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Abstract

In this paper we consider two problems of frame theory. On the one hand, given a fixed
frame F we describe explicitly the spectral and geometric structure of optimal frames G that
are in duality with F and such that the Frobenius norms of their analysis operators is bounded
from below by a fixed constant, where optimality is measured with respect to submajorization.
On the other hand, given a set of vectors F we describe the spectral and geometrical structure
of optimal completions of F by a finite family of vectors with prescribed norms, under certain
hypothesis. Again, optimality is measured with respect to majorization of the frames operators,
which implies optimality with respect to a family of convex functionals that include the mean
square error and the Bendetto-Fickus’ potential. Our approach relies on the description of the
spectral and geometrical structure of matrices that minimize submajorization on sets that are
naturally associated with the problems above.
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1 Introduction

Finite frame theory is a well established research field that has attracted the attention of many
researchers (see [8, 14, 17] for a general reference to frame theory). On the one hand, finite
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frames provide with redundant linear encoding-decoding schemes that are useful when dealing
with transmission of signals through noisy channels . Indeed, the redundancy of frames allow for
reconstruction of signal, even when some frame coefficients are lost. Moreover, frames have also
shown to be robust under erasures of the frame coefficients when a blind reconstruction strategy
is considered (see [4, 5, 18]). On the other hand, there are several problems in frame theory that
have deep relations with problems in other areas of mathematics (such as matrix analysis, operator
theory and operator algebras) which constitute an strong motivation for research. For example,
we can mention the relation between the Feichtinger conjecture in frame theory and some major
open problems in operator algebra theory such as the Kadison-Singer problem (see [10, 11]). Other
examples of this phenomenon are the design problem in frame theory, the so-called Paulsen problem
in frame theory and frame completion problems ([1, 7, 9, 12, 21]) which are known to be equivalent
to different aspects of the Schur-Horn theorem. Recently, matrix analysis has served as a tool to
show some structural properties of minimizers of the Benedetto-Fickus’s frame potential ([2, 13])
and other convex functionals in the finite setting ([22, 23]).

In this paper we explore some new connections of problems that arise naturally in frame theory
with some results in matrix theory related with the notion of (sub)majorization between vectors
and self-adjoint matrices. More explicitly, we consider the following two problems in frame theory
(see Section 2 for the notation and terminology).

Given a fixed frame F for a finite dimensional Hilbert space H ∼= Fd (where F = R or C) let
D(F) denote the set of all frames G that are in duality with F . It is well known that the canonical
dual of F , denoted F#, has some optimality properties among the elements in D(F). Nevertheless,
although optimal in some senses, F# may be ill-conditioned and therefore may not the best choice.
In order to search for alternative duals for F we restrict attention the set Dt(F) which contains
the frames G that are in duality with F and such that the Frobenius norm of their frame operators
is bounded from below by a constant t. Hence we search within this set for optimal duals: but a
problem arises, as to what measure of optimality are to be consider. As examples we can consider
minimizing the frame potential of G or minimizing the condition number of the frame operator of
G. A way out of this problem is to consider optimality with respect to submajorization (which is
a subtle measure of the spread of the eigenvalues of the frame operators), which implies optimality
with respect to both the frame potential an the minimal eigenvalue. Therefore, in this paper we
shall explicitly describe the spectral and geometrical structure of minimizers of submajorization in
Dt(F) (see Theorems 6.2 and 6.3).

On the other hand, given a finite sequence of vectors F0 and a finite sequence of positive numbers
b we are interested in computing optimal frame completions of F0, denoted by F , obtained by
adding vectors with norms prescribed by the entries of b. This problems has been posed recently
in [15], in the particular case where optimality is measured with respect to the mean square error of
the completed frame F (see also [21] for some related completion problems). It is worth pointing out
that the mean square error is not the only possible (desirable) measure for optimality: for example
we can consider minimizing the Benedetto-Fickus’s frame potential of the completed frame F .
This raises the question of whether optimal completions with respect to these different measures of
optimality coincide. As before, a way out of such problems is to consider majorization as a measure
of optimality. Therefore, in this paper we shall compute the spectral and geometrical structure of
minimizers of majorization in the set of frame completions of F0 with norms prescribed by the
entries of µ, under certain hypothesis (see Theorem 7.6).

Both problems above are related with the minimizers of (sub)majorization in certain sets S of
positive semidefinite matrices that arise naturally. Although majorization is not a total order, we
show that the sets S that we consider have minimal elements with respect to majorization, a fact
that is of independent interest (see Theorems 4.7, 4.15 and 5.10). Notably, the existence of such
minimizers is essentially obtained with tools and insights coming from frame theory.

The paper is organized as follows. In Section 2 we establish the notation and terminolgy used
throughout the paper, and we state some basic facts from matrix theory and frame theory. In
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Section 3 we fix a frame F and characterize the set of eigenvalue lists corresponding to frame
operators of frames G that are in duality with F . This description allows us to establish a link
with Fan-Pall’s theorem on principal sub-matrices of self-adjoint matrices. In Section 4 we present
an abstract version of the previous frame problem, in the general setting of positive semi-definite
matrices and compute the spectral structure of minimizers of submajorization in this generality.
In Section 5 we further describe the geometric structure of the minimizers of sub-majorization in
the general setting. The techniques used in Sections 4 and 5 are those of matrix theory. Then,
with the results of minimizers of the previous sections we consider the problems of minimal duals
and minimal frame completions in Sections 6 and 7 respectively. With respect to the problem of
minimal duals with respect to submajorization, we completely describe the spectral and geometrical
structure of optimal duals. With respect to the problem of optimal completions with respect to
majorization, we obtain a complete description in several cases, that include the case of uniform
norms for the added vectors.

2 Preliminaries

In this section we describe the basic notions that we shall consider throughout the paper. We first
establish the notation and then describe the interlacing inequalities and submajorization that are
two notions from the theory of matrix analysis. Finally, we recall the basic facts from frame theory
that are related with our main results.

2.1 General notations.

Given m ∈ N we denote by Im = {1, . . . ,m} ⊆ N and 1 = 1m ∈ Rm denotes the vector with all its
entries equal to 1. For a vector x ∈ Rm we denote by x↓ the rearrangement of x in a decreasing
order, and Rm ↓ = {x ∈ Rm : x = x↓} the set of ordered vectors.

Given H ∼= Cd and K ∼= Cn, we denote by L(H , K) the space of linear operators T : H → K.
Given an operator T ∈ L(H , K), R(T ) ⊆ K denotes the image of T , kerT ⊆ H the null space
of T and T ∗ ∈ L(K , H) the adjoint of T . If d ≤ n we say that U ∈ L(H , K) is an isometry if
U∗U = IH . In this case, U∗ is called a coisometry. If K = H we denote by L(H) = L(H , H), by
Gl (H) the group of all invertible operators in L(H), by L(H)+ the cone of positive operators and by
Gl (H)+ = Gl (H)∩L(H)+. If T ∈ L(H), we denote by σ(T ) the spectrum of T , by rkT = dimR(T )
the rank of T , and by trT the trace of T . By fixing an orthonormal basis (onb) of the Hilbert
spaces involved, we shall identify operators with matrices, using the following notations:

By Mn,d(C) ∼= L(Cd , Cn) we denote the space of complex n × d matrices. If n = d we write
Mn(C) =Mn,n(C). H(n) is the R-subspace of selfadjoint matrices, Gl (n) the group of all invertible
elements of Mn(C), U(n) the group of unitary matrices, Mn(C)+ the set of positive semidefinite
matrices, and Gl (n)+ = Mn(C)+ ∩ Gl (n). If d ≤ n, we denote by I(d , n) ⊆ Mn , d(C) the set of
isometries, i.e. those U ∈Mn , d(C) such that U∗U = Id .

If W ⊆ H is a subspace we denote by PW ∈ L(H)+ the orthogonal projection onto W , i.e.
R(PW ) = W and ker PW = W⊥. For vectors on Cn we shall use the euclidean norm. On the other
hand, for matrices T ∈Mn(C) we shall use both

1. The spectral norm ‖T‖ = ‖T‖sp = max
‖x‖=1

‖Tx‖.

2. The Frobenius norm ‖T‖2 = (tr T ∗T )1/2 =
( ∑
i,j∈In

|Tij |2
)1/2. This norm is induced by the

inner product 〈A, B〉 = tr B∗A , for A,B ∈Mn(C).
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2.2 Interlacing inequalities and submajorization

Next we briefly describe two well known notions of matrix analysis that will be used throughout
the paper.

Interlacing inequalities. Let A ∈ H(n) with λ(A) ∈ Rn ↓ and let P = P 2 = P ∗ ∈ Md(C)+ be a
projection with rkP = k. The interlacing inequalities (see [3]) relate the eigenvalues of A with the
eigenvalues of PAP ∈ H(n) as follows:

λn−k+i(A) ≤ λi(PAP ) ≤ λi(A) for every i ∈ Ik . (1)

On the other hand, if we have the equalities

λi(PAP ) = λi(A) for every i ∈ Ik then PA = AP , (2)

and that R(P ) has an ONB {hi}i∈Ik such that Ahi = λi hi for every i ∈ Ik . Indeed, if Q = I − P ,

then tr QAQ =
n∑

i=k+1

λi(A). The interlacing inequalities applied to QAQ imply that

λk+j(A) ≤ λj(QAQ) for j ∈ In−k =⇒ λj(QAQ) = λk+j(A) for j ∈ In−k .

