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a b s t r a c t

Wederive tests for heteroskedasticity after fixed effects estimation of linear panelmodels. The asymptotic
results are based on a ‘large N–fixed T ’ framework, where the incidental parameters problem is bypassed
by utilizing a (pseudo) likelihood function conditional on the sufficient statistic for these parameters. A
simple ‘studentization’ produces distribution free tests that can easily be implemented using an artificial
regression based on residuals after fixed effects estimation. A Monte Carlo exploration suggests that the
tests perform well in small samples such as those encountered in practice.

© 2013 Elsevier B.V. All rights reserved.

1. Introduction

Simple linear panel models share many characteristics with
standard linear regressions when, as is typical in Economics, the
cross-sectional variability is considerably larger than the temporal
variation. Consequently, cross-sectional heteroskedasticity is the
rule rather than the exception in most panels, and its presence in-
validates standard inference, or calls for more efficient estimation
strategies.

A recent line of research has successfully produced tests for
the random effects case. See, for example, Montes-Rojas and Sosa-
Escudero (2011), Baltagi et al. (2010), Baltagi et al. (2006), and Leje-
une (2006). Nevertheless, the vast majority of the applied research
focuses on fixed effects strategies, which, unlike simple random
effects treatments, help bypass the biases due to the presence of
unobserved heterogeneities possibly correlated with observed co-
variates.

Even though some results translate easily from the cross-
sectional domain to panels, fixed effects estimation usually re-
quires some care to handle the well known incidental parameters
problem, especially when the relevant asymptotic approximations
should be based on the cross-sectional dimension being much
larger than the temporal dimension.

∗ Corresponding author. Tel.: +1 785 864 2849; fax: +1 785 864 5270.
E-mail addresses: juhl@ku.edu (T. Juhl), wsosa@udesa.edu.ar

(W. Sosa-Escudero).

In this paper, we propose simple and readily implementable
tests for heteroskedasticity after fixed effects estimation, whose
asymptotic properties require only the cross-sectional dimension
to grow to infinity while holding the temporal dimension fixed.
The tests are robust to alternative distributional assumptions. As
in Inoue and Solon (2006), we derive our tests using a conditional
(pseudo) likelihood function based on a sufficient statistic for the
incidental parameters. The final tests are analogous to Koenker’s
(1981) robustified version of the classic Breusch and Pagan (1979)
procedure, and can be implemented by simple artificial regressions
using residuals after OLS fixed effects estimation. In addition, we
develop tests that relax an assumption (known as homokurtosis)
and propose another variant of these tests that is directly based on
testing a theoretical moment condition. This test is implemented
using an artificial regression approach proposed by Wooldridge
(1990).

Panels pose an additional identification challenge with respect
to the simple cross-sectional or time series case, since, in the con-
text of the one-way model, conditional variances may vary be-
tween the cross-sectional units, within cross-sectional units, or
both. This is a relevant question, since corrections aimed at guaran-
teeing valid inference or at improving efficiency are markedly dif-
ferent depending on each case. For this purpose, we propose two
tests that can help distinguish among these cases.

Detecting heteroskedasticity is relevant from several perspec-
tives. First, the presence of heteroskedastic residuals suggests po-
tential efficiency improvements upon standard estimators and/or
power gains for tests based on them. As is well known (Davidson
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and MacKinnon, 1993, Ch. 12), non-rejections of standard signifi-
cance tests are compatible with their nulls being true, or with lack
of power. Consequently, better procedures may lead to more effi-
cient estimates andmore powerful tests that help practitioners in-
terpret test results. In the panel context, the extent of these gains
depends on the particular nature of heteroskedasticity. The semi-
parametric adaptive strategy of Li and Stengos (1994) produces sig-
nificant efficiency gains, if heteroskedasticity is known to be due
to the observation specific error term only. When heteroskedas-
ticity is in the individual specific error, a different strategy
should be used, as proposed by Roy (2002). Second, the common
practice of preserving standard estimators (like the within es-
timator) and fixing standard errors is not without costs when
homoskedasticity holds, as stressed in Angrist and Pischke (2008,
Ch. 8). Moreover, such a procedure may ignore potentially help-
ful efficiency improvements and power gains. Finally, and perhaps
more importantly, the hypothesis of heteroskedasticity, and the
identification of its source, may be of relevant economic concern
per-se, when couched from the perspective of suggesting heteroge-
neous responses. As highlighted by Zietz (2001), heteroskedasticity
is akin to particular forms of parameter heterogeneity, and tests for
slope heterogeneity have power in the direction of heteroskedas-
ticity. In particular, tests for slope heterogeneity in panel datamod-
els are conducted under the assumption of no heteroskedasticity,
as in Pesaran and Yamagata (2008). The related literature on
quantile regressions provides a semi-parametric strategy specifi-
cally aimed at detecting heterogeneous effects and, as shown by
Koenker and Bassett (1982), relevant heterogeneous patterns are
compatible with heteroskedasticity.

The paper is organized as follows. Section 2 presents the
analytical framework used to derive the new tests and discusses
the identification issuesmentioned above. In Section 3, we suggest
a modified test based on the moment condition from our theorem.
Finally, Section 4 explores the small sample performance of the
new tests through an extensive Monte Carlo exercise.

2. The tests

Consider a simple fixed effects model

yit = αi + x⊤

it β + vit ,

with i = 1, . . . ,N and t = 1, . . . , T representing individuals and
periods, respectively. The vector xit contains K strictly exogenous
regressors. The random variables αi are individual specific effects,
possibly correlated with xit , and vit is an observation specific error
term. In what follows, we define quantities’ groupmeans and total
means as

x̄i· =
1
T

T
t=1

xit

x̄·· =
1
NT

N
i=1

T
t=1

xit .

We list the basic assumptions below.

Assumption 1.

E(vit |Xi, Zi, αi) = 0

where Xi and Zi are, respectively, T × K and T × p matrices
containing the T observations of xit and zit .

