amplitude. Using real radar data,
we evaluate its performance for different model orders, and we use
a model selection criteria to choose the best fit to the data. The re-
sulting detector is not the constant false alarm rate (CFAR) with
respect to the process coefficients, but we show that in practical sit-
uations it is very robust. Finally, we compare the AR-GARCH-2D
detector performancewith the performance of the generalized like-
lihood ratio test (GLRT), the adaptive linear-quadratic (ALQ), and
the autoregressive generalized likelihood ratio (ARGLR) detectors
by processing the real radar data. We show that the proposed de-
tector offers a higher probability of detection than the other tests,
for a given probability of false alarm.

Index Terms—Detection, GARCH processes, GARCH-2D, non-
Gaussian clutter, radar.

I. INTRODUCTION

I N radar applications it is important to properly model the
contribution of the reflections on the environment to the

measured signals in order to achieve a desired performance.
These reflections on the environment, or clutter, are in many
cases of nonhomogeneous nature and unknown statistics, re-
quiring adaptive detection algorithms. Given its mathematical
tractability, adaptive radar detection based on Gaussian clutter
models has been extensively investigated [1]–[5]. A well known
solution is the generalized likelihood ratio test (GLRT) [2] de-
signed assuming a Gaussian clutter model with unknown co-
variance matrix. For this detection scheme two sets of input data
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are used which are called the primary and secondary inputs. The
possibility of signal presence is accepted for the primary data
while the secondary data are assumed to contain only clutter,
independent of and identically distributed to the clutter com-
ponents of the primary data. For the autoregressive generalized
likelihood ratio (ARGLR) detector [4] the clutter is modeled
by an autoregressive (AR) process to impose a structure on its
covariance matrix. In this case the detector adjusts itself to the
environment using only the primary data.
However, experimental evidence shows that the Gaussian

assumption is not met in many situations of practical interest
[6], [7]. Thus depending on the application, clutter models
have been proposed based on distributions such as Log-normal,
Weibull, K [8], [9], generalized compound probability density
function [10]–[12] or on spherically invariant random process
[13]. The detection problem for some of these non-Gaussian
clutter models has also been studied [14]–[16]. The adaptive
linear-quadratic (ALQ) detector [16] is a suboptimum approach
designed assuming a compound-Gaussian clutter model. The
problem formulation of this detector is analogous to the GLRT
detector, and it also requires primary and secondary data sets.
Recently, a different approach to the adaptive detection

problem was proposed considering a generalized autoregres-
sive conditional heteroscedastic (GARCH) process to model
the clutter [17]. GARCH processes [18] have heavy tailed
probability density function (pdf) and volatility clustering, i.e.,
large changes tend to follow large changes and small changes
tend to follow small ones, which is usually a desirable char-
acteristic for clutter models. The resulting adaptive detector
outperforms Gaussian and Weibull clutter model detectors in
different practical situations. However, the GARCH detector
in [17] has the disadvantage of not being able to incorporate
information of several radar pulses in the decision rule since
the GARCH process was used to model the clutter only in
range (or fast time) dimension. Two dimensional GARCH
processes (GARCH-2D) exist in the literature [19], [20], but
they were never used to model radar clutter as far as we are
aware of. Multidimensional GARCH processes have been
used to model wavelet coefficients in anomalies detection in
sonar applications [20] and in speckle suppression in synthetic
aperture radar images [19].
In this work we extend our previous ideas, presented in [17],

by proposing a clutter model that combines a GARCH-2D
process with an AR process to use the information of multiple
pulses in a decision, and we derive a detector suited for this
clutter model. The GARCH-2D part of the model preserves the
impulsivity property of the GARCH processes, i.e., it preserves
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the heavy tailed pdf, and the AR model in the innovations lets
us model pulsewise correlation. We develop an adaptive detec-
tion algorithm based on this AR-GARCH-2D clutter model.
We carry out a theoretical analysis to determine its false alarm
probability. By means of numerical simulations we compute the
detection probability to evaluate the AR-GARCH-2D detector
performance. We also analyze how the estimation error of its
parameters affects the performance. Although the resulting
detector is not constant false alarm rate (CFAR) with respect
to the process coefficients, we show that it is very robust in
practical situations, i.e., the probability of false alarm does not
significantly change when the coefficient values vary. We test
AR-GARCH-2D detectors with different model orders in a real
situation using sea data measurements and we apply a model
selection criteria to choose the AR-GARCH-2D model that
best fits the data. Finally, we compare the performance of our
method with the GLRT [2], the ALQ [16] and the ARGLR [4]
detectors using the sea data measurements.