Taking Frobenius norms, we get that

‖A‖2
2

=
n∑
i=1

λi(A)2 = ‖PAP‖2
2

+ ‖QAQ‖2
2

=⇒ PAQ = QAP = 0 ,

so that A = PAP +QAQ. The Ky-Fan inequalities (see [3]) assure that
k∑
i=1

λi(A) = max
{

tr PAP : P ∈Md(C)+ , P = P 2 = P ∗ and rkP = k
}
. (3)

As before, given an orthogonal projection P with rkP = k such that

tr PAP =
k∑
i=1

λi(A)
(1)

=⇒ λi(PAP ) = λi(A) for i ∈ Ik
(2)

=⇒ PA = AP , (4)

and R(P ) has an ONB of eigenvectors for A associated to λ1(A) , . . . , λk(A). If we further as-
sume that λk(A) > λk+1(A) then in both cases (2) and (4) the projection P is unique, since the
eigenvectors associated to the first k eigenvalues of A generate a unique subspace of Cn.

2.1 (Submajorization). Given x, y ∈ Rn we say that x is submajorized by y, and write x ≺w y,
(see [3]) if

k∑
i=1

x↓i ≤
k∑
i=1

y↓i for every k ∈ In .

If also trx =
n∑
i=1

xi =
n∑
i=1

yi = tr y, then we say that x is majorized by y, and write x ≺ y. On

the other hand we write x6 y if xi ≤ yi for every i ∈ In . It is a standard exercise to show that
x6 y =⇒ x↓6 y↓ =⇒ x ≺w y. Majorization is usually considered because of its relation with
tracial inequalities for convex functions.

Indeed, given x, y ∈ Rn and f : I → R a convex fuction defined on an interval I ⊆ R such that
x, y ∈ In, then (see for example [3]):

1. If one assumes that x ≺ y, then

tr f(x) def=
n∑
i=1

f(xi) ≤
n∑
i=1

f(yi) = tr f(y) .

2. If just x ≺w y, but the map f is also increasing, then still tr f(x) ≤ tr f(y). 4
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2.3 Basic framework of finite frames and their dual frames

In what follows we consider (n, d)-frames. See [2], [4], [5], [6], [18] and [22] for detailed expositions
of this notion.

Let d, n ∈ N, with d ≤ n. Fix a Hilbert space H ∼= Cd. A family F = {fi}i∈ In ∈ Hn is an
(n, d)-frame for H if there exist constants A,B > 0 such that

A‖x‖2 ≤
n∑
i=1

| 〈x , fi〉 |2 ≤ B‖x‖2 for every x ∈ H . (5)

The frame bounds, denoted by AF , BF are the optimal constants in (5). Tight frames are those
which have AF = BF . Since dimH < ∞, a system F = {fi}i∈ In is an (n, d)-frame if and only if
span{fi : i ∈ In} = H. We shall denote by F = F(n, d) the set of all (n, d)-frames for H.

Given F = {fi}i∈ In ∈ Hn, the operator TF ∈ L(H , Cn) given by

TF x =
(
〈x , fi〉

)
i∈In , for every x ∈ H (6)

is the analysis operator of F . Its adjoint T ∗F is called the synthesis operator:

T ∗F ∈ L(Cn , H) given by T ∗F v =
∑
i∈ Im

vi fi for every v = (v1 , . . . , vn) ∈ Cn .

Finally, we define the frame operator of F as SF = T ∗F TF ∈ L(H)+ . Notice that, if F ∈ F(n, d),
then 〈SF x , x〉 =

∑
i∈In

∣∣ 〈x , fi〉 ∣∣2 for every x ∈ H. Then SF ∈ Gl (H)+ and

AF ‖x‖2 ≤ 〈SF x , x〉 ≤ BF ‖x‖2 for every x ∈ H . (7)

In particular, AF = λmin(SF ) = ‖S−1
F ‖−1 and λmax(SF ) = ‖SF‖ = BF . Moreover, F is tight if

and only if SF = τ
d IH , where τ = trSF =

∑
i∈In ‖fi‖

2 . The frame operator plays an important
role in the reconstruction of a vector x using its frame coefficients {〈x , fi〉 }i∈In . This leads to the
definiton of the canonical dual frame associated to F :

Definition 2.2. For every F = {fi}i∈ In ∈ F(n, d), the canonical dual frame associated to F is
the sequence F# ∈ F defined by

F# def= S−1
F · F = {S−1

F fi }i∈ Im ∈ F(n, d) .

Therefore, we obtain the reconstruction formulas

x =
∑
i∈In

〈x , fi〉S−1
F fi =

∑
i∈In

〈S−1
F x , fi〉 fi for every x ∈ H . (8)

Observe that the canonical dual F# satisfies that given x ∈ H, then

TF# x =
(
〈x , S−1

F fi〉
)
i∈In =

(
〈S−1
F x , fi〉

)
i∈In for x ∈ H =⇒ TF# = TF S

−1
F . (9)

Hence T ∗F# TF = IH and SF# = S−1
F T ∗F TF S

−1
F = S−1

F . 4

Next we recall the more general notion of (alternate) dual frames :

Definition 2.3. Let F = {fi}i∈ In ∈ F(n, d).

1. We say that G = {gi}i∈ In ∈ F(n, d) is a dual frame for F if T ∗G TF = IH , or equivalently if
x =

∑
i∈In 〈x , fi〉 gi for every x ∈ H.
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2. We denote by D(F) def= {G ∈ F(n, d) : T ∗G TF = IH }, the set of all dual frames for F . Observe
that D(F) 6= ∅ since F# ∈ D(F). 4

Remark 2.4. Let F = {fi}i∈ In ∈ Hn. Then F ∈ F ⇐⇒ T ∗F is surjective. In this case, a
sequence G ∈ D(F) if and only if its synthesis operator T ∗G is a pseudo-inverse of TF . Indeed,
G ∈ D(F) ⇐⇒ T ∗G TF = IH . Observe that the map F 3 G 7→ T ∗G is one to one.

Moreover, the synthesis operator T ∗F# of the canonical dual F# corresponds to the Moore-Penrose
pseudo-inverse of TF . Indeed, notice that TF T ∗F# = TF S

−1
F T ∗F ∈ L(Cn)+, so that it is an orthog-

onal projection. From this point of view, the canonical dual F# has some optimal properties that
come from the theory of pseudo-inverses. On the other hand the map Hn 3 G 7→ T ∗G ∈ L(K , H) is
R-linear. Then, for every F ∈ F, the set D(F) of dual frames is convex in Hn because the set of
pseudoinverses of TF is convex in L(K , H). 4

Definition 2.5. Let F ∈ F(n, d). We denote by

SD(F) = {SG : G ∈ D(F)}

the set of frame operators of all dual frames for F . 4

Proposition 2.6. Let F ∈ F(n, d). Then

SD(F) = {S ∈ Gl (d)+ : X = S − S−1
F ≥ 0 and rkX ≤ n− d} . (10)

In particular, if n ≥ 2 d, then SD(F) = {S ∈ Gl (d)+ : S ≥ S−1
F } which is a convex set.

Proof. Given G ∈ F(n, d), then G ∈ D(F) ⇐⇒ Z = TG − TF# ∈ L(H , Cn) satisfies Z∗TF = 0. In
this case, by Eq. (9), we know that TF# = TF S

−1
F =⇒ Z∗TF# = 0, and

SG = (TF# + Z)∗ (TF# + Z) = SF# +X = S−1
F +X , where X = Z∗Z ∈Md(C)+ .

Moreover, SF = T ∗FTF ∈ Gl (d)+ =⇒ rkTF = d, and the equation T ∗FZ = 0 implies that

R(Z) ⊆ kerT ∗F = R(TF )⊥ =⇒ rkX = rk(Z∗Z) = rkZ ≤ n− d .

Since any X ∈ Md(C)+ with rkX ≤ n − d can be represented as X = Z∗Z for some Z ∈
L(H , R(TF )⊥), we have proved Eq. (10). The case n ≥ 2 d is now apparent. �

3 Spectral picture of D(F)

Recall that Rd
+
↓ is the set of vectors µ ∈ Rd

+ with non negative and non-increasing entries (i.e.
µ ∈ Rd

+ with µ↓ = µ). If all the entries are positive (i.e., if µd > 0), we write µ ∈ Rd
>0
↓.

Given S ∈ Md(C)+, we write λ(S) ∈ Rd
+
↓ the decreasing vector of eigenvalues of S, counting

multiplicities. We denote by S† the Moore-Penrose pseudo-inverse of S. We shall also use the
following notations:

1. Given x ∈ Cd then D(x) ∈Md(C) denotes the diagonal matrix with main diagonal x.

2. If d ≤ n and y ∈ Cd, we write (y , 0n−d) ∈ Cn, where 0n−d is the zero vector of Cn−d. In this
case, we denote by Dn(y) = D

(
(y , 0n−d)

)
∈Mn(C).

Definition 3.1. Let F ∈ F(n, d). We denote by

Λ(D(F) ) def= {λ(SG) : G ∈ D(F)} ⊆ Rd
>0
↓ , (11)

that is, the spectral picture of the set of frame operators of all dual frames for F . 4

6



The following result gives a characterization of Λ(D(F) ).

Theorem 3.2. Let F = {fi}i∈ In ∈ F(n, d) and µ ∈ Rd
>0
↓. Then the following conditions are

equivalent:

1. The vector µ ∈ Λ(D(F) ).

2. µ = λ(S−1
F +X) for some X ∈Md(C)+ with rkX ≤ n− d.

