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a b s t r a c t 

We study a model of seed dispersal that considers the inclusion of an animal disperser moving diffusively, 

feeding on fruits and transporting the seeds, which are later deposited and capable of germination. The 

dynamics depends on several population parameters of growth, decay, harvesting, transport, digestion 

and germination. In particular, the deposition of transported seeds at places away from their collection 

sites produces a delay in the dynamics, whose effects are the focus of this work. Analytical and numerical 

solutions of different simplified scenarios show the existence of travelling waves. The effect of zoochory 

is apparent in the increase of the velocity of these waves. The results support the hypothesis of the 

relevance of animal mediated seed dispersion when trying to understand the origin of the high rates of 

vegetable invasion observed in real systems. 

© 2017 Published by Elsevier Ltd. 
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. Introduction 

One of the most relevant processes governing the dynamics of

patial patterns in plant populations is seed dispersal. There are

umerous examples showing that the geographical advance of veg-

tation is much faster that what can be predicted from the short

eed dispersion distance provided only by physical means, without

ntervening animal agents. Indeed, observed and recorded rates of

nvasion (and velocity of migration) of plants are sometimes more

han one order of magnitude greater than expected. The origin

f this discrepancy is rooted in a combination of multiple effects

mong which we can mention the disperser agents and the seed

orphology. The disperser that acts as vector for seed dissemina-

ion can be abiotic or biotic and their relative importance is still a

atter of study. In some cases, where the action of small animals

ails to provide an explanation, there are structured seeds that

rofit from efficient wind dispersal ( Bullock et al., 2017; Tamme

t al., 2014 ). For example, a thorough analysis of seed dispersal

n the tropical forest shows that mean dispersal distances due to

ind intervention are comparable with those where mammals or

irds are involved ( Muller-Landau et al., 2008 ). Nevertheless, it

s important to seek a partial answer of the dilemma by trying
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o characterize the long distance dispersal attributed to zoochory,

ince it presents unique aspects affecting its dynamics. 

Unveiling the mechanisms of this fast propagation is not only

nteresting to understand historical processes. It is also a matter

f high relevance as the ability of plants to propagate fast and in-

ade larger areas is crucial for its survival within present scenar-

os of changing environment due to climate, fragmentation or in-

asion by competitors or predators ( Bullock and Kenward, 2002;

ain et al., 20 0 0; Pitelka, 1997 ). A particular example of this phe-

omenon is the fast rate of post-glacial migration. At the begin-

ing of the Holocene, mainly due to a change in climate conditions,

here was a rapid shift in global vegetation ( Reid, 1899; Skellam,

951 ), which is responsible for the current distribution of many

erbaceous plants ( Cain et al., 1998 ). Extrapolated migration rates

uring the Holocene indicate that they are not compatible with

he measured dispersal distances. This discrepancy has been called

eid’s paradox by Clark (1998) (after Reid, 1899 ). Despite many

ears of research on seed dispersal ( Bullock and Kenward, 2002;

urray, 1986; Ridley, 1930 ), there are still gaps in our knowledge

f how seeds travel long distances. 

In many temperate and tropical ecosystems, the majority of

eeds dispersers of woody plants are frugivorous animals ( Herrera

nd Pellmyr, 2002 ). For example, large grazing mammals have long

een recognized as potentially important seed dispersers ( Dore

nd Raymond, 1942; Heinken et al., 2002; Malo et al., 20 0 0; Ri-

ley, 1930; Welch, 1985 ) and, eventually, responsible for the high

ispersal rates ( Vellend et al., 2003 ). For these plants, seed disper-

ion is a function of animal movement and gut passage times of
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Fig. 1. Schematic representation of the delayed dynamics of dispersion. The lines 

represent three seed populations extended in space: f are immobile seeds in fruc- 

tifying plants; u are seeds being dispersed diffusively; s are seeds deposited in the 

substrate after a delay τ , which eventually produce new fructifying plants. 

2

 

c  

a  

(  

i  

a  

b

 

t  

a  

o  

i  

n  

i

 

 

 

t  

c

 

t  

s  

i  

t  

a  

A  

a  

r  

G

 

seeds ( Murray, 1988; Schupp, 1993 ). For this reason, one expects

that the dispersal rate and the spatial pattern of plant distribution

feeds back into the characteristics of seed dispersal via its effects

on animal movements. 