Notation

We adopt the following notation. We use math italic for
scalars , uppercase bold for matrices and lowercase bold
for vectors . For a matrix the vectors and represent
the column and the row respectively, and the scalar

is the entry of the matrix . In addition,
represents the set of scalars .
For random variables , and , the variable denotes

the conditional random varible given and .
The expectation and variance operators are denoted as

and respectively.

II. CLUTTER MODEL

A. AR-GARCH-2D Process

Let the doubly indexed process represent a 2D stochastic
process that models the clutter. The first index, , corresponds to
the range (or fast time) dimension and the second index, , corre-
sponds to the pulse (or slow time) dimension. Then, based on a
GARCH-2D process [19] we define a complex AR-GARCH-2D
process, , as

(1)

(2)

where denotes a circularly-symmetric normal distribution,
are the coefficients of the autoregressive part of the process,
is the conditional variance, given by (2), with being the

independent term that sets a variance floor, the coefficients
of the autoregressive part of the conditional variance, and
the coefficients involving the squared past returns. To ensure
that the conditional variance, , is always positive we must
impose the following constraints

(3)

Let also

(4)

(5)

where , , and are the process orders. The
AR-GARCH-2D process defined above differs from the
GARCH-2D process proposed in [19] only by the inclusion of
the second term on the right hand side of (1), i.e., the term of
the autoregressive part in the second (slow) time index. Thus,
while the GARCH-2D process is serially uncorrelated, the
AR-GARCH-2D process lets us model the pulsewise correla-
tion while preserving the impulsivity property of the GARCH
processes. It models the returns as correlated Gaussian noise
processes with nonconstant conditional variance (1). For every
location , both the neighborhood of the return process and
the neighborhood of the conditional variance play a role in the
current conditional variance (2), which leads to clustering of
variations. In this model the number of conditional variance
coefficients increases drastically with the orders , , and
, which severely hinders an accurate estimation of the process

coefficients. To make the model tractable for applied purposes,
additional structure may be imposed. Since for a GARCH-1D
model, a GARCH process with only two coefficients, and the
first , is enough to capture much of the statistical behavior of
sea clutter [17] we restrict our analysis to the model

(6)

(7)

where the coefficients and were excluded in order to
obtain a closed form expression for the detector that we de-
duce in Section III. The coefficients impose some smooth-
ness on and coefficients determine the degree of depen-
dence with previous outputs. By restricting this dependence to
the previous range cell and pulse, we capture only the dominant
dynamics of the conditional variance. More complex dynamics
could be modeled with higher orders. Most clutter environments
are probably modeled adequately by this closest neighbors de-
pendence, but even if some environments exhibit more com-
plex clutter dynamics, a model with extra coefficients does not
imply a better fit in practice, since a higher number of coeffi-
cients would lead to higher estimation errors for a given dataset.
Furthermore, we restrict to vary only from 0 to 3 because an
AR clutter model of third order was found to be a good compro-
mise between model fidelity and mathematical tractability [21].
Let denote the set of all information up to range cell
and time , i.e., and for and . Then,

if we condition to from (6) we see that

and are given and only is
random, thus

(8)
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Note that the set of process samples is not included
in .
Since themodel involves autoregressive equations it could di-

verge. To avoid this situation it is possible to impose conditions
on the process coefficients in order to ensure that the process is
wide sense stationary andwith finite variance, as in GARCH-1D
processes [18] or GARCH-2D processes [20]. It is possible to
show that and the unconditional variance is finite
and equal to

(9)

as long as the condition

(10)

is satisfied, where is a constant that depends on the co-
efficients. In Appendix A we present the expression of for

to 3. As in the case of the GARCH-1D and GARCH-2D
processes, there is no explicit expression for the probability den-
sity function of the AR-GARCH-2D process.