Assumption 2.

E

X⊤

i M0Xi


is a full rank matrix where

M0 = IT −
ιT ι

⊤

T

T
ιT = (1, 1, . . . , 1)⊤

with ιT a T vector so thatM0 subtracts group means.

Assumption 3. E(vitvis|Xi, Zi, αi) = 0, for all s ≠ t .

Assumption 4. The regressors xit and zit have finite sixth mo-
ments.

Assumption 5. Let Z0 be the NT × p matrix of Z variables with
the mean of all Z subtracted and let D0 = limN→∞

1
N E(Z⊤

0 Z0) be
full rank, let DG = limN→∞

1
N

N
i=1 E(Z⊤

i M0Zi) be full rank, and let
DB = limN→∞

1
N

N
i=1 E(z̄i· − z̄··)(z̄i· − z̄··)⊤.

Assumption 6. Heteroskedasticity:

E(v2
it |Xi, Zi, αi) = σ 2

it = σ 2
v h(z⊤

it γ ),

where h(.) is any strictly positive, twice differentiable function
such that h(0) = 1, h′(0) ≠ 0, and σ 2

v is a positive constant.1

Wewill be interested in evaluating the null hypothesisH0 : γ =

0. In this setup, zit is a vector of p strictly exogenous variables that
may account for heteroskedasticity, which can be taken as a subset
or all of xit , and zit may also include variables that are not contained
in xit so long as the assumptions are satisfied.

Let vi ≡ (vi1, . . . , viT )
′, and

Σi = E(viv
⊤

i |Xi, Zi, αi)

= σ 2
v


h(z⊤

i1γ ) . . . 0
0 h(z⊤

i2γ ) 0 0
... 0

. . . 0
0 . . . 0 h(z⊤

iT γ )

 .

To avoid the incidental parameters problem associatedwith the
fixed effects estimation ofαi, we follow Inoue and Solon (2006) (see
also Chamberlain, 1980) and condition on the unbiased sufficient
statistic for αi, given by y⊤

i Σ−1
i ιT/ι

⊤

T Σ−1
i ιT (ιT is a T × 1 vector of

ones), so that the conditional likelihood is

ℓC (β, γ ) =

N
i=1


−

1
2
ln |Σi| −

1
2
ln(ι⊤T Σ−1

i ιT )



−
1
2

N
i=1


v⊤

i


Σ−1

i −
Σ−1

i ιT ι
⊤

T Σ−1
i

ι⊤T Σ−1
i ιT


vi


.

Our test will be based on the conditional score with respect to
the parameter γ obtained in the following theorem.

Theorem 2.1. The conditional score with respect to γ evaluated at
γ = 0 is given by

h′(0)
2σ 4

v

N
i=1

T
t=1


(vit − v̄i·)

2
−


1 −

1
T


σ 2

v


zit

where σ 2
v = E(v2

it).

Proof. See the Appendix.

1 The notation σ 2
v is used to denote the conditional variance of vit under the null

of no heteroskedasticity.
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Notice that if there is no heteroskedasticity with respect to zit ,
the expected value of the score is zero. However, if Assumption 3
is violated, so that there is serial correlation, the expectation may
no longer be zero.

There are a variety of ways to implement an LM type test based
on the above score. One simplewaywould be to follow a strict like-
lihood approach, by inserting the fixed effects residuals for each
of the terms involving vit . In addition, a simple estimator for σ 2

v is
available based on these same fixed effects residuals. Nevertheless,
heteroskedasticity tests are well known to be severely affected by
violations to the Gaussian assumption (Evans, 1992 and Montes-
Rojas and Sosa-Escudero, 2011). Consequently, in order to derive a
distribution free test, we will follow a conditional moment-based
approach (Newey, 1985; Tauchen, 1985 and White, 1987), where
the conditional score obtained above is used as a valid moment
condition, and a robust test is derived by properly normalizing the
score without exploiting restrictions that depend on the Gaussian
assumption, as in Koenker’s (1981) ‘studentization’ procedure for
the classic Breusch and Pagan (1979) LM based test.

Consider the following artificial regression:

ŵ2
it = c1 + z⊤

it c2 + ϵit

where ŵit is an estimate of the variable wit = vit − v̄i·. That is,

ŵit = ( vit − v̄i·)

= (yit − ȳi·) − (xit − x̄i·)⊤β̂FE,

where β̂FE is the usual fixed effects estimator given by

β̂FE =


N
i=1

T
t=1

(xit − x̄i·)(xit − x̄i·)⊤
−1

×

N
i=1

T
t=1

(xit − x̄i·)(yit − ȳi·).

The above artificial regression can be seen as the Gauss–Newton
regression corresponding to E(v2

it |Xi, Zi, αi) = σ 2
v h(z⊤

it γ );
see Davidson and MacKinnon (2003, pp. 264–268) for further de-
tails.

Let LM = NTR2, where R2 is the coefficient of determination of
the artificial regression. Based on this artificial regression, we ob-
tain the following result, that guarantees consistency and correct
asymptotic size for our proposed test LM , for the ‘large N–fixed T ’
framework.

Theorem 2.2. Under H0 : γ = 0 and given Assumptions 1–5, E(v2
it)

= σ 2
v , and E(v4

it |Xi, Zi, αi) = κ < ∞, LM is asymptotically distri-
buted as central χ2(p), as N → ∞. Under the sequence of local
alternativesHA : γ = N−1/2δ andAssumption6, LM is asymptotically
distributed as non-centralχ2(p)with non-centrality parameter given
by

[h′(0)]2

σ 2
w2


1 −

2
T

2

δ⊤D0δ + 2
[h′(0)]2

σ 2
w2


1 −

2
T


δ⊤DBδ

+
[h′(0)]2

σ 2
w2

δ⊤DBD−1
0 DBδ

where σ 2
w2 is the variance of w2

it = (vit − v̄i·)
2.

Proof. See the Appendix.