Then, it is not surprising the continuing effort devoted to ob-

tain more accurate and thorough models unveiling the interplay

of animal movement and seed dispersal. Still, there are not many

mathematical models of dispersion that emphasize the enhance-

ment of dispersal rate due to animal agents. Pakeman (2001) is

an example, proposing a model that analyses how plant migration

rates vary with herbivore home range, gut survival and probabil-

ity of consumption. His results show that the role of herbivores

with long displacements and large home ranges is essential to ex-

plain high rates of dispersal in the palaeorecord. The hypothesis

that large herbivores are the main responsible for the dispersal of

seeds can explain the observed advance of woodland herbs. In the

same spirit, Neubert and Caswell (20 0 0) shows that when the dis-

persal occurs through both long and short distance mechanisms, it

is the long-distance component the one that determines the inva-

sion speed. It is also known that spatial patterns can arise as the

result of trophic interactions and dispersal, and a number of scien-

tists have investigated this question using continuous-time growth

models with simple (Fickian) diffusion ( Neubert et al., 1995 ). Cur-

rently these phenomena also capture the interest of physicists and

mathematicians, who seek to provide a theoretical framework for

them. 

Seed dispersal has also a major influence on plant fitness be-

cause it determines the locations in which subsequent seedlings

live or die ( Howe and Smallwood, 1982; Schupp, 1993; Schupp

et al., 2010; Wenny, 2001 ). As such, it determines not only the

ecological dynamics, but also plant evolution and the rates of gene

flow. Moreover, the relationship between plants and their seed dis-

persers is generally of a mutualistic nature, since both derive some

benefit from their participation: food reward exchanged for the

service of seed transport. In general the pattern of seed disper-

sal and activities of their dispersers are closely related ( Neupane

and Powell, 2015b; Wenny, 2001 ), and in many cases it is possi-

ble to trace a co-evolutionary natural history of both. Indeed, the

biological system that has inspired us in this work is the mutu-

alistic relation between the marsupial Dromiciops gliroides and the

parasitic mistletoe Tristerix corymbosus , a keystone species of the

Patagonian temperate forest ( Amico and Aizen, 20 0 0; García et al.,

2009; Morales et al., 2012 ). D. gliroides is its major seed disperser,

so the arrangement of future generations of plants depends on the

places that are visited by the animals. These, in turn, are the fruc-

tifying plants that provide the animal one of their main resources. 

In this context, delay models of seed dispersal have been stud-

ied extensively ( Hadeler and Ruan, 2007 ). For example, Morita

(1984) and de Oliveira (1994) performed thorough studies of pe-

riodic solutions of diffusion equations with delay, while Faria

(1999) and Freitas (1997) investigate bifurcations in such problems.

In this work we focus on the effects induced by the characteristic

delay between consumption and deposition of seeds on the veloc-

ity of vegetation dispersal. Our model involves several aspects of

the cycle of seed dispersal, in which an animal eats fruit, moves

over space following certain rules, and after some time deposits

the seeds at a different place, where a new plant will eventually

grow. We are interested in the description of the spatio-temporal

characteristics of such a dynamics. We approach the problem as a

reaction-diffusion system, in which consumption of seeds and their

delayed deposition after being transported by animals is responsi-

ble for the dispersion. We show, specifically, how the delayed de-

position provided by the animals enhance the velocity of propaga-

tion of a front of vegetation. 
w

. Model definition and dynamics 

For populations with overlapping generations, population size

an usually be regarded as a continuous function of time, and

n adequate mathematical tool is a set of differential equations

 Murray, 1989 ). Let us consider a three-components model: seeds

n plants ( f ), being dispersed by animals ( u ), and deposited in an

ppropriate substrate ( s ). Seeds in populations f and s are immo-

ile, while those in u are carried by their transporters. 