3. There exists an orthogonal projection P ∈Mn(C) such that rkP = d and

λ (P Dn(µ)P ) =
(
λ(S−1

F ) , 0n−d
)

= λ(G†F ) , (12)

where GF = TF T
∗
F ∈Mn(C)+ is the Gram matrix of F .

Proof. The equivalence 1⇔ 2 follows from Proposition 2.6.

1⇒ 3. Let G ∈ D(F) with λ(SG) = µ. Then T ∗G TF = I and

GF GG GF = TF (T ∗F TG) (T ∗G TF )T ∗F = TF T
∗
F = GF =⇒ QGG Q = G†F , (13)

where Q = GF G
†
F = PR(TF ) . Note that rkQ = rkTF = d, since F is a frame. Also

λ(GG) = λ(TG T ∗G) = (λ(T ∗G TG), 0n−d) = (λ(SG), 0n−d) = (µ , 0n−d) .

Then there exists U ∈ U(n) such that

U∗D(µ , 0n−d)U = U∗Dn(µ)U = U∗ Dn

(
λ(SG)

)
U = TG T

∗
G = GG . (14)

Let P = U QU∗. Note that rkP = rkQ = d. Using (13) and (14) we get the item 3 :

λ (P Dn(µ)P ) = λ(U QU∗Dn(µ)U QU∗)
(14)
= λ(QGG Q)

(13)
= λ(G†F ) = (λ(S−1

F ) , 0n−d) .

3⇒ 1. Assume that there exists the projection P ∈Mn(C)+ of item 3. Observe that there always
exists U ∈ F(n, d) such that λ(SU ) = λ(T ∗U TU ) = µ. Then

λ(GU ) = λ(TU T ∗U ) = (µ , 0n−d) ∈ Rn
+
↓ .

Let V ∈ U(n) such that V ∗GU V = Dn(µ). Denote by Q = V PV ∗. Then we get that

λ(QGU Q) = λ(P V ∗GU V P ) = λ (P Dn(µ)P )
(12)
= (λ(S−1

F ), 0n−d) = λ(G†F ) . (15)

Thus, there exists W ∈ U(n) such that W ∗ (QGU Q)W = G†F . Observe that

rkQ = d and W ∗(R(Q) ) ⊇ R(G†F ) = R(GF ) = R(TF ) =⇒ W ∗QW = PR(TF ) .

Moreover, GF G
†
F = G†F GF = PR(GF ) = PR(TF ) = W ∗QW . Hence

GF = GF G
†
F GF = GF (W ∗QGU QW )GF

= GF PR(GF ) (W ∗GU W )PR(GF )GF = GF (W ∗GU W )GF .

We can rewrite this fact as TF
(
T ∗F W

∗TU T
∗
U W TF

)
T ∗F = TF T

∗
F . Since T ∗F is surjective,

(T ∗F W
∗TU ) (T ∗U W TF ) = IH =⇒ M

def= T ∗U W TF ∈ U(d) . (16)

Finally, take G = {gi}i∈In
def= {M∗ T ∗U W ei}i∈Im ∈ L(n, d), where {ei}i∈In is the canonical basis

of Cn. Observe that, given v = (vi)i∈In ∈ Cn, we have that

T ∗G v =
∑
i∈In

vi gi = M∗ T ∗U W
∑
i∈In

vi ei = M∗ T ∗U W v =⇒ T ∗G = M∗ T ∗U W

Then T ∗G TF = M∗ T ∗U W TF = M∗M = IH . Also SG = T ∗G TG = M∗ SUM ∈ Gl (d)+. This last fact
assures that G ∈ F(n, d) and λ(SG) = λ(SU ) = µ. �
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Remark 3.3. Let F ∈ F(n, d) and µ ∈ Rd
>0
↓ as in Theorem 3.2. It turns out that condition (12)

can be characterized in terms of interlacing inequalities.

More explicitly, given µ ∈ Rd
>0
↓ , by the Fan-Pall inequalities (see [20]), the existence of a projection

P satisfying (12) for µ is equivalent to the following inequalities:

1. µ>λ(S−1
F ), i.e. µi ≥ λi(S−1

F ) for every i ∈ Id .

2. If n < 2 d and we denote m = 2 d− n ∈ N, then µ also satisfies

µd−m+i ≤ λi(S−1
F ) for every i ∈ Im ,

where the last inequalities compare the first m entries of λ(S−1
F ) with the last m of µ.

These facts together with Theorem 3.2 give a complete description of the spectral picture of the
frame operators SG for every G ∈ D(F), which we write as follows. 4

Recall that, if x, y ∈ Rd, we write x6 y if xi ≤ yi for every i ∈ Id .

Corollary 3.4. Let F = {fi}i∈ In ∈ F(n, d) and fix µ ∈ Rd
>0
↓. Then, the set Λ(D(F) ) can be

characterized as follows:

1. If n ≥ 2 d, we have that
µ ∈ Λ(D(F) ) ⇐⇒ µ>λ(S−1

F ) . (17)

2. If 2 d > n and m = 2 d− n, then

µ ∈ Λ(D(F) ) ⇐⇒ µ>λ(S−1
F ) and µd−m+i ≤ λi(S−1

F ) for i ∈ Im . (18)

Proof. It is a direct consequence of Theorem 3.2 and the Fan-Pall inequalities described in Remark
3.3. �

Corollary 3.5. Let F ∈ F(n, d). Then Λ(D(F) ) is a convex set.

Proof. It is clear that the inequalities given in Eqs. (17) and (18) are preserved by convex combi-
nations. Observe that also the set Rd

>0
↓ is convex. �

Remark 3.6. Let F = {fi}i∈ In , G = {gi}i∈ In ∈ F(n, d). The reader should note that the fact
that λ(SG) ∈ Λ(D(F)) does not imply that G ∈ D(F). Indeed, it is fairly easy to produce examples
of this phenomenon. Therefore, the spectral picture of Λ(D(F)) does not determine the set D(F).
This last assertion is a consequence of the fact that SD(F) is not saturated by unitary equiva-
lence. Nevertheless, Λ(D(F)) allow to compute global minimizers of any continuous function of the
eigenvalues of duals of F .

4 Minimizers for submajorization 1: Vectors

The spectral pictures studied in the previous section motivates the definition of following sets.

Definition 4.1. Let λ ∈ Rd
+
↓ and take an integer m < d. We consider the set

Λ(λ , m) =


{
µ ∈ Rd

+
↓ : µ>λ

}
if m ≤ 0

{
µ ∈ Λ(λ , 0) : µd−m+i ≤ λi for every i ∈ Im

}
if m ≥ 1 .

(19)

Denote by t0 = trλ. For every and t ≥ t0 , we also consider the set

Λt(λ , m) =
{
µ ∈ Λ(λ , m) : trµ ≥ t} . 4
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Now Corollary 3.4 can be rewritten as

Corollary 4.2. Let F ∈ F(n, d), m = 2 d− n and λ = λ(S−1
F ) . Then Λ(D(F) ) = Λ(λ , m). �

Observe that if m = d then Λ(λ , m) = {λ}. This condition corresponds with the case d = n, where
the frame becomes a basis and has a unique dual frame. Since this case has no interest, we have
assumed and we shall assume that d < n and therefore m < d.

In this section we show that the sets Λt(λ , m) have minimal elements with respect to submajoriza-
tion and we describe explicitly these elements. We shall apply these results in the context optimal
dual frames and optimal frame completions in Sections 6 and 7. We begin with the following notion
of irregularity.

4.1 Irregularity

Definition 4.3. Let λ ∈ Rd
+
↓ and t ∈ R such that trλ ≤ t < dλ1 . Consider the set

Aλ(t) def=
{
r ∈ Id−1 : pλ(r , t) def=

t−
∑r

j=1 λj

d− r
≥ λr+1

}
.

Observe that t ≥ trλ =⇒ t −
d−1∑
j=1

λj ≥ λd , so that d − 1 ∈ Aλ(t) 6= ∅ . The t-irregularity of the

ordered vector λ, denoted rλ(t), is defined by

rλ(t) def= min Aλ(t) = min{r ∈ Id−1 : pλ(r , t) ≥ λr+1} . (20)

If t ≥ d λ1 , we set rλ(t) def= 0 and pλ(0 , t) = t/d . 4

For example, if t = tr λ , then for every r ∈ Id−1 we have that

pλ(r , t) =
t−
∑r

j=1 λj

d− r
=

∑d
j=r+1 λj

d− r
≥ λr+1 ⇐⇒ λr+1 = λd .

Therefore in this case it is easy to see that, if we denote by t0 = tr λ, then

• If λ = c1d for some c ∈ R>0 , then rλ(t0) = 0.

• If λ1 > λd , then

rλ(t0) + 1 = min{i ∈ Id : λi = λd} and rλ(t0) = max{r ∈ Id−1 : λr > λd} . (21)

Definition 4.4. Let λ ∈ Rd
+
↓ and t0 = trλ. We define the functions

rλ : [t0 , +∞)→ {0, . . . , d− 1} given by rλ(s)
(20)
= the s-irregularity of λ (22)

cλ : [t0 , +∞)→ R≥0 given by cλ(s) = pλ(rλ(s) , s) =
s−

∑ rλ(s)
i=1 λi

d− rλ(s)
, (23)

for every s ∈ [t0 , +∞), where we set
0∑
i=1

λi = 0. 4

In the following Lemma we state several properties of these maps, which we shall use below. The
proofs are technical but elementary, so that we only sketch the essential arguments.