Theorem2.2 relies on an assumption that the conditional fourth
moments are constant. That is, E(v4

it |Xi, Zi, αi) = κ < ∞,
a constant. Such an assumption is referred to as homokurtosis
and simplifies the analysis. We will relax this assumption in Sec-
tion 3. From the theorem,we see that the non-centrality parameter
depends on several quantities. First, h′(0) enters in each term.

Fig. 1. Groupwise heteroskedasticity.

Moreover, the local power depends on the matrices D0 and DB. No-
tice that if DB = 0, there is no between group variation in the limit,
and there is no local power if T = 2. That is, if there is no be-
tween group variation in zit , the only source of heteroskedasticity
that we could hope to observe would come from within variation
of zit . With only T = 2 observations, this is impossible since we
do not know the individual specific intercept, and we use group
demeaned residuals. For example, for T = 2, we would want to
employ regressands given by
vi1 −


vi1 + vi2

2

2

vi2 −


vi1 + vi2

2

2
which are identical. Hence, when T = 2, we can only observe het-
eroskedasticity at the between group level.

In the context of the one-way model, heteroskedasticity may
occur at the between level only, at the within level, or at both the
between and within level. It is relevant to distinguish among these
cases, in order to adopt appropriate strategies aimed at guarantee-
ing valid asymptotic inference, or at gaining efficiency by explic-
itly accommodating the heteroskedastic structure of the problem.
For example, the recent literature dealing with the estimation of
heterogeneous panels (Bresson et al., 2007; Baltagi et al., 2005; Li
and Stengos, 1994 or Roy, 2002) suggests that the choice of an ap-
propriate strategy is sensitive to specifying the correct source of
heteroskedasticity (see Bresson et al., 2007).

Our LM test is based on a null hypothesis of homoskedasticity
against a rather general form of heteroskedasticity induced by the
vector zit . Consequently, LM rejects the null if heteroskedasticity is
related to any variation in zit , either at the between level solely, or
at both the between and within levels. Consequently, in its actual
form our test can detect heteroskedasticity related to zit but, if it
rejects, it is silent about the specific variation driving it.

Consider the case illustrated in Fig. 1 where squared errors are
plotted against the realizations of a variable zit . In this case there
are two individuals, with bold points corresponding to observa-
tions in one group. There appears to be a relationship between zit
and the squared errors, butmostly driven by the fact that themean
of zit is higher in the second of the two groups. In such a case, LM
would tend to reject the null of no heteroskedasticity, but is not
able to let the researcher learn that this occurs only at the individ-
ual (between) level.

In order to help identify the source of heteroskedasticity, we
propose a second test, based on amodified score properly centered
by E(v2

it) = σ 2
i where i is the cross-sectional index. Hence, the
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score is proportional to
N
i=1

T
t=1


(vit − v̄i·)

2
−


1 −

1
T


σ 2
i


zit .

It is easy to see that the artificial regression is now given by

ŵ2
it − σ̂ 2

i = c1 + (zit − z̄i·)⊤c2 + ϵit

where σ̂ 2
i is different for each cross-sectional unit, with

σ̂ 2
i =

1
T

T
t=1

ŵ2
it ,

and ŵit is defined as before. The new test is denoted by LMg = NTR2
g

where R2
g is the coefficient of determination from the artificial

regression above which now uses the regressand. The following
theorem establishes its asymptotic validity.

Theorem 2.3. Under H0 : γ = 0 and given Assumptions 1–5, E(Z⊤

i
M0Zi) full rank, E(v4

it |Xi, Zi, αi) = κ < ∞, and E(v2
it |Xi, Zi, αi) = σ 2

i ,
LMg is asymptotically distributed as centralχ2(p), as N → ∞. Under
the sequence of local alternatives HA : γ = N−1/2δ and Assumption 6,
LMg is asymptotically distributed as non-central χ2(p) with non-
centrality parameter given by h′(0)2

σ 2
w2


1 −

2
T

2
δ′DGδ where DG =

limN→∞
1
N

N
i=1 E(Z⊤

i M0Zi),σ 2
w2 is the variance of w2

it = (vit−v̄i·)
2,

and M0 is the matrix that subtracts group means from each variable.

Proof. See the Appendix.

This new test will also have a χ2(p) distribution if there is no
heteroskedasticity. The main difference with the LM test is that
LMg will reject only if heteroskedasticity occurs beyond the be-
tween level. The local power depends on the matrix DG, which
is the group demeaned variance of zit . In practice, we propose
to use both LM and LMg to distinguish among the three relevant
cases: no heteroskedasticity, heteroskedasticity at the between
level only, and heteroskedasticity at one or both of the between
and within level. That is, if both tests reject, this is an indication of
heteroskedasticity at potentially both levels, if LM rejects and LMg
does not, this is compatiblewith heteroskedasticity at the between
level only, and if both fail to reject, this suggests homoskedasticity
related to zit . Notice since D0 −DG is positive semi-definite, the lo-
cal power of LM is larger than that of LMg when both sources of
variability are present. In addition, the local power of the LM test
also has two other positive terms that depend on DB. Intuitively,
when heteroskedasticity occurs beyond the between level, there
is a ‘power cost’ in the use of LMg , which eliminates one source
of heteroskedasticity. We also develop a test that allows for het-
erokurtosis in Section 3.

As with the case of the tests under random effects of Montes-
Rojas and Sosa-Escudero (2011), it is relevant to remark that the
multiple tests can be combined in a Bonferroni approach, to pro-
duce a joint test that is compatible with both separate tests (see
Savin, 1984, for further details). That is, compute both marginal
tests, and reject the joint null if at least one of them lies in its re-
jection region, where the significance level for the marginal tests
is halved, in order to guarantee that the resulting joint test has the
desired asymptotic size. This is the essence of the ‘multiple com-
parison procedure’ in Bera and Jarque (1982).