Several biological processes are mediated by interactions be-

ween these populations, as schematized in Fig. 1 : seeds in plants

re ingested and become dispersive; these are eventually deposited

r defecated and become immobile again. Finally, with a probabil-

ty of germination, the seeds grow into plants and start producing

ew seeds at the level f . A reasonable one-dimensional mathemat-

cal description of such a system is the following: 

∂ f (x, t) 

∂t 
= F ( f (x, t) , s (x, t)) − I( f (x, t) , u (x, t)) , (1)

∂u (x, t) 

∂t 
= I( f (x, t) , u (x, t)) + D ∇ 

2 u (x, t) 

−α

∫ + ∞ 

−∞ 

G (x, t| x ′ , t −τ ) I( f (x ′ , t −τ ) , u (x ′ , t −τ )) dx ′ , 

(2)

∂s (x, t) 

∂t 
= −g s (x, t) 

+ α

∫ + ∞ 

−∞ 

G (x, t| x ′ , t −τ ) I( f (x ′ , t −τ ) , u (x ′ , t −τ )) dx ′ , 

(3)

hat can also be formulated in higher dimensions without diffi-

ulty. 

Each one of the terms in these equations represents some of

he mechanisms that play a role in the population dynamics. F ( f,

 ) is a growth (or ripening) function of the fruits. The second term

n Eq. (1) represents the consumption of fruit, which depends on

he presence of animals through u . The same ingestion term I ( f, u )

cts as a source of the population of moving seeds u ( x, t ) in Eq. (2) .

lso, in this equation, we use a standard diffusive transport mech-

nism for these mobile seeds, with a coefficient D and the cor-

esponding (Gaussian) diffusion kernel that propagates from point

(x ′ , t − τ ) to ( x, t ) (indicated by the vertical dash in G ): 

 (x, t| x ′ , t − τ ) ≡

G (x, x ′ , τ ) = exp 

(
− (x − x ′ ) 2 

4 Dτ

)
(4 πDτ ) −1 / 2 , (4)

hose role in the dispersion we describe below. 
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Fig. 2. Relation between the wave velocity c and the delay τ , obtained by the 

asymptotic (red) and iteration (blue) methods explained in the text. In this case 

α = 0 . 5 , D = 1 , r = 1 . We also show the special cases of τ → 0 and τ → ∞ (Fisher’s 

velocity of the animals’ wave), which can be calculated exactly. (For interpretation 

of the references to colour in this figure legend, the reader is referred to the web 

version of this article.) 
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The most involved term of the dynamics is the one representing

he loss of mobile seeds as the animals deposit them. If seeds are

eposited after a time τ (e.g. after the transit through the diges-

ive tract of the animals), then we can propose the non-local term

hat appears in third place in Eq. (2) : seeds are consumed at x ′ at

 time t − τ, and are subsequently transported by the dispersion

ernel G up to x where they are deposited at time t . A rate α takes

nto account that the process may be imperfect, with some seeds

eing lost and not appropriately transferred into the germinating

opulation s ( x, t ). Finally—Eq. (3) —seeds deposited in the immobile

ubstrate s ( x, t ) can germinate at rate g and eventually contribute

o the fruit population. 

Observe that, in the absence of coupling, Eq. (2) is a reaction-

iffusion equation akin to Fisher’s equation ( Murray, 1989 ). That

s, with appropriate initial and boundary conditions the population

f dispersing seeds should display a travelling wave shape, with a

ell defined velocity given by the diffusion coefficient and the lin-

ar growth rate of I ( u ). We want to study the existence of similar

aves in the complete coupled system and, eventually, propagat-

ng waves of f ( x, t ), that is, of the fructifying plants. In order to

roceed with the analysis, let us consider specific forms of the dif-

erent functions involved: 

 ( f, s ) = r f s (x, t) 
(
k f − f (x, t) 

)
, (5) 

( f, u ) = r u u (x, t) ( k u − u (x, t) ) 
f (x, t) 

b + f (x, t) 
, (6) 

here r i are growth rates and k i are carrying capacities. Observe

hat Eq. (5) provides a net reproduction of f which is proportional

o their source, s . Eq. (6) , in turn, is a product of a logistic growth

n u (corresponding to the animals that disperse the seeds) and a

unction of f that saturates as f → ∞ , indicating satiation (charac-

erized by an additional parameter, b ). 

The analysis of these differential equations require approximate

nalytical approaches as well as numerical solutions, which we dis-

uss below. 