B. Parameter Estimation

To fit the AR-GARCH-2D model to the clutter we should
estimate its coefficients from a target-free dataset. Assuming a
single sensor pulsed radar transmits a coherent train of pulses
and the receiver samples the reflected signal from each pulse
at the output of the matched filter to form range cells. The
samples of the complex envelope at the output of the quadra-
ture demodulator can be assembled into a matrix
with complex elements , the rows corresponding to
the range dimension and columns corresponding to the pulse di-
mension.
A possible way to perform the estimation would be

using the maximum likelihood (ML) method, but there is
no explicit expression for the pdf of an AR-GARCH-2D
process. To overcome this difficulty, analogously to the case
of the GARCH-1D [18] or GARCH-2D [20] processes,
we consider instead the conditional likelihood function

that may be written as

(11)

where and the conditional pdfs
are given by (8). Then, we define

the function as

(12)

where is the param-
eter vector that we want to estimate. The conditional log-likeli-
hood function dif-
fers from in a constant.
Finally, the quasi-maximum likelihood estimator (QMLE),
, is the value of that maximizes (11) or, equivalently, that
minimizes subject to the constraints given by (3) and (10).
In summary, we may write

(13)

where is the set of values of that satisfy the constraints (3)
and (10). Note that the QMLE is not an approximation of the
ML estimator, it is simply a different estimator.

III. DETECTION

For a given range cell , complex samples from the pulse
dimension can be assembled into an -dimentional
vector . Then, the detection procedure
is given by a binary hypothesis test between hypotheses and

once has been measured from the range cell under test

(14)

Under the null hypothesis , it is assumed that the measure-
ments consist only of clutter . We assume that the electronic
noise is negligible or part of the clutter model. Under the hy-
pothesis , it is assumed that the measurements are the com-
bined result of clutter and echoes from a target, . We model
the signal vector in the form , where is an deter-
ministic but unknown complex scalar, while is a perfectly
known complex vector whose elements are given by

, with where is the target Doppler
frequency and is the radar pulse repetition interval [16]. We
assume that the statistics of the clutter is the same for both hy-
potheses and it is modeled as an AR-GARCH-2D process.
The generalized likelihood ratio test (GLRT) involves the

ratio of the likelihood functions under each hypotheses, eval-
uated at their respective maxima -given by the MLEs of all
unknown parameters corresponding to each hypotheses [22].
Since no explicit expression exists for the distribution of an
AR-GARCH-2D process, there is also no expression for the
likelihood ratio to obtain the decision rule. Thus, the classical
GLRT approach can not be used in our case. Instead, we develop
our test based on the conditional likelihood functions given the
process observations up to the range cell under test [17]. This
generalized conditional likelihood ratio test makes use of the
information available up to the moment of the test to define the
hypotheses, and seems a good alternative to the classic GLRT
in which the hypotheses are based on the model but are not up-
dated by previous observations.
The conditional pdfs are given by

(15)
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with . Under the clutter-alone hypothesis, from (8) we
get

(16)

Under the signal-plus-noise hypothesis, the elements of may
be written as and from (6) it results

(17)

Writing the clutter samples as for
, from (17), we find

(18)

Hence, is also a normal pdf but
with a different mean value

(19)

Following the GLRT approach we should maximize
with respect to the unknown

parameters and , separately for each , 1. However, the
application of the GLRT methodology for the AR-GARCH-2D
coefficients would lead to a multidimensional nonlinear maxi-
mization problem for which no closed form solution exists. We
propose an alternative solution based on the assumption that
the value of the coefficients of the AR-GARCH-2D process is
known. Then, in the algorithm implementation we will estimate
them as explained in Section II-B, making use of a clutter-only
secondary data set.
Under this assumption the only unknown parameter is , and

it only appears in the pdf of the hypothesis . Then, as shown
in Appendix B

(20)

is the value of that maximizes .
Then, we use the conditional likelihood ratio, , and we

establish the following decision rule

(21)

where is the decision threshold to be determined. Replacing
the expressions of the pdfs and in (21), it is possible to rewrite
the decision rule as