3. Testing under heterokurtosis

Part of the attractiveness of the tests proposed in the last sec-
tion is that they are simple to calculate using the NTR2 represen-
tation. However, the limiting chi-square distribution depends on

homokurtosis. This assumption is used to simplify the variance of
the score whichwe described in Theorem 2.1, which in turn allows
for the simple calculation of the test as NTR2. An alternative strat-
egy to the computation of the tests using the NTR2 structure is to
use a moment-based test interpretation and to calculate a robust
version of the variance. In this way, we will not require the fourth
moments to be uniform over the possible values of xit that may
cause heteroskedasticity.

The score from Theorem 2.1 is
h′(0)
2σ 4

v

N
i=1

T
t=1


(vit − v̄i·)

2
−


1 −

1
T


σ 2

v


zit .

The null hypothesis is that E(v2
it |Xi, Zi, αi) = σ 2

v , a constant. If
this is true, we see that the expected value of the score is zero and
the variance of the score is given by

h′(0)2

4σ 8
v

N
i=1

E


T

t=1


(vit − v̄i·)

2
−


1 −

1
T


σ 2

v


zit



×


T

t=1


(vit − v̄i·)

2
−


1 −

1
T


σ 2

v


zit

⊤

.

An artificial regression test discussed inWooldridge (2010) and
proposed in Wooldridge (1990) that is robust to heterokurtosis
is calculated by a different type of artificial regression. For our
purposes, we consider the regression

1it = c⊤

1


ŵ2

it −


1 −

1
T


σ̂ 2

v


(zit − z̄··) + ϵit ,

where 1it is 1 for every observation, z̄·· = 1/NT
N

i=1
T

t=1 zit ,
and σ̂ 2

v = 1/NT
N

i=1
T

t=1 ŵ2
it . The final statistic is represented as

LMS = NTR2
s from the above regression,where R2

s is the uncentered
R2 from the artificial regression.2

The analogue of the LMg test as applied to the score, say LMSg ,
can be computed in a similar way, but with σ̂ 2

v replaced with σ̂ 2
i

and zit − z̄·· replaced with zit − z̄i· in the above equations. The
distribution under the null hypothesis for both LMS and LMSg is
chi-square. The proof of this result is similar to that of Theorem2.2,
and we omit this to conserve space. The score tests will be valid
even if we violate homokurtosis, so long as E(v4

it |Zi, Zi, αi) is
bounded by a function with finite moments.

4. Monte Carlo experiment

In order to explore the small sample behavior of the proposed
tests, we have implemented a simple Monte Carlo analysis. The
setup is a linear panel model with only one explanatory variable,
xit :
yit = αi + βxit + vit , i = 1, . . . ,N, t = 1, . . . , T .

The variables αi are generated randomly from the normal distribu-
tion with mean one and variance one, and β is set to 1. In order to
allow for correlation between αi and xit , we set xit = αi+uit where
uit is standard normal.

We start by exploring the size properties of our tests. We have
generated 10000 replications of the model under the null hypoth-
esis of homoskedasticity. The error vit was generated using a stan-
dard normal, student’s ‘t ’-distributions with 2 and 3 degrees of
freedom, and a centered χ2 distribution with two degrees of free-
dom. We note that the t-distributions do not satisfy the require-
ments for finite fourth moments, but these examples are included
to ascertain the effects of such extremes. Sample sizes included are
combinations of N = 30, 50, 100, 200, 300, 400 and T = 5, 7, 10,
20, 30, 50. Table 1 presents empirical rejection frequencies of our

2 We thank a referee for suggesting the connection between the score test and
the artificial regression with the uncentered R2 .
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Table 1
Empirical rejection frequencies for LM NTR2 based tests.

N T LM LMg

Normal t(2) t(3) Chi Normal t(2) t(3) Chi

30 5 0.0623 0.0804 0.0759 0.0802 0.0745 0.0775 0.0757 0.0868
30 7 0.0570 0.0698 0.0640 0.0682 0.0675 0.0676 0.0691 0.0742
30 10 0.0570 0.0654 0.0631 0.0625 0.0628 0.0676 0.0668 0.0643
30 20 0.0546 0.0557 0.0573 0.0594 0.0560 0.0538 0.0560 0.0580
30 30 0.0494 0.0562 0.0522 0.0532 0.0535 0.0572 0.0559 0.0546
30 50 0.0508 0.0495 0.0536 0.0532 0.0531 0.0508 0.0515 0.0529
50 5 0.0642 0.0824 0.0723 0.0776 0.0819 0.0809 0.0806 0.0787
50 7 0.0615 0.0729 0.0712 0.0677 0.0694 0.0725 0.0680 0.0744
50 10 0.0594 0.0626 0.0583 0.0623 0.0636 0.0597 0.0625 0.0614
50 20 0.0529 0.0552 0.0554 0.0503 0.0527 0.0554 0.0518 0.0526
50 30 0.0538 0.0571 0.0530 0.0534 0.0536 0.0551 0.0521 0.0518
50 50 0.0459 0.0491 0.0519 0.0513 0.0516 0.0504 0.0530 0.0513

