

Matemática Contemporânea, Vol. 42, 1–8 © 2014, Sociedade Brasileira de Matemática

EPT graphs on bounded degree trees

Liliana Alcón Marisa Gutierrez María Pía Mazzoleni

Abstract

An undirected graph G is called an **EPT graph** if it is the edge intersection graph of a family of paths in a tree. In this paper, we answer negatively the question posed by Golumbic et al. [4]: Can any EPT graph without induced cycles of size greater than h be represented in a host tree with maximum degree h?

1 Introduction and previous results

A graph G is called an **EPT graph** if it is the edge intersection graph of a family of paths in a tree. An **EPT representation** of G is a pair $\langle \mathcal{P}, T \rangle$ where \mathcal{P} is a family $(P_v)_{v \in V(G)}$ of subpaths of the host tree T satisfying that two vertices v and v' of G are adjacent if and only if P_v and $P_{v'}$ have at least two vertices (one edge) in common. When the maximum degree of the host tree T is h, the EPT representation of G is called an (h, 2, 2)-representation of G. The class of graphs which admit an (h, 2, 2)-representation is denoted by $[\mathbf{h}, \mathbf{2}, \mathbf{2}]$. Notice that the class of EPT graphs is the union of the classes [h, 2, 2] for $h \geq 2$. In [3] it is proved that the recognition of EPT graphs is an NP-complete problem.

2000 AMS Subject Classification: 60K35, 60F05, 60K37.

Key Words and Phrases: Intersection graphs, EPT graphs, Forbidden subgraphs.

*Partially Supported by CONICET

2

L. Alcón, M. Gutierrez and Ma. Mazzoleni

The EPT graphs are used in network applications, where the problem of scheduling undirected calls in a tree network is equivalent to the problem of coloring an EPT graph (see [2]). The communication network is represented as an undirected interconnection graph, where each edge is associated with a physical link between two nodes. An undirected call is a path in the network. When the network is a tree, this model is clearly an EPT representation. Coloring the EPT graph, such that two adjacent vertices have different colors, implies that paths sharing at least one com-

Definition 1.1. Let $\langle \mathcal{P}, T \rangle$ be an EPT representation of a graph G. A **pie of size** n is a star subgraph of T with central vertex q and neighbors $q_1,...,q_n$ such that each "slice" $q_i q q_{i+1}$ for $1 \leq i \leq n$ is contained in a different member of \mathcal{P} ; addition is assumed to be module n. (See Figure 1).

mon edge in the EPT representation have different colors, meaning that undirected calls that share a physical link are scheduled in different times.

Let $\langle \mathcal{P}, T \rangle$ be an EPT representation of a graph G. It was proved (see [4]) that if G contains a chordless cycle of length $n \geq 4$, then $\langle \mathcal{P}, T \rangle$ contains a pie of size n.

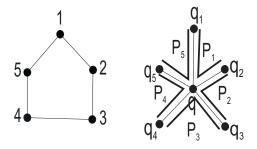


Figure 1: The cycle C_5 and an EPT representation: a pie of size 5.

Notice that, in a pie, the paths corresponding to k consecutive vertices of the cycle cover k + 1 edges incident in q.

Since a pie for a cycle C_n of size n requires a host tree with a vertex of degree n, we have the following theorem.

3

EPT graphs on bounded degree trees

Theorem 1.1. [3] If $G \in [h, 2, 2]$, then G is $\{C_n : n > h\}$ -free.

In [4], Golumbic, Lipshteyn and Stern study several aspects of the classes [h, 2, 2] for $h \geq 2$. In particular, they proved that, in the class of EPT graphs, the reciprocal of Theorem 1.1 is true for h = 3 and false for h = 4. They used general results about Chordal graphs and Weakly Chordal graphs (see [1] for definitions) which apply only when h = 3 or h = 4. Their proof is based in the facts that $[3, 2, 2] = EPT \cap Chordal$ and $[4, 2, 2] = EPT \cap Weakly Chordal$ [5]. They let open the question about whether the converse of Theorem 1.1 is true for $h \geq 5$. In this paper, we answer negatively this question. We succeed in describing, for every $h \geq 5$, an EPT graph that is $\{C_n : n > h\}$ -free and, however, it can not be represented in a host tree with maximum degree h.