(22)
where the threshold is given by

(23)

In the classic approach, the next step would be to obtain an
expression of the false alarm probability, , in terms of the
threshold, or , and then invert it to obtain the threshold setting
in terms of . This procedure requires knowing the distribu-
tion of the statistic on (22) under the hypothesis . Again, we
do not have an explicit expression of the pdf of or . Hence,
to determine a threshold we resort to the conditional false alarm
probability given , i.e., . Taking into ac-
count that under the hypothesis , then

(24)

and under these conditions, the statistic reduces to

(25)

where

(26)

If we define and , then
is the sum of independent complex normal random variables.
Thus, from (26) , with

(27)

Hence, is Rayleigh distributed and is
given by

(28)
Finally, from (23) and (28) we obtain the threshold

(29)

The probability of detection, , cannot be evaluated analyt-
ically and it will be computed in Sections IV-B and V by means
of Monte Carlo simulations using synthetic and real clutter data,
respectively.
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In the derivation of the decision algorithm we assume the
process coefficients are known, however it is not true in a real
situation. Thus, in practice the AR-GARCH-2D detector is
given by

(30)
where

(31)

and , , , for and , for are the
estimates of the process coefficients. In Section IV-C we per-
form a sensibility analysis to analyze how errors in the coeffi-
cient values affect the performance.

IV. NUMERICAL SIMULATIONS

In this section we carry out a numerical analysis of the esti-
mation method of the AR-GARCH-2D process coefficients and
of the detection performance of the AR-GARCH-2D detector.
For the numerical simulations, we restrict our analysis to one
of the processes of the family represented by AR-GARCH-2D
model. Synthetic data used in this section is generated by means
of the following model

(32)

(33)

with and i.i.d.. As we will show in Section V-A,
this is the model obtained from the real clutter data fit.

A. Estimation

In order to verify that the estimates of the process coefficients
satisfy desired properties and to have also a guideline to the es-
timation quality when real data are used, we performed an anal-
ysis of the estimation quality as a function of the number of
samples of the observation matrix . This analysis was done by
means of numerical simulations which consisted in the genera-
tion of independent process realizations of different size, ,
and the estimation of the model coefficients for each realization.
The estimation problem given by (13), was solved using the
Matlab Active Set Algorithm, implemented through the method
SQP (Sequential Quadratic Programming) [23]. This procedure
was repeated 200 times for each case, i.e., we obtained 200
values of the coefficient estimates for each synthetic dataset
size. The initial conditions were chosen randomly within the set
of coefficient values that satisfy the constraints (3) and (10). We
did not prove the convexity of the problem, but the algorithm
converged for all the tested initial values.
Tables I and II show mean and standard deviation values of

the estimates as a function of the dataset size, . The mean

TABLE I
MEAN OF THE COEFFICIENT ESTIMATES

TABLE II
STANDARD DEVIATION OF THE COEFFICIENT ESTIMATES

of the estimates shows a small bias that decreases with the in-
crease of the number of samples used in the estimation proce-
dure. It can be seen that some coefficients are more sensitive to
a dimension than the other, for example the bias of the estimator
of decreases rapidly for an increasing number of time sam-
ples but not of range samples. The standard deviation of the esti-
mates decreases with the number of samples, as seen in Table II.
Note that the results verify the mentioned asymptotic behavior
with a rate of convergence close to the square root of the number
of samples. In these examples, we see that the QMLE resembles
the behavior of an asymptotically unbiased consistent estimator.