Lemma 4.5. Let λ ∈ Rd
+
↓ and t0 = trλ.
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1. The function rλ is non-increasing and right-continuous, with λrλ(t0)+1 = λd .

2. The image of rλ is the set B = {k ∈ Id−1 : λk > λk+1} ∪ {0}.

3. The map cλ is piece-wise linear, strictly increasing and continuous.

4. It satisfies that cλ(t0) = λd and cλ(t) = t/d for t ≥ d λ1 .

5. For every t ∈ [t0 , d λ1), if r = rλ(t) then λr+1 ≤ cλ(t) < λr .

6. For any k ∈ B let sk =
k∑
i=1

λi+ (d−k )λk+1 . Then rλ(sk) = k and cλ(sk) = λk+1 . Moreover,

the set A of discontinuity points of rλ satisfies that

A = {t ∈ (t0 , +∞) : cλ(t) = λrλ(t)+1} = c−1
λ {λi : λi 6= λd} = {sk : k ∈ B} .

7. Given t ∈ [t0 , +∞), such that cλ(t) = λm (even if m /∈ B), then

• t ∈ A ⇐⇒ λm 6= λd .

• rλ(t) = 0 ⇐⇒ cλ(t) = λ1 ⇐⇒ t = d λ1 .

• If λm 6= λ1 , then rλ(t) = max{j ∈ Id : λj > λm} and

t =
m∑
i=1

λi + (d−m)λm =
rλ(t)∑
i=1

λi + (d− rλ(t) )λm . (24)

Proof. Given t ∈ [t0 , d λ1) and 1 ≤ r ≤ d− 1, then r = rλ(t) if and only if

cλ(t) = pλ(r , t) ≥ λr+1 and pλ(r − 1 , t) < λr . (25)

On the other hand the map t 7→ pλ(r, t) is linear, continuous and increasing for any r fixed. From
these facts one easily deduces the right continuity of the map rλ , and that the map cλ is continuous
at the points where rλ is. We can also deduce that if cλ(t) 6= λrλ(t)+1 then rλ is continuous (i.e.
constant) near the point t. Observe that, if r = rλ(t), then

λr
(25)
> pλ(r − 1 , t) =

(d− r)pλ(r , t) + λr
d− r + 1

=⇒ λr > pλ(r , t) ≥ λr+1 =⇒ r ∈ B . (26)

Using that rλ(t) = 0 for t ≥ d λ1 , that cλ(t0) = λd , and the right continuity of the map rλ , we
have that the set A = {t ∈ (t0 , +∞) : cλ(t) = λrλ(t)+1} = c−1

λ {λi : λi 6= λd}.

Hence, in order to check the continuity of cλ we have to verify the continuity of cλ from the left at
the points t > t0 for which cλ(t) = λrλ(t)+1 . Note that, if r = rλ(t), then r ∈ B and

cλ(t) = pλ(r , t) =
t−
∑r

j=1 λj

d− r
= λr+1 =⇒ t =

r∑
j=1

λj + (d− r)λr+1 . (27)

Assume that cλ(t) = λrλ(t)+1 > λd . Then r̂ = max{j ∈ Id−1 : λj = λr+1} is the first element of B
after r. Note that λr̂+1 < λr̂ = λr+1 . We shall see that if s < t near t, then rλ(s) = r̂. Indeed, as
in Eq. (27),

pλ(r̂ , t+ x) =
(d− r)λr+1 −

∑ r̂
j=r+1 λj + x

d− r̂
= λr+1 +

x

d− r̂
> λr̂+1 and

pλ(r̂ − 1 , t+ x) =
(d− r)λr+1 −

∑ r̂−1
j=r+1 λj + x

d− r̂ + 1
= λr+1 +

x

d− r̂ + 1
< λr+1 = λr̂ .
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for x ∈ (−ε, 0] if ε > 0 sufficiently small. By Eq. (25) we deduce that rλ(t + x) = r̂ 6= rλ(t) for
such an x, so that t ∈ A (rλ is discontinuous at t). On the other hand,

cλ(t+ x) = pλ(r̂, t+ x) = λrλ(t)+1 +
x

d− r̂
=⇒ lim

x→0−
cλ(t+ x) = λrλ(t)+1 = cλ(t) .

This last fact implies that cλ is continuous and, since rλ is right-continuous, that cλ is a piece-wise
linear and strictly increasing function. With the previous remarks, the proof of all other statements
of the lemma becomes now straightforward.

4.2 Minimizers for submajorization in Λt(λ , m) for m ≤ 0.

The following Lemma is a standard fact in majorization theory, and it was already stated in [24].
We include a short proof of it for the sake of completeness.

Lemma 4.6. Let α , γ ∈ Rn, β ∈ Rm and b ∈ R such that b ≤ mink∈In γk . Then, if

tr (γ , b1m) ≤ tr (α , β) and γ ≺w α =⇒ (γ , b1m) ≺w (α , β) .

Observe that we are not assuming that (α , β) = (α , β)↓.

Proof. Let h = tr β and ρ = h
m 1m . Then it is easy to see that∑

i∈Ik
(γ↓ , b1m)i ≤

∑
i∈Ik

(α↓ , ρ)i ≤
∑
i∈Ik

(α↓ , β↓)i for every k ∈ In+m .

Since (γ↓ , b1m) = (γ , b1m)↓, we can conclude that (γ , b1m) ≺w (α , β). �

In the following statement we shall use the maps rλ and cλ defined in 4.4.

Theorem 4.7. Fix m ≤ 0. Let λ ∈ Rd
+
↓, t0 = trλ and t ∈ [t0 , +∞). Consider the vector

ν = νλ(t) def=
(
λ1 , . . . , λrλ(t) , cλ(t) , . . . , cλ(t)

)
if rλ(t) > 0 , (28)

or ν = t
d 1d = ct(λ)1d ∈ Λt(λ , m) if rλ(t) = 0. Then ν satisfies that

ν ∈ Λt(λ , m) , tr ν = t and ν ≺w µ for every µ ∈ Λt(λ , m) . (29)

Proof. Given t ∈ [t0 , +∞), we denote by r = rλ(t). If r = 0 then,

t ≥ d λ1 and λ = λ↓ =⇒ cλ(t) =
t

d
≥ λ1 =⇒ ν = c1d ∈ Λt(λ , m) .

It is clear that such a vector must satisfy that ν ≺w µ for every µ ∈ Λt(λ , m).

Suppose now that r ≥ 1, so that t < dλ1 . Recall from Lemma 4.5 that in this case we have that
λr+1 ≤ cλ(t) < λr . Hence ν>λ and ν = ν↓. It is clear from Eq. (23) that tr(ν) = t. From these
facts we can conclude that ν ∈ Λt(λ , m) as claimed.

Now let µ ∈ Λt(λ , m) and notice that, since µ>λ, we get that

k∑
i=1

µi ≥
k∑
i=1

λi =
k∑
i=1

νi for every 1 ≤ k ≤ rλ(t) .

Now we can apply Lemma 4.6 (with n = rλ(t) and b = cλ(t) ) and deduce that ν ≺w µ. �
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4.3 Minimizers for submajorization in Λt(λ , m). The general case.

Recall that Λt(λ , m) =
{
µ ∈ Rd

+
↓ : µ>λ , trµ ≥ t and µd−m+i ≤ λi for every i ∈ Im

}
, for

each m ∈ Id−1 . In what follows we shall compute a minimal element in Λt(λ , m) with respect to
submajorization in terms of the maps rλ and cλ defined in 4.4.

Definition 4.8. Let λ ∈ Rd
+
↓, and m ∈ Id−1 . We denote by s∗ = s∗(λ , m) def= c−1

λ (λm), the
unique s ∈ [t0 , +∞) such that cλ(s) = λm . Observe that

s∗ = d λ1 if λm = λ1 , and s∗ =
m∑
i=1

λi + (d−m)λm if λm 6= λ1 , (30)

by Lemma 4.5. 4

Proposition 4.9. Let λ ∈ Rd
+
↓, t0 = trλ, m ∈ Id . If t ∈ [t0 , s∗(λ , m)], then the vector ν =(

λ1 , . . . , λrλ(t) , cλ(t) , . . . , cλ(t)
)

of Eq. (28) satisfies that ν ∈ Λt(λ , m). Hence

tr ν = t , νd = cλ(t) and ν ≺w µ for every µ ∈ Λt(λ , m) .

Proof. We already know by Theorem 4.7 that ν ∈ Λt(λ) and tr ν = t. Using the inequality
cλ(t) ≤ cλ(s∗) = λm , the verification of the fact that ν ∈ Λt(λ , m) is direct. By Theorem 4.7, we
conclude that ν ≺w µ for every µ ∈ Λt(λ , m) ⊆ Λt(λ). �

Remark 4.10. Let λ ∈ Rd
+
↓, t0 = trλ, m ∈ Id and t ∈ (s∗(λ , m) , +∞). Then, arguing by

induction on m we can show that there exists a unique vector ν ∈ Λt(λ , m) such that

tr(ν) = t , νd = λm and ν ≺w µ for every µ ∈ Λt(λ , m) . (31)

Indeed, if m = 1, let c = t−λ1
d−1 and define ν = (c1d−1 , λ1) ∈ Rd

≥0 . Then it can be checked that
(31) holds in this case.