2 Our results

In what follows we depict the graphs which will be used to answer the question posed by Golumbic et al. [4]: Can any EPT graph without induced cycles of size greater than h be represented in a host tree with maximum degree h?

Definition 2.1. Let n_1 , n_2 and n_3 be positive integers. A **general prism** F_{n_1,n_2,n_3} consists of two triangles $\{a_1,a_2,a_3\}$ and $\{b_1,b_2,b_3\}$; and three disjoint chordless paths Q_i for $1 \le i \le 3$ of length (number of edges) n_i and extreme vertices a_i , b_i respectively. (See Figure 2).

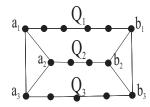


Figure 2: The general prism $F_{5,3,4}$.

L. Alcón, M. Gutierrez and Ma. Mazzoleni

4

Observe that:

- (1) $F_{1,1,1}$ is isomorphic to the complement of the graph C_6 .
- (2) By symmetry, in a general prism, the order of the subindexes is irrelevant, that is, $F_{n_1,n_2,n_3} \simeq F_{n_1,n_3,n_2} \simeq F_{n_2,n_1,n_3} \simeq F_{n_2,n_3,n_1} \simeq F_{n_3,n_2,n_1} \simeq F_{n_3,n_1,n_2}$.
 - (3) The general prism F_{n_1,n_2,n_3} has $n_1 + n_2 + n_3 + 3$ vertices.
- (4) The general prism F_{n_1,n_2,n_3} without the vertices a_1 and b_3 is a chord-less path of length $n_1 + n_2 + n_3$.
 - (5) The general prism F_{n_1,n_2,n_3} contains exactly three induced cycles:

$$Q_1\widehat{Q}_2$$
 of lenght $n_1 + n_2 + 2;$
 $Q_1\widehat{Q}_3$ of lenght $n_1 + n_3 + 2;$
 $Q_2\widehat{Q}_3$ of lenght $n_2 + n_3 + 2;$

where $Q_i \widehat{Q_j}$ is the concatenation of the paths Q_i and the reverse of Q_j .

Lemma 2.1. The general prism F_{n_1,n_2,n_3} is an [h,2,2] graph for $h = n_1 + n_2 + n_3 + 2$.

Proof: Let T be a star with central vertex q and pendant vertices q_i for $1 \le i \le n_1 + n_2 + n_3 + 2$. For each i, $1 \le i \le n_1 + n_2 + n_3 + 1$, let P_i be the subpath of the host tree T induced by the vertices q_i , q and q_{i+1} . The edge intersection graph of this family of paths is a chordless path isomorphic to F_{n_1,n_2,n_3} without the vertices a_1 and b_3 ; thus we need to add to this family two other paths, say P and P', representing the vertices a_1 and b_3 respectively.

Let P be the subpath of T induced by the vertices q_1 , q and $q_{n_1+n_2+2}$; and let P' be the subpath of T induced by the vertices $q_{n_1+n_2+n_3+2}$, q and q_{n_1+1} (See Figure 3). It is clear that the vertex represented by P is adjacent to the ones represented by P_1 , $P_{n_1+n_2+1}$ and $P_{n_1+n_2+2}$; while the vertex represented by P' is adjacent to the ones represented by $P_{n_1+n_2+n_3+1}$, P_{n_1} and P_{n_1+1} ; thus the proof follows.

EPT graphs on bounded degree trees

5

The following theorem shows that induced cycles are not the only structures in an EPT graph which impose conditions on the vertex degrees of the host tree.

Theorem 2.1. Let $h = n_1 + n_2 + n_3 + 1$. The general prism F_{n_1,n_2,n_3} is not an [h, 2, 2] graph, however it is $\{C_n : n > h\}$ -free.

Proof: The case $n_1 = n_2 = n_3 = 1$ was solved by Golumbic et al. in [4] as we have mentioned in Section 1. Thus, we assume $n_1 \geq 2$, which means that Q_1 has at least three vertices.

Suppose $F_{n_1,n_2,n_3} \in [h,2,2]$ for $h = n_1 + n_2 + n_3 + 1$; and let $\langle \mathcal{P}, T \rangle$ be an EPT representation satisfying that the degree of every vertex of T is less or equal than h. Since Q_1Q_2 induce a cycle of size $n_1 + n_2 + 2$, in the representation there is a pie of size $n_1 + n_2 + 2$. Call q to the central vertex of this pie.