.1. Asymptotic analysis 

Let us first consider a simplified scenario, in which the dynam-

cs of the immobile population of plants f occurs more slowly than

hat of dispersing seeds u . This hypothesis (to be relaxed later,

howing qualitatively similar results) allows us to consider f as a

arameter, so that the ingestion term I is just a function of u ( x, t ).

et us look for travelling wave solutions in the usual way. Consider

he change of variables to a system moving at velocity c : z = x + ct,

 − x ′ = z − z ′ − cτ . The equation for dispersing seeds u ( x, t ) be-

omes: 

 u 

′ (z) = r u (z)(k u − u (z)) + Du 

′′ (z) 

−α

∫ + ∞ 

−∞ 

e −
(z−z ′ −cτ ) 2 

4 Dτ√ 

4 πDτ
u (z ′ )(k u − u (z ′ )) dz ′ (7) 

here r u and the f dependence have been absorbed in the param-

ters r and α without loss of generality, while u ′ and u ′ ′ represent

rst and second derivatives with respect to the single variable z .

his equation cannot be solved analytically, but we can perform a

erturbative analysis in order to obtain an approximate solution.

e can deal with the integral of Eq. (7) making use of Laplace’s

ormula (see Estrada and Kanwal, 1994 ), which is an asymptotic

pproximation of integrals of the form: 

(λ) = 

∫ b 

a 

e −λh (x ) φ(x ) dx, (8)

hen λ = (4 Dτ ) −1 → ∞ ( τ → 0) and h ( x ) is real. Following Estrada
nd Kanwal (1994) and taking k u = 1 without loss of generality, we
an approximate our integral as: 

1 √ 

4 Dπτ
I(λ) ≈ u (z − cτ ) 

(
1 − u (z − cτ ) 

)

+ Dτ
[ (

1 − 2 u (z − cτ ) 
)
u ′′ (z − cτ ) − 2 u ′ (z − cτ ) 2 

] 
+ · · ·

(9) 

Using the leading terms of the integral expansion in u , together

ith the travelling wave ansatz, we finally reduce the problem to

he following ordinary differential equation: 

u 

′ (z) = Du 

′′ (z) + ru (z) 
(
1 − u (z) 

)
− α

(
u (z − cτ ) 

(
1 − u (z − cτ ) 

)
+ Dτ

[ (
1 − 2 u (z − cτ ) 

)
u 

′′ (z − cτ ) − 2 u 

′ (z − cτ ) 2 
] )

. 

(10) 

e propose an exponential solution u = Ae −λz for this equation,

hich gives rise to a transcendental characteristic equation. Con-

idering up to the third order term in u and up to the second or-

er in a small- τ expansion, we arrive at the following characteris-

ic equation valid for small delays: 

αDcτ 2 λ3 + 

(
D − αDτ − α

c 2 

2 

τ 2 

)
λ2 

+ λ(αcτ − c) + r − α = 0 . (11) 

he relation between the wave velocity c and the delay τ is pro-

ided by the discriminant of the solution of Eq. (11) , which we

how graphically in Fig. 2 (red curve) (for α = 0 . 5 , D = 1 and

 = 1 ). We can see that there is a growing dependence, giving

aster waves for larger values of the delay, indicating the veloc-

ty enhancement provided by the mobile dispersers. Observe also

n Fig. 2 the two limits that can be calculated exactly. The first

ne corresponds to τ → 0, when the diffusion propagator tends to

 Dirac delta δ( τ ), in which case the integral can be evaluated ex-

ctly. The second is τ → ∞ , leaving just Fisher’s equation in Eq. (2) ,

nd then c = 2 
√ 

rD . Note that this waves we found are slower than

hose corresponding to the movement of the dispersing agent it-

elf, but faster that the limit of immediate deposition of the seeds.
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Fig. 3. Relation between the wave velocity c and the delay τ , obtained by the 

asymptotic (red), iteration (blue) and numerical (black) methods explained in the 

text. In this case α = 0 . 5 , D = 10 , r = 1 . (For interpretation of the references to 

colour in this figure legend, the reader is referred to the web version of this ar- 

ticle.) 
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We analyse below another approximate analytic solution, which

provides a similar result. 

2.2. Iteration method 

Another analytical approach to solve Eq. (2) consists in us-

ing the iteration technique presented in Wu and Zou (2001) and

Zou (2002) , where the existence of wave-front solutions of similar

equations is proven, provided that c and τ satisfy certain relation

(see Theorem 3.2 of Zou, 2002 ). 