If we now assume that m > 1 and that our claim holds for all smaller values of m we define the
new parameters

λ′ = (λ1, . . . , λd−1) ∈ Rd−1
+

↓ , t′ = t− λm and m′ = m− 1 ∈ Id−1 . (32)

By the inductive hypothesis and Proposition 4.9, there exists ν ′ ∈ Λt′(λ′ , m′) such that tr ν ′ = t′

and ν ′ ≺w µ′ for every µ′ ∈ Λt′(λ′). Let

ν = (ν ′1 , . . . , ν
′
d−1 , λm) ∈ Rd

≥0 .

Using that ν ′ ∈ Λt′(λ′ , m′) and νd = λm , it is clear that ν = ν↓>λ, and that νd−m+i ≤ λi for every
1 ≤ i ≤ m. Since tr ν = tr ν ′ + λm = t, we conclude that ν ∈ Λt(λ , m). Now, if µ ∈ Λt(λ , m)
it is straightforward to check that µ′ = (µ1, . . . , µd−1) ∈ Λt′(λ′ , m′). Therefore ν ′ ≺w µ′ and
trµ ≥ tr ν =⇒ ν ≺w µ, which shows that (31) holds in this case. 4

Although the inductive process described in Remark 4.10 together with Proposition 4.9 show the
existence of ν ∈ Λt(λ , m) satisfying (31), this approach is not constructive. Nevertheless, one can
follow the rule of construction in each step to obtain a concrete description of ν. In what follows
we introduce some new notions that will allow us to compute ν explicitly.
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Definition 4.11. Let λ ∈ Rd
+
↓, t0 = trλ. Take an integer m < d. If m > 0 recall that s∗ =

s∗(λ , m) = c−1
λ (λm). For t ∈ [t0 , +∞) let

cλ ,m(t) def=


cλ(t) if t ≤ s∗

λm + t−s∗
d−m if t > s∗

and

rλ ,m(t) def=


rλ(t) if t ≤ s∗

min{r ∈ Id−1 ∪ {0} : cλ ,m(t) ≥ λr+1} if t > s∗
.

If m ≤ 0 we just define cλ ,m(t) = cλ(t) and rλ ,m(t) = rλ(t) for every t ∈ [t0 , +∞). 4

4.12. Observe that the map cλ ,m(·) is continuous and strictly increasing. Indeed, by Eq. (30) we

know that s∗ =
m∑
i=1

λi + (d−m)λm . Hence cλ ,m(t) =
t−

∑m
j=1 λj

d−m for every t > s∗. By Definition 4.4

we can also deduce that cλ ,m(t) ≥ cλ(t) for every t.

Let us abbreviate by r = rλ ,m(t) for any fixed t > s∗. Then,

r < m and λr ≥ cλ ,m(t) = λm +
t− s∗

d−m
≥ λr+1 . (33)

In particular this shows that the map rλ ,m(t) is also non-increasing and right-continuous for t > s∗,
where the discontinuity points are:

{t > s∗ : t = (d−m)λk +
m∑
i=1

λi for k ∈ B, k < m} ,

where the index set B is that defined on Lemma 4.5. Finally we write

s∗∗ = c−1
λ ,m(λ1) = (d−m)λ1 +

m∑
j=1

λj ≥ s∗ (with equality ⇐⇒ λ1 = λm) . (34)

Definition 4.13. Let λ ∈ Rd
+
↓, t0 = trλ and m ∈ Z such that m < d. Fix t ∈ [t0 , +∞) and

denote by r = rλ ,m(t) . Consider the vector νλ ,m(t) ∈ Rd
+
↓ given by the following rule:

• If m ≤ 0 then νλ ,m(t) = νλ(t)
(28)
=
(
λ1 , . . . , λr , cλ ,m(t)1d−r

)
.

If m ≥ 1 we define

• νλ ,m(t) =
(
λ1 , . . . , λr , cλ ,m(t)1d−r

)
for t ≤ s∗ (so that r ≥ m and cλ ,m(t) ≤ λm).

• νλ ,m(t) =
(
λ1 , . . . , λr , cλ ,m(t)1d−m , λr+1 , . . . , λm

)
for t ∈ (s∗ , s∗∗), and

• νλ ,m(t) =
(
cλ ,m(t)1d−m , λ1 , . . . , λm

)
for t ≥ s∗∗ .

If λ1 = λm , the second case of the definition of νλ ,m(t) disappears. 4

In the following Lemma we state several properties of this map which are easy to see:

Lemma 4.14. Let λ ∈ Rd
+
↓, and m ∈ Z such that m < d. The map νλ ,m(·) has the following

properties:

1. It is continuous.
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2. It is increasing in the sense that t1 < t2 =⇒ νλ ,m(t1)6 νλ ,m(t2) .

3. More precisely, for any fixed k ∈ Id , the k-th entry ν(k)
λ ,m(t) of νλ ,m(t) is given by

ν
(k)
λ ,m(t) =


max {λk , cλ ,m(t)} if k ≤ d−m,

min
{

max {λk , cλ ,m(t)} , λi
}

if k = d−m+ i , i ∈ Im .

4. The vector νλ ,m(t) ∈ Λt(λ , m) and tr νλ ,m(t) = t for every t ∈ [t0 , +∞). �

We can now state the main result of this section.

Theorem 4.15. Let λ ∈ Rd
+
↓, t0 = trλ and t ∈ [t0 , +∞). Fix m ∈ Z such that m < d. Then the

vector νλ ,m(t) defined in 4.13 is the unique element of Λt(λ , m) such that

νλ ,m(t) ≺w µ for every µ ∈ Λt(λ , m) . (35)

Proof. If m ≤ 0 the result follows from Theorem 4.7. Suppose now that m ≥ 1. By Lemma 4.14,
the vector νλ ,m(t) ∈ Λt(λ , m) and tr νλ ,m(t) = t for t ∈ [t0 , +∞). In Proposition 4.9 we have
shown that νλ ,m(t) satisfies (35) for every t ∈ [t0 , s∗(λ , m) ]. Hence we check the other two cases:

Case t ∈ (s∗ , s∗∗): Fix µ ∈ Λt(λ , m) such that trµ = t. Let us denote by r = rλ ,m(t),

α = (µ1 , . . . , µr) , β = (µr+1 , . . . , µr+d−m) , γ = (µr+d−m+1 , . . . , µd) ,

ρ = (λ1 , . . . , λr) and ω = (λr+1 , . . . , λm). Then

µ = (α , β , γ) and νλ ,m(t) = (ρ , cλ ,m(t)1d−m , ω) .

Since µ ∈ Λt(λ , m) and tr νλ ,m(t) = tr µ = t, then

ρ6α , γ6ω and tr (α , β) ≥ tr(ρ , cλ ,m(t)1d−m) .

Then we can apply Lemma 4.6 to deduce that (ρ , cλ ,m(t)1d−m) ≺w (α , β). Using this fact jointly
with γ6ω one easily deduces that ν∗(λ , t) ≺ µ (because trµ = tr νλ ,m(t) = t).

The case t ≥ s∗∗ for vectors µ ∈ Λt(λ , m) such that trµ = t follows similarly.

If we have that µ ∈ Λt(λ , m) with trµ = a > t, then

µ ∈ Λa(λ , m) =⇒ νλ ,m(t)6 νλ ,m(a) ≺ µ =⇒ νλ ,m(t) ≺w µ ,

where the first inequality follows from Lemma 4.14. �

5 Minimizers for submajorization 2: Matrices

Given S0 ∈ Md(C)+ with λ(S0) = λ and m ∈ Id, we introduce the sets Ut(S0,m) whose spectral
pictures are the sets Λt(λ,m) defined in the previous section (see Proposition 5.3). Hence by
Theorem 4.15, the sets Ut(S0,m) have minimal elements with respect to submajorization. In this
section we characterize the minimal S ∈ Ut(S0,m) in terms of the geometry of S0.

Definition 5.1. Let S0 ∈Md(C)+ with λ(S0) = λ ∈ Rd
+
↓ , t0 = tr S0 , and t ≥ t0 . For any integer

m < d we consider the following sets:

U(S0 , m) = {S0 +B : B ∈Md(C)+ , rkB ≤ d−m } and

Ut(S0,m) = {S ∈ U(S0,m) : tr S ≥ t} . (36)

Observe that if m ≤ 0 then U(S0 , m) = {S ∈Md(C)+ : S ≥ S0}. 4
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Remark 5.2. Let F = {fi}i∈ In ∈ F(n, d). Then Proposition 2.6 shows that SD(F) = U(S−1
F , m),

where d − m = n − d =⇒ m = 2d − n. This fact, together with Corollary 3.4, gives the
characterization of the spectral pictures of the sets U(S−1

F , m). 4

Proposition 5.3. Let S0 ∈Md(C)+. Denote by λ = λ(S0) and take an integer m < d. Then

Λ(U(S0 , m)) = Λ(λ , m) and Λ(Ut(S0 , m)) = Λt(λ , m) .

Proof. If m ≤ 0 then U(S0 , m) = {S ∈ Md(C)+ : S ≥ S0}. Hence the first equality follows easily
from Weyl theorem (see [3]). The second equality is a straightforward consequence of the first one.

If m ≥ 1, let us assume first that S0 ∈ Gl (d)+ and let n = 2d−m > d. Take F = {fi}i∈In ∈ F(n, d)
such that SF = S−1

0 . Observe that Proposition 2.6 and Corollary 3.4 imply that SD(F) = U(S0 , m)
and Λ(D(F) ) = Λ(λ , m), which in turn show the first identity.

If S0 /∈ Gl (d)+, let us denote by S1 = S0 + I ∈ Gl (d)+. It is easy to see that

U(S1 , m) = {S + I : S ∈ U(S0 , m)} =⇒ Λ(U(S1 , 0)) = Λ(U(S0 , 0)) + 1d .