B. Probability of Detection

In order to evaluate the performance of the AR-GARCH-2D
detector Monte Carlo simulations were performed to esti-
mate the probability of detection, , for different values of
signal to clutter ratio (SCR). We generated realizations of an
AR-GARCH-2D process given by (32) and (33) and added a
synthetic target with the model proposed in Section III in a
range cell chosen at random. The signal follows the Swerling
I target model [24], i.e., is a complex circularly-sym-
metric normal random variable, with zero mean and variance

, taking a different value in each decision. We
defined , where is the sample variance of
the clutter data. We set the target Doppler frequency such
that and selected the threshold from (29) to get
a and . For each value of we
repeated the procedure for pulses. We esti-
mated by the relative frequency of the statistic exceeding
the threshold.
We generated synthetic datasets of size 68 8192 (equal to

the size of the real radar datasets used in Section V) and we used
a number of independent datasets large enough to ensure that the
detection probability is accurately estimated [22]. We repeated
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Fig. 1. Probability of detection versus signal to clutter ratio for the
AR-GARCH-2D detector using synthetic data.

Fig. 2. Empirical ROC curves for the AR-GARCH-2D detectors using syn-
thetic data.

the simulations for different values of , keeping the noise
power constant and varying the value of . Fig. 1 shows the
estimated values obtained by numerical simulations. As ex-
pected for a given value of the detection probability in-
creases with and .
Finally, we computed the receiver operating character-

istic (ROC) curve for the AR-GARCH-2D detector. A pair
corresponds to a point on the curve. For a given

the ROC was obtained by varying the threshold and com-
puting the false alarm probability using (29) and the detection
probability by means of its relative frequency. Fig. 2 shows
ROC curves for with .

C. Sensitivity Analysis

In the derivation of the AR-GARCH-2D detector we assume
that the process coefficients are known. However, in a real situ-
ation this is seldom true and they have to be estimated. Thus, in

Fig. 3. Effect of the coefficient estimation errors on the probability of detection
of the AR-GARCH-2D detector.

this section we evaluate how the variance of the coefficient esti-
mates affect the performance of the detector. In the presence of
an estimation error or small changes in the parameters the per-
formance of the detector should not vary.
We performed simulations generating the clutter with the true

coefficient values and we computed the and the , as-
suming that in the detector the coefficients were corrupted due
to estimation errors. We draw random coefficient values from a
normal distribution with mean and standard deviations obtained
for coefficient estimates in Section IV-A (Tables I and II) for the
synthetic datasets of size 68 8192.
To estimate the probability of detection the procedure was the

same as described in the previous section, with and
set to get . The simulation was repeated 10 times,
i.e., for ten different sets of corrupted coefficient values. Fig. 3
shows the relative error of the obtained for different values
of , where the obtained in Section IV-B was taken as
the true value. We observe that the detector presents a low error
in for a wide range of values, and it becomes negli-
gible for high .
To estimate the probability of false alarm the approach was

similar. In this case the target was not added to the clutter data.
The statistic was computed with the corrupted coefficients and
compared to the threshold, and the was estimated by its
relative frequency. This procedure was repeated varying the
threshold, , to get a curve as a function of .
A desirable feature for a radar detector is to have a constant

false alarm rate (CFAR), i.e., the dispersion of the unknown pa-
rameters should not affect the false alarm probability. Thus, in
the presence of an estimation error or small variations in the pa-
rameters, the performance of the detector should not vary. Fig. 4
shows ten curves of obtained from random coefficients and
the theoretical conditional , given by (29), as a function of
. We can see that even though the AR-GARCH-2D detector is
not CFAR with respect to the process coefficients from an ana-
lytical point of view, it is very robust in practical situations, i.e.,

does not significantly change when the coefficient values
change.



3828 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 62, NO. 15, AUGUST 1, 2014

Fig. 4. Effect of the coefficient estimation errors on the probability of false
alarm of the AR-GARCH-2D detector.