In order to find that relation, we propose again the change

of variables u (x, t) = u (z) = u (x + ct) . Using this method in

Eq. (2) (with the same specific form of I as in Eq. (6) , in which f is

a parameter), we arrive at the following integro-differential equa-

tion: 

c u 

′ (z) = r u (z) + D u 

′′ (z) − α

∫ + ∞ 

−∞ 

e −
(z−z ′ −cτ ) 2 

4 Dτ√ 

4 πDτ
ru (z ′ ) dz ′ , (12)

where we have linearised the reaction terms. 

With the ansatz u (z) = Ae λz we obtain the following character-

istic equation: 

	(λ) ≡ Dλ2 − cλ + r − αre Dλ2 τ−λcτ = 0 . (13)

The condition to have a single root of this transcendental equation

leads to the requirement that: 

τ = 

4 D 

c 2 
ln 

(
4 Dαr 

4 Dr − c 2 

)
. (14)

Eq. (14) gives a relation between the wave velocity c and the delay

τ that we can explore. Fig. 2 shows this result (blue curve) for the

same values of the other parameters as we used for the asymp-

totic result (red curve). We can see that the two curves coincide

for small τ , where the asymptotic expansion described above is

valid. For larger values of τ the curves separate from each other,

as the red curve from the small- τ expansion loses its validity. The

iterative result also tends to the right limit as τ → ∞ , albeit more

slowly. In the following we analyse a numerical solution of the

same reduced system. 

2.3. Numerical solution 

The restricted dynamics of u —Eq. (2) —can also be solved nu-

merically. Specifically, we solved 

∂u (x, t) 

∂t 
= r u u (x, t) 

(
1 − u (x, t) 

)
+ D ∇ 

2 u (x, t) 

−α

∫ + ∞ 

−∞ 

G (x, t| x ′ , t −τ ) r u u (x ′ , t − τ ) 

×
(
1 − u (x ′ , t − τ ) 

)
dx ′ , (15)

where we have absorbed all the dependence on f (which is here

a parameter) in the growth rate r u , and set k u = 1 . We analysed

the formation and propagation of a travelling wave front from an

initial stationary step function: 

u (x, 0) = 

{
1 if x < 0 , 

0 if x > 0 . 
(16)

We also set free conditions at the left and right borders of the

finite space, and we measure the velocity of the solution after a

transient time when the front accelerates, and before it reaches the

borders. 

Fig. 3 shows a typical numerical result of the relation between

the wave velocity and the delay. The plot also shows the corre-

sponding curves obtained by the analytical methods. We can see

that both of them give good approximations of the wave velocity.

In particular, the iteration result provides a better approximation

for the whole range of delays, interpolating well between the limit

cases. Both methods provide slightly overestimated velocities. 
. Coupled dynamics 

Let us consider the fact that the characteristic time of seed dis-

ersion on the one hand, and the time of establishing new fruc-

ifying plants on the other, are typically very different. This time

cale diversity allows a simplified analysis of the coupled model of

 Eqs. (1) –(3) , more complete than the single-component simplifica-

ion made in the previous section. Essentially, this can be accom-

lished by eliminating the population s , i.e. setting the term r f s ( x,

 ) (which is the reproduction factor in the definition of the func-

ion F in Eq. (5)) equal to r f u ( x, t ). Effectively, this represents an

nstantaneous germination of the deposited seeds into fructifying

lants, and the system reduces to: 

∂ f (x, t) 

∂t 
= r f u (k f − f ) − r u u (k u − u ) 

f 

b + f 
, (17)

∂u (x, t) 

∂t 
= r u u (k u − u ) 

f 

b + f 
+ D ∇ 

2 u (x, t) 

− α

∫ + ∞ 

−∞ 

G (x, t| x ′ , t − τ ) r u u (x ′ , t − τ ) 

×
(
k u − u (x ′ , t − τ ) 

) f (x ′ , t − τ ) 

b + f (x ′ , t − τ ) 
dx ′ . (18)

Even if the use of an instantaneous germination seems too

rude an approximation, it helps to keep the equations tractable, as

 different assum ption would introduce a new delay term. More-

ver, we have found that numerical results with an additional ger-

ination rate are qualitatively the same as the ones shown here. 