Similarly, it is straightforward to prove that Λ(λ + 1d , m) = Λ(λ , m) + 1d . Finally observe that
λ(S1) = λ(S0) + 1d = λ+ 1d . Hence, by the first part of the proof, we get that

Λ(U(S0 , m)) = Λ(U(S1 , m))− 1d = Λ(λ+ 1d , m)− 1d = Λ(λ , m) .

The second identity is a straightforward consequence of the first one.

Let S0 ∈ Md(C)+ and let t ≥ t0 = tr(S0). We shall describe the geometrical structure of minimal
elements in Ut(S0 , m) with respect to submajorization for any m < d. We shall see that, under
some mild assumptions, there exists a unique St ∈ Ut(S0 , m) such that λ(St) = νλ ,m(t) (the vector
of Theorem 4.15 defined in 4.13). In order to do this we fix some notations and establish a series
of preliminary results.

Notations. We fix a matrix S ∈ Md(C)+ with λ(S) = λ = (λ1 , . . . , λd) ∈ Rd
+
↓ . We shall also

fix an orthonormal basis {hi}i∈Id of Cd such that

S hi = λi hi for every i ∈ Id .

Any other such basis will be denoted as a “ONB of eigenvectors for S , λ ”.

Lemma 5.4. Let B ∈ Md(C)+ and r ∈ Id−1 such that λ(S + B) = (λ1 , . . . , λr , α), for some
α ∈ Rd−r

≥0
↓ such that α1 ≤ λr . Let Mr

def= span{hi : i ∈ Ir} and P = PMr . Then

PB = BP = PBP = 0 .

Proof. Since rkP = r and tr(PSP ) =
r∑
i=1

λi , then the Ky Fan theorem (3) assures that

0 ≤ tr(PBP ) = tr(P (S +B)P )− tr(PSP ) ≤
r∑
i=1

λi(S +B)−
r∑
i=1

λi = 0 .

Since B ≥ 0, we have that tr(PBP ) = 0 =⇒ PBP = 0 =⇒ BP = PB = 0.

Proposition 5.5. Let B ∈Md(C)+ and r ∈ Id−1 such that λ(S +B) = (λ1 , . . . , λr , c1d−r), for
some c ∈ [λr+1 , λr]. Then B is unique and given by

B =
d−r∑
i=1

(c− λr+i)hr+i ⊗ hr+i so that S +B =
r∑
i=1

λi · hi ⊗ hi + c ·
d∑

i=r+1

hi ⊗ hi .
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Proof. Let Mr
def= span{hi : i ∈ Ir} and P = PMr . By Lemma 5.4, BP = PB = 0. Hence

P (S +B)P = (S +B)P = SP =
r∑
i=1

λi hi ⊗ hi
Eq. (4)
=⇒ (S +B)Q = cQ ,

where Q = I − P . Hence B = BQ = cQ− S Q =
d−r∑
i=1

(c− λr+i)hr+i ⊗ hr+i .

Remark 5.6. In Lemma 5.4, we allow the case where λr = λr+1 = α1 . In this case we could
change hr by hr+1 (or any other eigenvector for λr) as a generator for Mr . The proof of the
Lemma assures that we get another projector P ′ which also satisfies that BP ′ = 0.

Similarly, in Proposition 5.5 we allow the case where λr = λr+1 = c . By the previous comments,
the projection P in the proof of Proposition 5.5 is not unique. Nevertheless, in this case the positive
perturbation B is also unique, because we have that rkB < d−m (this follows from the fact that
(c− λr+1)hr+1 ⊗ hr+1 = 0). 4

Lemma 5.7. Let m ∈ Id−1 and B ∈Md(C)+ with rkB ≤ d−m. Assume that

λ(S +B) = (c1d−m , λ1 , . . . , λm) ,

for some c ≥ λ1 . Then there exists an ONB {vi}i∈Id of eigenvectors for S , λ such that

B =
d−m∑
i=1

(c− λm+i) vm+i ⊗ vm+i so that S +B =
m∑
i=1

λi · vi ⊗ vi + c ·
d∑

i=m+1

vi ⊗ vi . (37)

If we assume further that λm > λm+1 then B is unique, and Eq. (37) holds for any ONB of
eigenvectors for S , λ .

Proof. Note that, since rkB ≤ d−m, then
d−m∑
i=1

λi(B) = trB = tr(B + S)− trS = c (d−m)−
d∑

j=m+1

λj . (38)

Take a subspace M⊆ Cn such that R(B) ⊆M and dimM = d−m. Denote by Q = PM . Then
QBQ = B, and the Ky-Fan inequalities (3) for S +B assure that

tr(QSQ) = tr(Q(S +B)Q)− trB

≤
d−m∑
i=1

λi(S +B)− trB = c (d−m)− trB
(38)
=

d∑
j=m+1

λj .

The equality in Ky-Fan inequalities (for −S) force that M = span{vm+1 , . . . , vd}, for some
ONB {vi}i∈Id of eigenvectors for S , λ (see the remark following Eq. (4) ). Thus, we get that

QS = S Q =
d−m∑
i=1

λm+i vm+i ⊗ vm+i . Since R(B) ⊆M then P
def= I −Q ≤ PkerB , and

B P = 0 =⇒ P (S +B)P = S P =
m∑
i=1

λi vi ⊗ vi
Eq.(4)
=⇒ (S +B)Q = cQ .

Therefore we can now compute

B = BQ = (S +B)Q− SQ =
d−m∑
i=1

(c− λm+i) vm+i ⊗ vm+i . (39)

Finally, if we further assume that λm > λm+1 then the equality M = span{vm+1 , . . . , vd} is
independent of the choice of the ONB of eigenvectors for S , λ . Thus, in this case B is uniquely
determined by (39).
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Proposition 5.8. Let m ∈ Id−1 and B ∈ Md(C)+ with rkB ≤ d − m. Let c ∈ R such that
λr+1 ≤ c < λr , for some r < m. Assume that

λ(S +B) =
(
λ1 , . . . , λr , c1d−m , λr+1 , . . . , λm

)
.

Then there exists an ONB {vi}i∈Id of eigenvectors for S , λ such that

B =
d−m∑
i=1

(c− λm+i) vm+i ⊗ vm+i so that S +B =
m∑
i=1

λi · vi ⊗ vi + c ·
d∑

i=m+1

vi ⊗ vi .

If we further assume that λm > λm+1 then B is unique.

Proof. Consider the subspace Mr = span{h1 , . . . , hr} and P = PMr . By Lemma 5.4, we know
that P B = B P = 0. Let S1 = S

∣∣
M⊥r

and B1 = B
∣∣
M⊥r

(= B) considered as operators in L(M⊥r ).
Then S1 and B1 are in the conditions of Lemma 5.7, so that there exists an ONB {wi}i∈Id−r of
M⊥r of eigenvectors for S1 , (λr+1 , . . . , λd) such that

B = B1 =
d−m∑
i=1

(c− λm+i)wm+i ⊗ wm+i .

Finally, let {vi}i∈Id be given by vi = hi for 1 ≤ i ≤ r and vr+i = wi for r + 1 ≤ i ≤ d. Then
{vi}i∈Id has the desired properties. Notice that if we further assume that λm > λm+1 then Lemma
5.7 implies that B1 is unique and therefore B is unique, too.

Remark 5.9. With the notations of Lemma 5.7 assume that λm = λm+1 . In this case B is not
uniquely determined. Next we obtain a parametrization of the set of all operators B ∈ Md(C)+

such that λ(S + B) = (c1d−m , λ1 , . . . , λm). Consider p = (d − m) − #{i : λi < λm+1} and
notice that in this case we have that 1 ≤ p < #{i : λi = λm+1} = dim ker(S − λm+1 I). Then, for
every B ∈ Md(C)+ as above there corresponds a subspace N = span{hi : m+ 1 ≤ i ≤ m+ p} ⊂
ker(S − λm I) with dimN = p such that

B = (c− λm) PN +
d−m∑
i=p+1

(c− λm+i)hm+i ⊗ hm+i . (40)

Conversely, for every subspace N ⊂ ker(S−λm I) with dimN = p then the operator B ∈Md(C)+

given by (40) satisfies that λ(S + B) = (c1d−m , λ1 , . . . , λm). Since the previous map B 7→ PN
is bijective, we see that the set of all such operators B is parametrized by the set of projections
PN such that N ⊂ ker(S − λm I) is a p-dimensional subspace. Moreover, this map is actually an
homeomorphism between these sets, with their usual metric structures.

Finally, if we let k = #{i : λi > λm} then the set of operators S +B such that B ∈Md(C)+ with
rkB ≤ m− d and such that λ(S +B) = (c1d−m , λ1 , . . . , λm) is given by

S +B =
k∑
i=1

λi · hi ⊗ hi + λm · PN ′ + c · (PN +
d−m∑
i=p+1

hi ⊗ hi) ,

where N ⊂ ker(S − λm I) is a subspace with dimN = p and N ′ = ker(S − λm+1 I) ∩N⊥.

As a consequence of the proof of Proposition 5.8, we have a similar description of the operators B
of its statement. 4

Recall from Definition 4.13 the descrption of vector νλ ,m(t).

17



Theorem 5.10. Let S0 ∈Md(C)+ with λ = λ(S0). For an integer m < d and a number t ≥ tr S0 ,
let us denote by r′ = max{rλ ,m(t),m} and c = cλ ,m(t). Then

1. The vector νλ ,m(t) ∈ Λt(U(S0 , m) ).

2. For every matrix S ∈ Ut(S0 , m) the following conditions are equivalent:

(a) λ(S) = νλ ,m(t) (i.e. S is ≺w-minimal in Ut(S0 , m)).