V. PERFORMANCE ANALYSIS

In this section the AR-GARCH-2D detector is tested on real
sea clutter data to evaluate its performance in a real application
situation. We use data from the McMaster University IPIX
radar, collected at the Osborne Head Gunnery Range (OHGR),
Dartmouth, Nova Scotia, Canada [6]. Specifically, we use
the data recorded on November 10, 1993 at 00:34:24 a.m.,
at 00:36:51 a.m. and at 00:39:10 a.m. in the data sets stare6,
stare7 and stare8 respectively. The IPIX radar has polarimetric
information, shown results correspond to vertical polarization
(VV) only. The datasets correspond to inhomogeneous sea
clutter without a target. The height of the sea waves was of
approximately 0.9 m. For the three data sets the fast time or
range dimension consists of , the sampling
interval is 15 m and the radar range resolution is 30 m. The
number of transmitted pulses, i.e., the number of samples in
the slow time dimension, is with a pulse repetition
frequency of 500 Hz.

A. Model Fit to the Clutter Data

To model the clutter as an AR-GARCH-2D process, we are
interested in fitting the AR-GARCH-2D process to the samples
from clutter measurements. The fit includes the estimation of the
coefficients of the process as well as the selection of the process
order, i.e., the optimum number of coefficients. To carry out the
fit we use only the data set stare6; the rest of the data sets will
be used to evaluate the performance of the detection algorithm.
The coefficients estimation was performed using the method-
ology described in Section IV-A for the numerical simulations.
Since the orders of the process, i.e., the number of coefficients,
are not known a priori, the estimation of the coefficients was re-
peated for different orders. For each value of between 0 and
3 we considered all possible combinations of variance coeffi-
cients assuming that they can be zero or nonzero. Taking into
account that for a GARCH model ’s coefficients can not be
all simultaneously zero, we have 48 possible models. However,
when we performed the fit for some model orders the estimates

Fig. 5. Probability of false alarm versus threshold for the AR-GARCH-2D de-
tectors using IPIX radar clutter data.

corresponding to some coefficients took the same values as in
the case of other AR-GARCH-2D process fit, and the estimates
of the new coefficients did not appear to be statistically signif-
icant. Eliminating such cases, the number of survivors models
reduces to 27; 8 correspond to models for which
and the remaining 3 correspond to .
A fair comparison among the proposed models should not

be made based only on the quality of the fit of the probability
distributions, but also on a comparison of the performance of
the detection problem. Thus, before adopting a model selection
criteria to determine the model with optimum compromise be-
tween model complexity and fit to the clutter measurements, we
carry out a performance analysis of the detection problem for all
the AR-GARCH-2D models.
To evaluate the performance of the detectors given by (30)

we use the data sets stare7 and stare8 that have not been used
in the estimation procedure, with . We computed
the and the in the same way as described in Section IV
but using real clutter data instead of the synthetic clutter.
Fig. 5 shows the curves of the empirical probability of false

alarm, , for the different AR-GARCH-2D detectors, corre-
sponding to the 27 models obtained from the fit, and the the-
oretical conditional , given by (29), as a function of the
threshold . We define the empirical false alarm rate as the
number of decisions exceeding the threshold divided by the total
number of decisions . We use the value of to group
the models because, as can be seen in the figure, the processes
with equal autoregressive order present a similar behavior. Note
that processes for which approximate better the proba-
bility of false alarm than the others models.
In order to evaluate the probability of detection we added

a synthetic target with the model described in Section IV-B to
the real sea clutter data. Again, we defined ,
where now is the sample variance of the real clutter data. We
selected the threshold for each detector to get a ,
based on the results of Fig. 5. Fig. 6 shows the curves of the
empirical for the different AR-GARCH-2D detectors as a
function of the . The empirical detection rate is defined as
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Fig. 6. Probability of detection versus signal to clutter ratio for the
AR-GARCH-2D detectors using IPIX radar clutter data and a synthetic
target.