100 5 0.0617 0.0761 0.0800 0.0753 0.0773 0.0800 0.0812 0.0806
100 7 0.0608 0.0725 0.0655 0.0708 0.0717 0.0685 0.0696 0.0694
100 10 0.0573 0.0592 0.0575 0.0598 0.0608 0.0649 0.0607 0.0603
100 20 0.0521 0.0572 0.0525 0.0574 0.0530 0.0548 0.0541 0.0540
100 30 0.0504 0.0574 0.0561 0.0517 0.0527 0.0567 0.0557 0.0552
100 50 0.0518 0.0521 0.0490 0.0554 0.0517 0.0529 0.0515 0.0516
200 5 0.0638 0.0793 0.0796 0.0763 0.0811 0.0866 0.0793 0.0817
200 7 0.0601 0.0716 0.0667 0.0716 0.0677 0.0680 0.0708 0.0690
200 10 0.0576 0.0652 0.0617 0.0631 0.0630 0.0670 0.0661 0.0664
200 20 0.0541 0.0576 0.0561 0.0561 0.0574 0.0563 0.0542 0.0527
200 30 0.0524 0.0550 0.0521 0.0533 0.0564 0.0586 0.0557 0.0529
200 50 0.0528 0.0537 0.0501 0.0534 0.0509 0.0525 0.0551 0.0500
300 5 0.0646 0.0810 0.0796 0.0804 0.0807 0.0812 0.0869 0.0845
300 7 0.0557 0.0707 0.0724 0.0666 0.0671 0.0705 0.0702 0.0692
300 10 0.0589 0.0673 0.0622 0.0631 0.0626 0.0645 0.0603 0.0630
300 20 0.0534 0.0521 0.0568 0.0601 0.0571 0.0565 0.0579 0.0601
300 30 0.0522 0.0516 0.0522 0.0524 0.0537 0.0518 0.0522 0.0506
300 50 0.0497 0.0545 0.0540 0.0516 0.0522 0.0525 0.0523 0.0508
400 5 0.0674 0.0809 0.0787 0.0745 0.0774 0.0842 0.0786 0.0798
400 7 0.0630 0.0704 0.0693 0.0677 0.0712 0.0709 0.0718 0.0700
400 10 0.0558 0.0677 0.0649 0.0614 0.0552 0.0624 0.0625 0.0611
400 20 0.0566 0.0565 0.0593 0.0552 0.0574 0.0560 0.0532 0.0538
400 30 0.0486 0.0513 0.0553 0.0539 0.0524 0.0540 0.0570 0.0560
400 50 0.0480 0.0516 0.0531 0.0532 0.0501 0.0515 0.0533 0.0498

Fig. 2. Size. QQPlots.

tests, where the variable candidate to account for heteroskedastic-
ity is xit , so throughout this experiment zit = xit . Critical values
correspond to the 0.95 percentile of the chi-squared distribution
with 1 degree of freedom.

We separate the analysis by listing the results for the LM and
LMg tests (based on NTR2 from the artificial regressions) in Ta-
ble 1, and the score based tests using the artificial regression from
Wooldridge (1990) denoted LMS and LMSg in Table 2. In all cases,
empirical sizes are very similar to the theoretical ones, even for

small values like N = 30. Even though we require finite fourth
moments, the performance of the test is robust to non-Gaussian
heavy tailed distributions like the t with 2 or 3 degrees of freedom,
and asymmetric distributions like the centered χ2. In order to ex-
plore the relevance of the asymptotic chi-square approximation,
Fig. 2 presents qqplots for some selected sample sizes and distri-
butions for the LM test. The first three figures illustrate rejection
frequencies based on normal errors, and the last one on the stu-
dent’s ‘t ’ case with 3 degrees of freedom, in all cases with T = 5, in
order to highlight the performance for the ‘small T’ case, common
in practice. All figures suggest that the asymptotic approximations
perform remarkably well across most of the relevant support of
the chi-squared distribution with one degree of freedom, even for
a small number of cross-sectional observations (N = 30).

To explore power, we use two different data generating pro-
cesses, each with 10000 replications. First, we have alternatives
H1 with vit = θit(1 + δuit) and θit ∼ N(0, 1), and independently
distributed from xit , uit and αi, so this case corresponds to het-
eroskedasticity at the observation level. Since xit = αi +uit , we see
that only the within variation of xit influences the conditional vari-
ance. Alternatively, we could have specified the conditional vari-
ance as a function of xit for H1 and then made xit not depend on
the parameter αi. However, since the focus of the tests is the va-
lidity under fixed effects estimation, we choose to specify H1 as a
function of uit and use fixed effects estimation. The parameter δ
controls the strength of heteroskedasticity. Results are presented
graphically in Fig. 3, that shows the empirical power functions for
LM , LMg , LMS, and LMSg . The graphs all increase monotonically
with δ, and show that LMg and LMSg tests are more powerful rela-
tive to their respective counterparts LM and LMS for this particular



Author's personal copy

T. Juhl, W. Sosa-Escudero / Journal of Econometrics 178 (2014) 484–494 489

Table 2
Empirical rejection frequencies for LM score tests.

N T LMS LMSg
Normal t(2) t(3) Chi Normal t(2) t(3) Chi

30 5 0.0619 0.0393 0.0478 0.0679 0.0789 0.0353 0.0520 0.0750
30 7 0.0584 0.0358 0.0442 0.0612 0.0691 0.0253 0.0443 0.0648
30 10 0.0577 0.0285 0.0375 0.0593 0.0588 0.0220 0.0415 0.0605
30 20 0.0520 0.0256 0.0401 0.0542 0.0586 0.0188 0.0356 0.0576
30 30 0.0553 0.0222 0.0338 0.0529 0.0546 0.0209 0.0346 0.0518
30 50 0.0509 0.0200 0.0366 0.0489 0.0554 0.0178 0.0330 0.0450
50 5 0.0628 0.0468 0.0530 0.0692 0.0780 0.0356 0.0511 0.0752
50 7 0.0574 0.0357 0.0477 0.0650 0.0672 0.0260 0.0430 0.0684
50 10 0.0552 0.0317 0.0373 0.0662 0.0615 0.0231 0.0374 0.0586
50 20 0.0531 0.0260 0.0381 0.0542 0.0517 0.0194 0.0350 0.0521
50 30 0.0502 0.0247 0.0389 0.0503 0.0521 0.0215 0.0370 0.0530
50 50 0.0511 0.0214 0.0343 0.0500 0.0527 0.0183 0.0309 0.0520