Based on the existence and the properties of travelling waves of

solated dispersing seeds found in the previous sections, we have

earched for the equivalent dynamics in this coupled model. We

ave analysed the system only numerically in this case, with two

ifferent initial conditions, which we call homogeneous and het-

rogeneous depending on the initial values of f ( x ): 



L.D. Kazimierski et al. / Journal of Theoretical Biology 436 (2018) 1–7 5 

Fig. 4. Relation between the wave velocity c and the delay τ , obtained numerically 

for the two-components model. α = 0 . 5 , D = 10 , r = 1 , b as shown. The correspond- 

ing result for the one-component model is shown for comparison. 
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Fig. 5. Relation between the wave velocity c and the delay τ , obtained numerically 

for the two-components model and heterogeneous initial conditions. α = 0 . 5 , D = 

10 , r = 1 , b as shown. 
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Homogeneous initial condition: 

f (x, 0) = k f , 
u (x, 0) = k u if x ≤ 0 , 0 if x > 0 . 

(19) 

Heterogeneous initial condition: 

f (x, 0) = k f if x ≤ 0 , 0 if x > 0 , 

u (x, 0) = k u if x ≤ 0 , 0 if x > 0 . 
(20) 

The homogeneous initial condition evolves, after a transient, to

 travelling front of the u variable, similar to the single component

implified model analysed before. It is accompanied by a shallow

epletion of f that moves at the same speed. In this regard, it is

imilar to a case where f is just a parameter, and we used it as a

enchmark to compare the role of the satiation parameter b that

ppears in ( Eqs. (17) and ( 18 )). The resulting velocity as a func-

ion of τ is shown in Fig. 4 , for different values of b . When b → 0

he satiation term disappears and the dependence of ingestion on

 becomes effectively a parameter, just like in the one-component

odel. For larger values of b the curves show the same shape, with

he velocity growing with τ but with smaller velocities for each

alue of the delay. 

The heterogeneous initial condition is the most interesting case

n the analysis of the expansion of a bound patch of vegetation,

acilitated by the dispersing agents. For example, one can expect a

ouble invasion wave of dispersing seeds and plants, correspond-

ng to the advance of the patch edge. In this case, since u is prop-

gating into empty space, the velocity of the invasion should be

lower than in the single component and in the two-components

ith homogeneous initial conditions. Our results show that indeed

uch is the case. The two waves propagate asymptotically with

he same velocity and a small lag of f behind u . In addition we

nd that the dependence of the velocity on the delay is reversed

ith respect to the one corresponding to those cases. Fig. 5 shows

he results corresponding to the same parameters as those used in

ig. 4 . 

The reversal of the dependence of the velocity on the delay for

ifferent initial conditions can be understood in the following way.

hen the initial vegetation extends homogeneously a longer depo-

ition time allows the front of dispersing animals to reach farther

nd expand faster, since their resource f is available wherever they

o. On the contrary, when the initial vegetation is bounded, the

nimals cannot reach as far because of the limited resource. In this
ase, if they diffuse farther, the seeds are lost. The border of the re-

ion occupied by u needs to propagate slower in order to provide

or the establishment of their resource. 

Finally, we have analysed the lag between the two fronts and

ts dependence on the parameters. We found that it is almost in-

ensible to the value of τ , but depends strongly on the effective

eproduction rate r f . Larger values of this parameter can reduce the

eparation between the fronts to almost zero. 

. Discussion and conclusions 

The inconsistency between migration and estimated invasion

ates of plants that would account for the dynamics of their popu-

ation during the Holocene post-glacial migration has been named

eid’s paradox. Among other plausible explanations, several au-

hors have suggested the occurrence of long-distance transport

vents mediated by animal dispersal. Based on this assumptions,

e have analysed a model of plant propagation by diffusive dis-

ersion of their seeds, mediated by animal ingestion and trans-

ort. The model involves three populations: immobile seeds in

ruits, mobile seeds in animals, and seeds (again immobile) de-

osited in the substrate. In particular, we studied the propaga-

ion of travelling waves in the form of invasion fronts, arising from

eaviside-like initial conditions. The mathematical problem is sim-

lar to that of reaction-diffusion waves developed since the 1930s,

ike the ones studied by Fisher in the context of the propagation of

 genetic trait in a population ( Volpert and Petrovskii, 2009 ). Like

hose, the velocity of propagation depends on the diffusion con-

tant and on the linear growth parameter of the field being dis-

ersed. 