On the other hand, since $Q_1\widehat{Q}_3$ also induces a cycle, in the representation there is another pie. We claim that the central vertex of this second pie is the same vertex q. Indeed, it follows from:

- (i) in a pie, the vertex intersection of 3 paths corresponding to 3 consecutive vertices is exactly the central vertex of the pie;
- (ii) the three first vertices of Q_1 are consecutive in both cycles Q_1Q_2

Now, the paths corresponding to the vertices of $Q_1\widehat{Q}_2$ cover $n_1 + n_2 + 2$ edges of T incident in q. On the other hand, the paths corresponding to the n_3-1 internal vertices of Q_3 must cover n_3 edges of T incident in qwhich are different from the $n_1 + n_2 + 2$ covered by the vertices of $Q_1\widehat{Q_2}$, because no internal vertex of Q_3 is adjacent to a vertex of $Q_1\widehat{Q}_2$.

We obtain that q has degree at least $n_3 + (n_1 + n_2 + 2)$, which contradicts the assumption that every vertex of T has degree at most $h = n_1 + n_2 + n_3 + n_4 + n_4$ $n_3 + 1$.

Finally, by fact (5) and since $n_1 + n_2 + 2 \le n_1 + n_2 + n_3 + 1$; $n_1 + n_3 + 2 \le n_1 + n_2 + n_3 + 1$ $n_1 + n_2 + n_3 + 1$ and $n_2 + n_3 + 2 \le n_1 + n_2 + n_3 + 1$, the general prism F_{n_1,n_2,n_3} has no cycles of size greater than $h = n_1 + n_2 + n_3 + 1$.

L. Alcón, M. Gutierrez and Ma. Mazzoleni

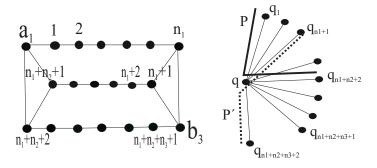


Figure 3: F_{n_1,n_2,n_3} and an (h,2,2)-representation, where $h=n_1+n_2+n_3+2$.

Finally, we give the following theorem which generalizes Theorem 1.1:

Theorem 2.2. Let $h \ge 4$. If $G \in [h, 2, 2]$, then G is $\{F_{n_1, n_2, n_3}, C_n : n > h$ and $n_1 + n_2 + n_3 + 1 = h\}$ -free.

We are working on finding the complete list of EPT graphs which are minimal forbidden induced subgraphs for the class [h, 2, 2].

References

- [1] A. Brandstädt, V. B. Le, J. P. Spinrad, *Graph Classes: A Survey*, SIAM Monographs on Discrete Mathematics and Applications. (1999).
- [2] T. Erlebach, K. Jansen, Scheduling of virtual connections in fast networks, Proc. of the 4th Parallel Systems and Algorithms Workshop. (1996) 13-32.
- [3] M. C. Golumbic, R. E. Jamison, *The edge intersection graphs of paths in a tree*, J. Combin. Theory. 55 (1985) 8-22.
- [4] M. C. Golumbic, M. Lipshteyn, M. Stern, Equivalences and the complete hierarchy of intersection graphs of paths in a tree, Discrete Appl. Math. 156 (2008) 3203-3215.

"Alcon-Gutierrez-Mazzoleni 'MC" — 2014/4/9 — 19:03 — page 7 — #7

EPT graphs on bounded degree trees

7

[5] M. C. Golumbic, M. Lipshteyn, M. Stern, Representing edge intersection graphs of paths on degree 4 trees, Discrete Math. 308 (2008) 1381-1387.

Liliana Alcón
Departmento de Matemática,
Universidad Nacional de La
Plata
Argentina
liliana@mate.unlp.edu.ar

María Pía Mazzoleni Departmento de Matemática, Universidad Nacional de La Plata and CONICET Argentina pia@mate.unlp.edu.ar Marisa Gutierrez
Departmento de Matemática,
Universidad Nacional de La
Plata and CONICET
Argentina
marisa@mate.unlp.edu.ar

"Alcon-Gutierrez-Mazzoleni "MC" — 2014/4/9 — 19:03 — page 8 — #8