100 5 0.0620 0.0463 0.0543 0.0709 0.0785 0.0322 0.0534 0.0739
100 7 0.0578 0.0335 0.0454 0.0658 0.0684 0.0273 0.0433 0.0643
100 10 0.0589 0.0316 0.0425 0.0541 0.0643 0.0224 0.0385 0.0554
100 20 0.0588 0.0254 0.037 0.0544 0.0554 0.0199 0.0339 0.0586
100 30 0.0557 0.0241 0.0374 0.0547 0.0518 0.0216 0.0343 0.0539
100 50 0.0516 0.0236 0.0334 0.0533 0.0515 0.0199 0.0338 0.0479
200 5 0.0661 0.0495 0.0601 0.0756 0.0780 0.0320 0.0553 0.0799
200 7 0.0598 0.0420 0.0494 0.0624 0.0693 0.0228 0.0474 0.0674
200 10 0.0580 0.0319 0.0480 0.0595 0.0658 0.0205 0.0401 0.0582
200 20 0.0487 0.0267 0.0393 0.0525 0.0563 0.0226 0.0353 0.0538
200 30 0.0523 0.0222 0.0378 0.0526 0.0542 0.0179 0.0333 0.0527
200 50 0.0560 0.0227 0.0391 0.0503 0.0534 0.0202 0.0379 0.0539
300 5 0.0640 0.0470 0.0623 0.0770 0.0755 0.0315 0.0482 0.0746
300 7 0.0621 0.0381 0.0532 0.0611 0.0675 0.0215 0.0514 0.0654
300 10 0.0563 0.0299 0.0450 0.0577 0.0628 0.0221 0.0406 0.0618
300 20 0.0517 0.0235 0.0388 0.0523 0.0549 0.0192 0.0368 0.0566
300 30 0.0525 0.0239 0.0392 0.0545 0.0511 0.0229 0.0362 0.0569
300 50 0.0517 0.0239 0.0386 0.0547 0.0526 0.0169 0.0377 0.0524
400 5 0.0664 0.0449 0.0620 0.0751 0.0776 0.0308 0.0554 0.0773
400 7 0.0582 0.0404 0.0549 0.0681 0.0660 0.0268 0.0506 0.0679
400 10 0.0548 0.0365 0.0477 0.0620 0.0626 0.0222 0.0431 0.0628
400 20 0.0544 0.0243 0.0400 0.0501 0.0563 0.0205 0.0379 0.0492
400 30 0.0534 0.0248 0.0394 0.0531 0.0515 0.0233 0.0375 0.0527
400 50 0.0521 0.0230 0.0378 0.0540 0.0521 0.0213 0.0371 0.0570

Fig. 3. H1 : vit = θit (1 + δuit ).

experiment. Intuitively, LMg and LMSg focus on the only present
source of heteroskedasticity (the heteroskedasticity arising from
variation within xit ) which explains the power gain.

Next, we consider H2 where vit = θit(1 + δxit) with θit ∼

N(0, 1). This particular experiment illustrates the local power re-
sults from Section 2. That is, for the type of alternative that is a
function of the xit variable itself (as opposed to uit in H1), the the-
orems suggested that LM and LMS should have higher local power
relative to LMg and LMSg respectively. The power results from our
experiment confirm this result in Fig. 4.

Fig. 4. H2 : vit = θit (1 + δxit ).

In addition, we have considered H3, with vit = θit(1 + δαi) and
θit ∼ N(0, 1), so the only variation in conditional variance comes
from the different cross-sectional units from the variablesαi. Given
this alternative, each group has a different variance, yet there is no
within group heteroskedasticity. As expected and designed, we see
that only the LM and LMS tests reject for this type of alternative,
while the LMg and LMSg tests have correct power, equal to size.
This is illustrated in Fig. 5.

As predicted by our analytical local power results, the LMg and
LMSg tests are more powerful than the non-adjusted versions of
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Fig. 5. H3 : vit = θit (1 + δαit ).

the test for the alternatives of the form H1, since all of the het-
eroskedastic variation is within groups. Moreover, the LM and LMS
versions of the test are more powerful when the heteroskedastic
variation is both within and between groups.

Finally, we explore the consequences of heterokurtosis on the
proposed tests. To this end, consider the data generating process
for xit and vit where vit is drawn from a t-distribution with ν de-
grees of freedom divided by [ν/(ν − 2)]1/2 so that the variance is
one. The excess kurtosis is 6/(ν − 4) when ν > 4 (and infinite for
ν < 4), and is related to the regressor xit by νit = xit + 8. Due to
the link between xit and νit , the process exhibits conditional het-
erokurtosis. We generate xit = αi + uit , where αi is again drawn
from a normal distribution with mean one and variance one.

The results from the heterokurtosis experiment appear in
Table 3. The score based tests LMS and LMSg are slightly more
robust to heterokurtosis than their counterparts LM and LMg ,
although the differences are very small. In general, all of the tests
continue to have reasonable size properties under heterokurtosis.

We also revisited the power analysis for our tests when the
innovations are governed by heterokurtosis. The power curves are
similar to the case of homokurtosis, and we present the results for
H1 under heterokurtosis in Fig. 6. The other cases are similar and
are omitted to conserve space. The findings suggest that, although
the score based tests LMS and LMSg are robust to heterokurtosis,
its presence does not seem to affect LM and LMg significantly.
Montes-Rojas and Sosa-Escudero (2011) obtain similar results for
their robust tests under heterokurtosis, in the random effects case.

The results of the experiment suggest that using these tests pro-
vides a strategy for narrowing down the source of heteroskedastic-
ity. If the LM or LMS tests reject but the LMg or LMSg tests do not,
we can conclude that the source of heteroskedasticity is at the be-
tween level, and not within groups. If both types of tests reject,
heteroskedasticity at the within level is relevant.

In general, the robustness of LMg and LMSg to individual level
heteroskedasticity (where σ 2

i ’s are different) has a cost of less
power in certain alternatives. However, the combination of tests
is very informative toward the structure of heteroskedasticity in
fixed effects models.