(b) There exists {vi}i∈Id an ONB of eigenvectors for S0 , λ such that

B = S − S0 =
d−r′∑
i=1

(c− λr′+i) vr′+i ⊗ vr′+i . (41)

3. If we further assume any of the following conditions:

• m ≤ 0,

• m ≥ 1 and λm > λm+1 , or

• m ≥ 1 and λm = λm+1 but t ≤ s∗(λ , m) (see Definition 4.8),

then B and hence also S are unique. Moreover, in these cases Eq. (41) holds for any ONB
of eigenvectors for S0 , λ.

Proof. It follows from Lemmas 4.14, 5.7 and Propositions 5.5, 5.8. (b) =⇒ (a) in Item 2 follows
by Definition 4.13 and the fact that both S0 and B are diagonal on the same basis. �

6 Minimizing potentials in Dt(F)

Fix a system F = {fi}i∈ In ∈ F(n, d). By Corollary 3.4, µ ∈ Λ(D(F) ) =⇒ µ>λ(S−1
F ). Therefore

the canonical dual F# ∈ D(F), which by (9) satisfy that SF# = S−1
F , has a strong minimality

property: Its vector λ def= λ(SF#) = λ(S−1
F ) satisfies that

λ6µ =⇒ λ ≺w µ for every µ ∈ Λ(D(F) ) .

By this fact, F# is the global minimum in terms of a family of frame potentials on Λ(D(F) ) (see
Definition 6.1 below). But the canonical dual might not be the optimal choice from an applied
point of view (e.g. the frame operator of F# can be ill-conditioned). The problem we focus in is
to find dual frames Gt ∈ D(F) that are minimal with respect to submayorization whiting the set
of dual frames G ∈ D(F) such that tr(SG) > tr(S−1

F ). Notice that this problem is equivalent to
the problem of finding minimal pseudo inverses of TF with Frobenius norm great than t1/2. As we
shall see, these optimal duals Gt have minimal condition number and, in some cases are are tight
frames. In order to study this problem, we fix general notations:

Let F ∈ F(n, d). Fix t ≥ trS−1
F and consider the sets

• Dt(F) = {G ∈ D(F) : trSG ≥ t}.

• SD(F) = {SG : G ∈ D(F)} and SDt(F) = {SG : G ∈ Dt(F)}.

• Λt(D(F) ) = {λ(SG) : G ∈ Dt(F)}.

Recall from Corollary 4.2 that if F ∈ F(n, d) with λ = λ(S−1
F ) , m = 2 d − n and t ≥ trλ, then

Λt(D(F) ) = Λt(λ , m), and it has a unique majorization minimzer νλ ,m(t) (see Definition 4.13).
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Definition 6.1. Let f : [0,∞) → [0,∞) be an increasing convex function. Following [22] we
consider the (generalized) frame potential associated to f , denoted Pf , given by

Pf (F) = tr(f(SF )) for F = {fi}i∈In ∈ Hn . 4

Of course, one the most important such potentials is the Benedetto-Fickus (BF) frame potential
obtained by setting f(x) = x2 for x ≥ 0. As shown in [22, Sec. 4] these potentials (which are
related with the so-called entropic measures of frames) share many properties with the BF-potential.
Indeed, under certain restrictions both the spectral and geometric structures of minimizers of these
potentials coincide (see [22]).

Theorem 6.2 (Spectral structure of Global minima). Let F = {fi}i∈ In ∈ F(n, d) with λ = λ(S−1
F ) ,

m = 2 d− n and t ≥ trλ. Then νλ ,m(t) ∈ Λt(D(F) ) and we have that:

1. If Gt ∈ Dt(F) is such that λ(SGt) = νλ ,m(t) we have that

Pf (Gt) ≤ Pf (G) for every G ∈ Dt(F) ,

and every increasing convex function f : [0,∞)→ [0,∞).

2. If we assume further that f is strictly convex then, for every global minimizer G′t of Pf (·) on
Dt(F) we get that λ(G′t) = νλ ,m(t).

Proof. As an immediate consequence of Theorem 4.15 we see that ν = νλ ,m(t) ∈ Λt(D(F) ) is such
that ν ≺w µ for every µ ∈ Λt(D(F) ). By the remarks in Section 2.2 we conclude that, if Gt is as
above and G ∈ Dt(F) then

Pf (Gt) = tr(f(SGt)) = tr f(ν) ≤ tr f(λ(SG)) = Pf (G) ,

since λ(SG) ∈ Λt(D(F) ). Assume further that f is strictly convex and let G′t be a global minimizer
of Pf (·) on Dt(F). Then, we have that

νλ ,m(t) ≺w λ(SG′t) but tr f(λ(SG′t)) = Pf (SG′t) ≤ Pf (SGt) = tr f(νλ ,m(t) ) .

These last facts imply (see [3]) that λ(SG′t) = νλ ,m(t) as desired.

Next we describe the geometric structure of the global minimizers of the (generalized) frame po-
tential Pf (·) in Dt(F), in terms of their frame operators.

Theorem 6.3 (Geometric Structure of global minima). Let F ∈ F(n, d), m = 2d−n, let t ≥ tr S−1
F

and denote by λ = λ(S−1
F ). Let f : [0,∞)→ [0,∞) an increasing and strictly convex function.

1. If G ∈ Dt(F) is a global minimum of Pf in Dt(F) then there exists {hi}i∈Id , an ONB of
eigenvectors for S−1

F , λ such that

SG = S−1
F +

d−r′∑
i=1

(
cλ ,m(t)− λr′+i

)
hr′+i ⊗ hr′+i ,

where r′ = max{rλ ,m(t) , m}.

2. If we further assume any of the conditions of item 3 of Theorem 5.10, there exists a unique
St ∈ SDt(F) such that if G is a global minimum of Pf in Dt(F) then SG = St.

Proof. It is a consequence of Theorems 5.10 and 6.2. �
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Remark 6.4. Let λ ∈ Rd
+
↓ and m ∈ Id−1 . Then there exist t ∈ R>0 and a constant vector

c1d ∈ Λt(λ , m) ⇐⇒ λ1 = λm .

In this case c = λ1 and t = d λ1 . Indeed, if ν = c1d ∈ Λt(λ , m) then, by Eq. (19),

c = νd ≤ λm ≤ λ1 ≤ ν1 = c =⇒ λ1 = λm = c .

Conversely, if λ1 = λm and t = d λ1 , then it is easy to see that λ1 1d ∈ Λt(λ , m). Observe that
λ1 1d is the vector νλ ,m(t) of Theorem 4.15 for such a λ and t = d λ1 = s∗(λ , m).

Therefore a frame F = {fi}i∈ In ∈ F(n, d) has a dual frame which is tight if and only if

• m = 2 d− n ≤ 0. Recall that in this case νλ(t) = t
d · 1d for every t ≥ d λ1 .

• m ∈ Id−1 and λd−m+1(SF ) = λd(SF ) i.e., the last m eigenvalues of its frame operator are
equal among them. Indeed, just recall that Λ(D(F) ) = Λ(λ , m) for λ = λ(S−1

F ).

In particular, if m ∈ Id−1 then there is a Parseval dual frame for F if and only if

λd−m+1(SF ) = λd(SF ) = 1 ⇐⇒ SF ≥ Id and rk (Id − SF ) ≤ d−m = dim kerT ∗F .

Observe that the equivalence preserves if 2d ≤ n. In this case there is a Parseval dual frame for
F ⇐⇒ SF ≥ Id , because the restriction dim kerT ∗F = n− d ≥ d ≥ rk (Id − SF ) is irrelevant. This
characterization was already proved by Han in [16], even for the infinite dimensional case. 4

7 Optimal completions with prescribed norms

In this section we show how our previous results and techniques allow us to partially solve a frame
completion problem posed in [15]. In order to describe this problem let us fix some notations and
terminology:

7.1. In what follows, we fix the following data: A space H ∼= Cd.

1. A sequence of vectors F0 = {fi}i∈In0
∈ Hn0 .

2. An integer n > n0 . We denote by k = n− n0 . We assume that rkSF0 ≥ d− k.

3. A sequence a = {αi}i∈In ∈ Rn
>0 such that ‖fi‖2 = αi for every i ∈ In0 .

4. We shall denote by t =
∑
i∈In

αi and by b = {αi}ni=n0+1 ∈ Rk
>0 .

5. The vector λ = λ(SF0) ∈ Rd
+
↓.

6. The integer m = d− k = (d+ n0)− n. Observe that d−m = k = n− n0 . 4

The problem is to find a sequence F1 = {fi}ni=n0+1 ∈ Hk with ‖fi‖2 = αi for n0 + 1 ≤ i ≤ n, such
that the the mean square error of the resulting completed frame F = (F0 , F1) = {fi}i∈In ∈ F(n, d),
namely tr(S−1

F ), is minimal among all possible such completions.

There are other possible ways to measure robustness of the completed frame F as above. For exam-
ple, we can consider optimal (minimizing) completions, with prescribed norms, for the Benedetto-
Fickus’ potential. This last fact raises the question of whether the minimizers corresponding to the
mean square error or to the Benedetto-Fickus’ potential coincide.