Several authors have previously contributed to the seek of a

athematical formulation of zoochory dynamics. Neupane and

owell (2015a ) and Powell and Zimmermann (2004) , for example,

odel the deposition of dispersed seeds with a spatial kernel in

n integro-differential (or difference, as in Neubert et al., 1995 )

ynamics. These kernels are then fit from data to compare pre-

ictions with field observations. The existence of these spatial ker-

els naturally arises from the time that the seeds travel along with

heir dispersers (such as the gut transit time, as modelled numer-

cally by Morales and Carlo, 2006 ). The fact that there is a delay

etween the ingestion of the seeds and their deposition at a differ-

nt place provides, from the point of view of the seed, faster fronts

han those corresponding to a negligible delay. This corresponds to
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a possible resolution of Reid’s paradox: a faster propagation thanks

to the mediation of animal dispersers. In our model the diffusion

coefficient of the animals, together with the gut transit time of the

seeds (or its equivalent delay in other transport mechanisms), de-

termine the velocity of propagation of the vegetation front. Our

approach is not focused on the phenomena that may arise due to

spatial structures but on the effect induced by the inherent delay

associated to an active transportation by an animal. In that sense,

all these approaches are complementary. 

We have analysed the model through different approximations,

which allowed the characterization of the phenomenon in one spa-

tial dimension. First we studied a one-component simplification,

in which only the diffusing seeds remain as dynamical variables.

This scenario, in which the density of plants remains constant,

may correspond to systems in which the plants are long-lived (e.g.

trees). The corresponding delayed-integro-differential equation was

solved for travelling waves using an asymptotic expansion and an

iteration procedure. Both methods provided the velocity of the

waves as a function of the delay parameter. Numerical solution of

the equation confirmed the validity of the analytic procedures. Ad-

ditionally, we observed that the shape of the front is different from

the corresponding to a case without delay. Actually, the leading

front of the wave has the same properties as the Fisher’s one—

allowing for the calculation of the asymptotic velocity. The main

difference is in the trailing part of the front, where the invasion

tends to the carrying capacity, whose shape depends on the delay.

In connection with these findings, we also analysed an interme-

diate simplification of the model consisting of two dynamical vari-

ables: the fructifying plants and the animals. This situation may be

relevant for systems with annual plants and dispersers that have

longer generation times. We found that the general phenomenon

(faster fronts of plants with respect to no delays, mediated by the

animals) is maintained, but there is a strong dependence on the

initial conditions. The propagating wave becomes limited not by

diffusion, but by the limited resources at the leading edge. As a re-

sult of this, the dependence of the velocity of the front on the rel-

evant parameter measuring the delayed transport of the seeds, τ ,

becomes inverted (decaying) with respect to the single component

model. In this context, it is worth mentioning that the behaviour

of animals across a patch edge, based on habitat preference, may

be relevant in the dynamics of the coupled populations, as studied

via reaction-diffusion models by Maciel and Lutscher (2013) and

Maciel and Kraenkel (2014) . This is a matter to be considered in

forthcoming work. 

The present analysis does not exhaust the characterization of

the solutions of the system. In particular, we have studied a sin-

gle phenomenon: the speed of an invasion front arising from an

heterogeneous initial condition. While this is certainly relevant

for two-species invasions and restoration of ecosystems, there are

other dynamically interesting problems with distributed hetero-

geneities, such as the irregularity of the topology, of the diffu-

sion coefficient ( Neupane and Powell, 2015a ) or of the distribu-

tion of resources. We also expect to extend it to the study of the

three-component waves elsewhere. Besides, in the present work

we characterized the movement of the disperser as a diffusive phe-

nomenon. Other transport mechanisms could be considered once a

persistent interaction between the plant and the animal has been

established and the topology of the landscape has been shaped. In

those cases, we could add chemotactic terms or Cahn–Hilliard like

equations ( Liu et al., 2016 ) to take into consideration the feedback

interactions between both species. 
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