5. Final remarks

This paper proposes simple tests for heteroskedasticity in linear
panels using residuals from fixed effects estimation. The incidental
parameters problem is circumvented by using a pseudo likelihood
function, conditional on a sufficient statistic for these parameters.
Two types of tests are derived in order to help distinguish whether

Table 3
Size under heterokurtosis.

N T LM LMg LMS LMSg

30 5 0.0677 0.0768 0.0562 0.0722
30 7 0.0610 0.0636 0.0513 0.057
30 10 0.0598 0.0623 0.0541 0.0562
30 20 0.0609 0.0582 0.0524 0.0532
30 30 0.0547 0.0546 0.0506 0.0485
30 50 0.0602 0.0570 0.0560 0.0532
50 5 0.0723 0.0796 0.0610 0.0728
50 7 0.0612 0.0655 0.0553 0.0601
50 10 0.0604 0.0667 0.0556 0.0574
50 20 0.0615 0.0591 0.0525 0.0559
50 30 0.0570 0.0566 0.0500 0.0519
50 50 0.0562 0.0572 0.0485 0.0520

100 5 0.0720 0.0828 0.0668 0.0788
100 7 0.0644 0.0704 0.0579 0.0656
100 10 0.0633 0.0647 0.0525 0.0592
100 20 0.0655 0.0600 0.0560 0.0560
100 30 0.0632 0.0624 0.0579 0.0583
100 50 0.0635 0.0536 0.0558 0.0496
200 5 0.0750 0.0869 0.0668 0.0812
200 7 0.0704 0.0725 0.0634 0.0682
200 10 0.0664 0.0655 0.0618 0.0629
200 20 0.0629 0.0597 0.0554 0.0541
200 30 0.0577 0.0580 0.0502 0.0542
200 50 0.0603 0.0547 0.0523 0.0500
300 5 0.0702 0.0791 0.0642 0.0760
300 7 0.0688 0.0732 0.0630 0.0686
300 10 0.0634 0.0658 0.0565 0.0610
300 20 0.0635 0.0604 0.0559 0.0554
300 30 0.0586 0.0550 0.0483 0.0503
300 50 0.0660 0.0601 0.0530 0.0535
400 5 0.0774 0.0859 0.0687 0.0819
400 7 0.0698 0.0726 0.0605 0.0687
400 10 0.0687 0.0662 0.0583 0.0637
400 20 0.0628 0.0616 0.0543 0.0562
400 30 0.0663 0.0576 0.0567 0.0521
400 50 0.0655 0.0574 0.0551 0.0530

Fig. 6. Heterokurtosis H1 : vit = θit (1 + δuit ).

heteroskedasticity is present at the between level or some combi-
nation of the between andwithin levels. Both tests are distribution
free and can be readily implemented after fixed effects estimation.
A Monte Carlo experiment suggests that our proposed tests have a
very good performance in small samples similar to the ones used
in practice. There are several extensions that can be explored. Two-
waymodels and unbalanced panels can easily be accommodated in
our framework, since our tests can be implemented through simple
artificial regressions. Extending our framework to handle dynamic
panels or endogenous variables in general is a relevant challenge
for further work.
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Appendix. Proofs

Proof of Theorem 2.1.
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In order to find a score vector that can be used to construct a test for
heteroskedasticity, we take derivatives with respect to γ for each
of the terms Ai, Bi, Ci, and Di:
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∂vec(γ )⊤
= −

1
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From Magnus and Nuedecker (1999), we have
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so that
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Moreover, it is straightforward to see that
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where ej is a T × 1 vector with a one in the jth entry and zeros
elsewhere. Evaluating these derivatives at γ = 0 (under the null
hypothesis where h(0) = σ 2
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We can state the derivative under the null of γ = 0 as
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Term (A.1) simplifies to
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which is a p × 1.
Proof of Theorem 2.2. Using the Frisch–Waugh–Lovell Theorem,
NTR2 can be expressed as follows:

NTR2
= NT
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where Ŵ 2 is an NT × 1 vector with typical element ŵ2
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of the kth explanatory variable sorted first by individuals and then
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and ιNT is an NT × 1 vector of ones. Moreover, let M0 be defined
in a similar manner using ιT , a T × 1 vector of ones. First, we deal
with the estimated vit using the relation
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( vit − v̄i·)
2(zit − z̄··)

=
1

√
N

N
i=1

T
t=1

(vit − v̄i·)
2(zit − z̄··)

+
1

√
N

N
i=1

T
t=1

(β − β̂FE)
⊤(xit − x̄i·)

× (xit − x̄i·)⊤(β − β̂FE)(zit − z̄··)

+
2

√
N

N
i=1

T
t=1

(vit − v̄i·)(xit − x̄i·)⊤(β − β̂FE)(zit − z̄··).

The second term is Op(N−1/2) since (β − β̂FE) = Op(N−1/2) and the
third is also Op(N−1/2) since we can apply a central limit theorem
so that
1

√
N
Ŵ 2⊤MZ =

1
√
N
W 2⊤MZ + op(1)

and hence

NTR2
= NT

W 2⊤MZ(Z⊤MZ)−1Z⊤MW 2

W 2⊤MW 2
+ op(1).

It will be convenient to rewrite it as

NTR2
= T


Z⊤

0 W 2
0

√
N

⊤ W 2⊤
0 W 2

0

N


Z⊤

0 Z0
N

−1 Z⊤

0 W 2
0

√
N


+ op(1)

where Z0 ≡ MZ and W 2
0 = MW 2. First we will establish the

asymptotic normality of

Z⊤

0 W 2
0

√
N

=
√
N
Z⊤

0 W 2
0

N
.
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By the Cramer–Wold Theorem, it is equivalent to establishing the
asymptotic normality of

√
Nc⊤

Z⊤

0 W 2
0

N
=

√
N

N
i=1

c⊤Z⊤

0i w
2
0i

N
=

√
N

N
i=1

mi

N
for any K vector c , where Z0i is a T × p matrix with rows equal to
the T observations of the variables for individual i, w2