We shall show that this is the case. Indeed, notice that the mean square error of the completed
frame F corresponds to the generalized potential Pf (F), where f(x) = x−1, x > 0. Although f
is not an increasing function we shall show that our majorization techniques apply to this strictly
convex potential. In order to consider the problems described above, we define the following sets.
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Definition 7.2. Given the data F0 = {fi}i∈In0
and a = {αi}i∈In as in 7.1, consider the sets

Ca(F0) =
{
{fi}i∈In ∈ F(n, d) : {fi}i∈In0

= F0 and ‖fi‖2 = αi for i ≥ n0 + 1
}
,

SCa(F0) = {SF : F ∈ Ca(F0)} and Λa(F0) = {λ(S) : S ∈ SCa(F0)} . 4

We shall show that under certain hypothesis on the initial sequence F0 ,the difference k = n − n0

and the sequence a (which includes the case where the final sequence {αi}ni=n0+1 is uniform) we
can explicitly compute the completing sequence F1 = {fi}ni=n0+1 ∈ Hk that is optimal for a family
of entropic measures of F = {fi}i∈In including the mean square error.

Proposition 7.3 ([1, 21]). Let B ∈Md(C)+ with λ(B) ∈ Rd
+
↓ and let b = (βi)i∈Ik ∈ Rk

>0 . Then
there exists a sequence G = {gi}i∈Ik ∈ Hk with frame operator SG = B and such that ‖gi‖2 = βi
for every i ∈ Ik if and only if b ≺ λ(B) (completing with zeros if k 6= d). �

Proposition 7.4. Fix the data F0 = {fi}i∈In0
, a = {αi}i∈In and t = tr(a) as in 7.1. Then

SCa(F0) =
{
S ∈ Gl (d)+ : S ≥ S0 and b = (αi)ni=n0+1 ≺ λ(S − S0)

}
⊆ Ut(SF0 , d− k) ,

where Ut(SF0 , d− k) is defined in 5.1.

Proof. Observe that if F = (F0 , F1) ∈ F(n , d), then SF = SF0 + SF1 . Denote by S0 = SF0

and B = S − S0 , for any S ∈ Gl (d)+. Applying Proposition 7.3 to the matrix B (which must be
nonnegative if S ∈ SCa(F0) ), we get the first equality.

The inclusion SCa(F0) ⊆ Ut(SF0 , d − k) follows using that, if F = (F0 , F1) ∈ F(n , d), then
rkB = rkSF1 ≤ k = d− (d− k). On the other hand, recall that S ∈ SCa(F0) =⇒ tr S = t. �

In order to apply the results of sections 4 and 5 to the problems of this section, we need to recall
and restate some objects and notations:

Definition 7.5. Fix the data F0 = {fi}i∈In0
and a = {αi}i∈In as in 7.1. Recall that t = tr a,

λ = λ(SF0) and m = d− k. We rename some notions of previous sections:

1. The vector ν(F0 , a) = νλ ,m(t) ∈ Rd
≥0 (see Definition 4.13).

2. The integer r = r(F0 , a) def= max{rλ ,m(t) , m} (see Definition 4.11). Note that d− r ≤ k.

3. The number c = c(F0 , a) def= cλ ,m(t) (see Definition 4.11).

4. Now we consider the vector µ = µ(F0 , a) def=
(
c(F0 , a) − λr+j

)
j∈Id−r

∈ (Rd−r
≥0 )↑ . Observe

that tr µ = tr νλ ,m(t)− tr λ = t−
∑
i∈In0

‖fi‖2 = tr a−
∑
i∈In0

αi = tr b. 4

Throughout the rest of this section we shall denote by S0 = SF0 the frame operator of F0 . Recall
that we call b = {αi}ni=n0+1 ∈ Rk

>0 , t = tr a = tr S0 + tr b and m = d− k.

Theorem 7.6. Fix the data of 7.1 and 7.5. If we assume that b ≺ µ(F0 , a) then

1. The vector ν = ν(F0 , a) ∈ Λa(F0).

2. We have that ν ≺ β for every other β ∈ Λa(F0).
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3. Let {hi}i∈Id be any ONB of eigenvectors for S0 , λ. Let

r = r(F0 , a) and B =
d−r∑
i=1

µi hr+i ⊗ hr+i . (42)

Given any sequence F1 = {fi}ni=n0+1 ∈ Hk such that F = (F0 , F1) ∈ Ca(F0), then

SF1 = B =⇒ λ(SF ) = ν(F0 , a) . (43)

By the hypothesis b ≺ µ = µ(F0 , a) such a F1 must exist.

4. Moreover, if any of the conditions of item 3 of Theorem 5.10 hold, then

(a) Any ONB of eigenvectors for S0 , λ produces the same operator B via (42).

(b) Any F = (F0 , F1) ∈ Ca(F0) satisfies that λ(SF ) = ν(F0 , a) ⇐⇒ SF1 = B.

Proof. Since the elements of Ca(F0) must be frames, we have first to show that ν(F0 , a) > 0.
Following the definition of ν(F0 , a), there are two possibilities: In one case νd = λm > 0, because
we know from the data given in 7.1 that rkS0 ≥ m. In all other cases νd = c(F0 , a) ≥ cλ(t) > 0,
since b > 0 =⇒ t > trS0 (see 4.12 and Definitions 4.4 and 4.11).

By Proposition 7.4, we know that the hypothesis b ≺ µ = µ(F0 , a) assures that there exists a
sequence F1 = {fi}ni=n0+1 ∈ Hk such that F = (F0 , F1) ∈ Ca(F0) and SF1 = B. Then

λ(SF ) = λ(SF0 + SF1) = λ(SF0 +B) = ν(F0 , a) ,

by Theorem 5.10. Observe that Λa(F0) ⊆ Λ(Ut(SF0 , m) ) = Λt(λ , m), by Propositions 7.4 and
5.3. Hence the majorization of item 2 follows from Theorem 4.15. Finally, the uniqueness results
of item 4 follow from Theorem 5.10. �

Corollary 7.7. Fix the data of 7.1 and 7.5. If we assume that b ≺ µ(F0 , a) then

1. Any F ∈ Ca(F0) such that λ(SF ) = ν(F0 , a) satisfies that

Pf (F) ≤ Pf (G) for every G ∈ Ca(F0) ,

and every convex function f : (0,∞)→ (0,∞).

2. If f is strictly convex then, for every global minimizer F ′ of Pf (·) on Ca(F0) we get that
λ(SF ′) = ν(F0 , a).

Proof. It follows from Theorem 7.6 and the majorization facts of 2.1. �

Remark 7.8. The data ν(F0 , a), r(F0 , a), c(F0 , a) and µ(F0 , a) are essential for Theorem 7.6,
both for checking the hypothesis b ≺ µ(F0 , a) and for the construction of the matrix B of (42),
which is the frame operator of the optimal extensions of F0 . (Notice that the vector µ(F0 , a)
measures how restrictive is the hypothesis b ≺ µ(F0 , a)). Fortunately, these objects can be easily
computed according to the following algorithm:

1. The numbers t = tr a and m = d− k are included in the data 7.1.

2. The main point is to compute the irregularity r = r(F0 , a) = max{rλ ,m(t) , m}. If m ≤ 0
then (20) allows us to compute rλ(t); if m ≥ 1, the number s∗(λ , m) allows us to compute
rλ ,m(t) as in Definition 4.11.

3. Once r is obtained, we can see that the wideness of the allowed weights b depends directly
of the dispersion on the eigenvalues (λr+1 , . . . , λd) of SF0 .
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4. Indeed, the number t1
def= tr b = t − tr SF0 is known data. Also trµ(F0 , a) = t1 . Hence

c(F0 , a) and µ(F0 , a) can be directly computed: Let s =
∑d

r+1 λi . Then

t1 = trµ = (d− r) c(F0 , a)− s =⇒ c(F0 , a) =
t1 + s

d− r
=

tr b +
∑d

r+1 λi

d− r
.

And we have the vector µ = µ(F0 , a) =
(
c(F0 , a)− λr+j

)
j∈Id−r

∈ (Rd−r
≥0 )↑ . Then

b ≺ µ ⇐⇒
p∑
i=1

b↓i + λd−i+1 ≤
p

d− r
(

tr b +
d∑
r+1

λi
)

for 1 ≤ p < d− r ,

since the last inequalities s+
∑p

i=1 b↓i ≤ s+ tr b (for d− r ≤ p ≤ k) clearly hold. 4

It is interesting to note that the closer F0 is to be tight (at least in the last r entries of λ), the
more restrictive Theorem 7.6 becomes; but in this case F0 and F#

0 are already “good”.

On the other hand, if F0 is far from being tight then the sequence (λr+1 , . . . , λd) has more
dispersion and the hypothesis b ≺ µ(F0 , a) becomes less restrictive. It is worth mentioning that
in the uniform case b = b1k , Theorem 7.6 can always be applied.

Observe that as the number k of vectors increases (or as the weights αi increase) the trace t grows
and the numbers r and m become smaller, taking into account more entries λi of λ(F0) . This fact
offers a criterion for choosing a convenient data k and b for the completing process.

Remark 7.9 (Construction of optimal completions for the mean square error). Consider the data
in 7.1. Apply the algorithm described in Remark 7.8 and assume that b ≺ µ(F0 , a). Then
construct B as in Eq. (42). In order to obtain an optimal completion of F0 with prescribed norms
we have to construct a sequence F1 ∈ Hk with frame operator B and norms given by the sequence
b (which is minimal for the mean square error by Corollary 7.7). But once we know B and the
weights b we can apply the results in [7] in order to concretely construct the sequence F1. 4
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