Fig. 7. Empirical ROC curves for the AR-GARCH-2D detectors using IPIX
radar clutter data and a synthetic target.

the number of detections in the range cell where the target is
located divided by the total number of decisions in this range
cell. This was repeated for 16 different range cells taken ran-
domly from either of the two datasets, yielding a total number
of decisions. The results show that the performance of
the processes with orders and is similar and it
is better than the performance of the remaining models.
Finally, we compute the receiver operating characteristic

(ROC) curve for the AR-GARCH-2D detectors. In this case
the ROC was obtained using the real clutter data, by varying
the threshold and computing the empirical detection and false
alarm rates. Fig. 7 shows the empirical ROC curves for actual
clutter data and a synthetic target with . Again
we observe better results for models with second and third
autoregressive order.
To evaluate which AR-GARCH-2D models show a better

compromise between model complexity and quality of fit we

use the Bayesian information criterion (BIC) [25]. Ignoring a
constant term shared by all the models, from (12) the BIC sta-
tistics may be written as

(34)

where is the maximum likelihood estimator of the -dimen-
sional parameter vector of the -th model, for ,
and is the number of complex observations. The criterion
selects the model having the minimum .
For the IPIX radar clutter data, the AR-GARCH-2D model

with minimum value is one of the models with better de-
tection performance, i.e., , whose coefficient values are
those of the process (32) used to generate synthetic data in the
numerical analysis.

B. Performance Comparison

In this section, we consider three adaptive detectors and com-
pare their performance with the selected AR-GARCH-2D de-
tector. These are the generalized likelihood ratio test (GLRT)
[2], the adaptive linear-quadratic (ALQ) detector [16] and the
autoregressive generalized likelihood ratio (ARGLR) detector
[4]. These detectors are obtained from the hypothesis test (14),
with the same signal model given in Section III, but different
clutter models .
To estimate the clutter covariance matrix the GLRT and the

ALQ detectors make use of vectors of secondary
data from range cells adjacent to the range cell under test.
Secondary data are assumed to share the same statistics proper-
ties with the data from the range cell under test. The GLRT
can be written in the form [2]

(35)

where is the sample estimate of the clutter covariance ma-
trix

(36)

The ALQ detector is given by [16]

(37)

where is the normalized sample covariance matrix estimate
(NSCME) [15]

(38)

The ARGLR is a detector that results from modeling the
clutter as an AR process. This detector adjust itself to the
environment using only the primary data and is given by [4]

(39)
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Fig. 8. Probability of false alarm versus threshold using IPIX radar clutter data.

where the vectors and are and
respectively, with

...
. . .

... (40)

, the projection matrix of the null
space of , and the order of
the AR process that models the clutter.
Fig. 8 shows the curves of the empirical probability of false

alarm, , as a function of for the four detectors with
pulses. The curves were obtained using the stare7 and

stare8 datasets of the IPIX radar. From these results we set
for for each detector and obtain the curves of

as a function of the , with the signal model described
in Section V-A. We also computed the empirical ROC for a

. Figs. 9 and 10 show the vs. curves
and the ROC curves respectively. For the GLRT and the ALQ
detectors we used vectors of secondary data and for the
ARGLR detector we considered a first order AR clutter model,
i.e., , because its performance degrades when the order
increases, since the coefficients are estimated poorly given the
small number of primary data samples. The performance of
our detector, based on the AR-GARCH-2D clutter model, is
the best among all the tested alternatives, suggesting that the
AR-GARCH-2D model matches better the sea clutter data than
the other tested models. Note that the ARGLR and the ALQ
detectors have almost the same performance and, the GLRT
outperforms ALQ detector, as has been shown in [26].

VI. DISCUSSION

We proposed the use of an autoregressive GARCH-2D
process for better characterization of the sea clutter data. This
model preserves the heavy tailed pdf of the GARCH processes
and allows considering pulsewise correlation.
Based on the estimation method commonly used for GARCH

processes we derived an estimation algorithm for the coeffi-

Fig. 9. Probability of detection versus signal to clutter ratio using IPIX radar
clutter data and a synthetic target.