0i is a T × 1
vector with element w2

0it , and mi ≡ c ′Z⊤

0i w
2
0i. We can write

1
√
N

N
i=1

mi =
1

√
N

N
i=1

c⊤Z⊤

0i


w2

i −


1 −

1
T


σ 2

v ιT


+


1 −

1
T


σ 2

v ιT − w̄2ιT


=

1
√
N

N
i=1

c⊤Z⊤

0i


w2

i −


1 −

1
T


σ 2

v ιT


since

N
i=1 ιT z0i = 0. It is easy to check that E[c⊤z⊤

0i (w
2
i −σ 2

v )] = 0
by the assumptions, and that Var(mi) = σ 2

w2c⊤D0ic < ∞ with
D0i ≡ E(Z⊤

0i Z0i) < ∞. Then, by the Lindeberg–Feller Central Limit
Theorem

√
N

N
i=1

mi

N
= c⊤

Z ′

0V
√
N

d
→ N(0, σ 2

w2c⊤D0c)

(D0 = limN→∞
1
N

N
i=1 D0i), which by the Cramer–Wold Theorem

is equivalent to

Z ′

0V
√
N

d
→ N(0, σ 2

w2D0).

Now note that (1/N) W 2⊤MW 2
= (1/N)

N
i=1 w2⊤

0i w2
0i

p
→ Tσ 2

w2

by Khinchine’s Law of Large Numbers under H0 and under the
homokurtosis assumption. Additionally,

Z⊤MZ
N

=
Z⊤

0 Z0
N

= (1/N)

N
i=1

Z⊤

0i Z0i
p

→ D0

by Chebychev’s LLN element-by-element in the matrix (1/N) Z⊤

MZ . Then
W 2⊤MW 2

N


Z⊤

0 Z0
N

−1
p

→

σ 2

w2TD0
−1

;

then, collecting all previous results,

NTR2 d
→ χ2

p (0)

where χ2
p (0) denotes a central chi-squared law with p degrees of

freedom.
We derive the asymptotic distribution of the test statistic un-

der the sequence of local alternatives HA : γ = δ/
√
N where δ is a

finite p-vector. Now, we have

E(Z⊤MW 2) =

N
i=1

T
t=1

E

z0it(vit − v̄i·)

2
=

N
i=1

T
t=1

E


z0it


v2
it −

2
T

T
s=1

vitvis +
1
T 2

T
s=1

T
s′=1

visvis′



=

N
i=1

T
t=1

E


z0it


h(z⊤

it γ ) −
2
T
h(z⊤

it γ ) +
1
T 2

T
s=1

h(z⊤

is γ )


.

Expanding around zero gives

h(z⊤

it γ ) = h(0) + h′(0)z⊤

it γ +
1
2
h′′(c∗)(z⊤

it γ )2

where c∗
∈ [0, γ ⊤zit ]. Using γ = δ/

√
N , we have

E

Z⊤MW 2

√
N


=

1
√
N

N
i=1

T
t=1

E


z0it


1 −

2
T


h′(0)
√
N

z⊤

it δ

+
1
T 2

h′(0)
√
N

T
s=1

z⊤

is δ


+ o(1)

=
1

√
N

N
i=1

T
t=1

E

z0it


1 −

2
T


h′(0)
√
N

z⊤

it δ

+
h′(0)
√
NT

z̄⊤

i· δ


+ o(1)

= G + H + o(1).

First, because
N

i=1
T

t=1 z0it = 0, we have,

G =
h′(0)
N


1 −

2
T

 N
i=1

T
t=1

E

z0it(zit − z̄··)⊤


δ

=
h′(0)
N


1 −

2
T

 N
i=1

T
t=1

E

z0itz⊤

0it


δ

=
h′(0)
N


1 −

2
T

 N
i=1

E(Z⊤

0i Z0i)δ.

Next, we have

1
NT

N
i=1

T
t=1

z0it z̄⊤

i· =
1
NT

N
i=1

T
t=1

(zit − z̄··)z̄⊤

i·

=
1
N

N
i=1

z̄i·z̄⊤

i· −
1
T

T
t=1

z̄··z̄⊤

··

=
1
N

N
i=1

(z̄i· − z̄··)(z̄i· − z̄··)⊤

so that

H =
h′(0)
N

N
i=1

E

(z̄i· − z̄··)(z̄i· − z̄··)⊤


δ.

Combining these results, we see that the limiting non-centrality
parameter is given by

[h′(0)]2

σ 2
w2


1 −

2
T

2

δ⊤D0δ + 2
[h′(0)]2

σ 2
w2


1 −

2
T


δ⊤DBδ

+
[h′(0)]2

σ 2
w2

δ⊤DBD−1
0 DBδ

where

DB = lim
N→∞

1
N

N
i=1

E(z̄i· − z̄··)(z̄i· − z̄··)⊤.

Proof of Theorem 2.3. The proof is similar but with M replaced
with MG = IN ⊗ M0 where M0 is defined as in Assumption 2.
However, for the non-centrality parameter, we have

E


1
√
N
Z⊤MGW 2


=

1
√
N

N
i=1

T
t=1

E

zGit


1 −

2
T


h′(0)
√
N

z⊤

it δ

+
1
T 2

h′(0)
√
N

T
s=1

z⊤

is δ


+ o(1)
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where zGit = zit − z̄i·. Using the fact that
T

t=1 zGit = 0, we have

E


1
√
N
Z⊤MGW 2


=

1
√
N

N
i=1

T
t=1

E

zGit


1 −

2
T


h′(0)
√
N

z⊤

it δ


+ o(1)

=


1 −

2
T


h′(0)δ⊤

1
N

N
i=1

T
t=1

E(zGitz⊤

Git) + o(1)

=


1 −

2
T


h′(0)δ⊤

1
N

N
i=1

E(Z⊤

i M0Zi)

so that the non-centrality parameter becomes

[h′(0)]2

σ 2
w2


1 −

2
T

2

δ⊤DGδ.
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