Fig. 10. Empirical ROC curves using IPIX radar clutter data and a synthetic
target.

cients of the AR-GARCH-2D processes andwe verified the esti-
mator asymptotic properties bymeans of numerical simulations.
We also presented an adaptive detection algorithm

based on this clutter model. One of the advantages of the
AR-GARCH-2D detector is that it is a fast adaptive algorithm
since the detection depends not only of the slow time neigh-
borhood of the range cell under test, but also on the range or
fast time neighborhood. Thus, it is able to pick the fast and
heterogeneous behavior of the clutter.
We derived an expression of the false alarm probability for the

AR-GARCH-2D detector. Given its mathematical complexity,
we evaluated the detection probability by means of numerical
simulations. We also analyzed how estimation errors in the co-
efficients affect the false alarm and detection probabilities. We
observe that it is very robust in practical situations.
We evaluated the detection and false alarm probabilities by

means of Monte Carlo simulations using real sea data and in-
jecting a synthetic target, for the AR-GARCH-2D detector for
different process orders. We showed that the detectors for which
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the autoregressive order, , is 2 or 3 present a better perfor-
mance than the detectors for which is 0 or 1, i.e., a higher
detection probability with a lower false alarm rate. Then, we
used a model selection criteria to choose one with an optimum
compromise between complexity and fit.
We also compared the performance of the AR-GARCH-2D

detector with the GLRT, the ALQ and the ARGLR detectors
using actual clutter data. We showed that the proposed detector
outperforms the other three detectors. The same behavior is ob-
served for other datasets and for different number of pulses
involved in a decision. The GLRT is the second best detector,
outperforming the ALQ detector designed assuming clutter is
a compound-Gaussian process. In the case of the ARGLR de-
tector, its performance degrades drastically when the number
of integrated pulses decreases or the order of the AR model
increases, since this detector adjusts itself to the environment
using only primary data.
While we proposed and tested the AR-GARCH-2D clutter

model for sea radar data, it should perform best in cases where
the probability density function of the clutter has heavy tails,
i.e., the clutter is impulsive. When the clutter is not impulsive,
the and coefficients of the GARCH part of the model will
not be statistically significant, and the detector will perform sim-
ilarly to a detector for an AR Gaussian clutter model with sec-
ondary data. On the other hand, if the environment is such that
there is no correlation between consecutive pulses, the AR part
of the model will be negligible and the detector will work as
a GARCH-2D detector. For non-impulsive uncorrelated clutter
the detector further reduces to a detector for white-Gaussian
clutter, albeit one with an unnecessarily large set of secondary
data to estimate the clutter variance.
For a real time application, our detection algorithm has a prac-

tical amount of computational load. Two different computations
must be performed: the estimation of the process coefficients,
and the computation of the detection statistic. The latter does
not involve a higher computational load, and unlike the other
detectors it does not require solving any linear systems. Some
terms in (30) involving the waveform can be precomputed,
and it can be shown that for a model with , (30) and (31)
can be solved with just real multiply-and-accumulate
operations and a comparison. The estimation of the coefficients
involves a much larger computational load, but it can be done as
a batch process and the values do not need to be updated often.
In fact, in the shown results, the estimation and detection was
done with different datasets with 2 and 5 minutes delay. Similar
coefficient values are obtained if the estimation is carried out
with the stare7 or stare8 datasets, suggesting that only an im-
portant change in sea conditions would require an update of the
coefficients.
A possible next step is to extend these ideas to use polari-

metric information. This may be accomplished for example
using a multivariate GARCH model [27].

APPENDIX A

In this appendix we present the expression for the constant
appearing in the condition (10) for the unconditional vari-

ance of the AR-GARCH-2D process. The value of depends
on the order , thus we provide only the expressions for the
values of used in this work.

For , 1, 2, 3 the expressions of are respectively

(41)

(42)

(43)

(44)

where * denotes complex conjugate and the real part of
a complex number.

APPENDIX B

In this appendix we derive the value of that maximizes
based on the first order necessary

condition that it should satisfy to be a local maximizer [23]. The
function is a real-valued function
of a complex parameter . Since
is analytic with respect to and a necessary and sufficient
condition for to have a stationary
point is

(45)

where is treated as a constant in the partial derivative [28].
Equivalently we can find the stationary points of

, because the
is a monotonically increasing function. Once we ob-
tain replacing (19) in
(15), we take . Then, from (19) the derivative of

, with respect to is given
by

(46)

where we denote and

. Thus, (46) is zero when resulting
in

(47)

From (47) we obtain the expression of given in (20).
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