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Abstract. Let Ω be an open subset of Rn. Let L2 = L2(Ω, dx) and
H1

0 = H1
0 (Ω) be the standard Lebesgue and Sobolev spaces of complex-

valued functions. The aim of this paper is to study the group G of
invertible operators on H1

0 which preserve the L2-inner product. When
Ω is bounded and ∂Ω is smooth, this group acts as the intertwiner of
the H1

0 solutions of the non-homogeneous Helmholtz equation u−∆u =
f , u|∂Ω = 0. We show that G is a real Banach-Lie group, whose Lie
algebra is (i times) the space of symmetrizable operators. We discuss
the spectrum of operators belonging to G by means of examples. In
particular, we give an example of an operator in G whose spectrum is not
contained in the unit circle. We also study the one parameter subgroups
of G. Curves of minimal length in G are considered. We introduce the
subgroups Gp := G∩ (I −Bp(H1

0 )), where Bp(H1
0 ) is a Schatten ideal of

operators on H1
0 . An invariant (weak) Finsler metric is defined by the

p-norm of the Schatten ideal of operators of L2. We prove that any pair
of operators G1, G2 ∈ Gp can be joined by a minimal curve of the form
δ(t) = G1e

itX , where X is a symmetrizable operator in Bp(H1
0 ).

1. Introduction

Let Ω ⊂ Rn be an open subset. Denote by L2 = L2(Ω, dx) the Lebesgue

space of square-integrable functions endowed with its usual inner product

〈 · , · 〉. Let H1
0 = H1

0 (Ω) be the closure in the Sobolev norm of the C∞

functions with compact support contained in Ω. In this paper, we study the

group G of invertible operators on H1
0 that preserve the L2-inner product:

G = {G ∈ Gl(H1
0 ) : 〈Gf,Gg〉 = 〈f, g〉 }.

In the case where Ω = Rn, the group G was introduced in [5] in relation

with the geometry of the variational spaces arising in the many-particle

Hartree-Fock theory. One could give an abstract definition of G, involving

a complex Hilbert space H and a dense and continuously included subspace

E ⊂ H with their respective (non equivalent) inner products. However, we

preferred this concrete setting given by the inclusion H1
0 ⊂ L2 because we

shall deal mainly with examples.
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From the definition of the group G, it is clear that the theory of operators

on spaces with two norms will play a central role in the study of this group.

This theory was independently initiated by M. G. Krein [10] and P. D. Lax

[14]. In Section 2 we recall the most useful results for our purposes.

Our first results on the structure of G are given in Section 3. We prove

that G is a real Banach-Lie group equipped with norm of the algebra of

bounded operators B(H1
0 ), and its Lie algebra Γ can be identified with the

real Banach space of operators X ∈ B(H1
0 ) such that 〈Xf, g〉 = −〈f,Xg〉

for any f, g ∈ H1
0 . Thus iΓ is a well studied class of operators that naturally

arises when one deals with spaces with two norms, which is usually known

as the class of symmetrizable operators. An alternative description of G is

given by

G = {G ∈ Gl(H1
0 ) : G∗AG = A},

where A is the positive operator on H1
0 satisfying [Af, g] = 〈f, g〉 and [ · , · ]

denotes the inner product on H1
0 . In fact, when Ω is a bounded domain in

Rn and ∂Ω is smooth, the operator A is the solution operator of the Sturm-

Liouville equation. On the other hand, note that any operator belonging to

G may be extended to an unitary operator on L2. This extension procedure

induces a norm continuous representation of the group onto L2, which does

not have a continuous inverse.

In Section 4 we examine by examples different elementary aspects of G.

For instance, we show that the norm of an operator in G can be arbitrarily

large. In the general setting of operators on spaces with two norms, it is

known that there exist symmetrizable operators with non real spectrum.

Nevertheless, the few examples of this fact do not apply to our concrete

situation (see [4, 6, 10]). We present an example of a symmetrizable operator

belonging to iΓ with non real spectrum (Example 4.4). In particular, this

implies that the spectrum of operators in G may not be contained in the unit

circle. Another interesting problem is to determine if G is an exponential

group. It turns out that this property depends on the topology of the set Ω

(see Proposition 4.8; Example 4.9).

In Section 5 we investigate the one parameter subgroups of G. We con-

struct a norm continuous unitary representation G → U(H1
0 ), G 7→ UG

satisfying UGA
1/2 = A1/2G. Then we study the infinitesimal generators as-

sociated with this representation.

The results concerning the metric geometry of G are presented in Section

6. A natural invariant Finsler metric in G is provided by the usual operator

norm of B(L2). If one measures length of curves with this metric, G behaves



THE GROUP OF L2-ISOMETRIES ON H1
0 3

like a unitary group near the identity. Indeed, any operator G in G such

that ‖G− I‖ ≤ 1 can be joined by a minimal curve of the form δ(t) = eitX ,

where X is a symmetrizable operator and ‖ · ‖ stands for the operator norm

in B(H1
0 ). Next we consider the following subgroups:

Gp = G ∩ (I − Bp(H1
0 )),

where Bp(H1
0 ) is a Schatten ideal of operators on H1

0 (1 ≤ p ≤ ∞). Essen-

tially due to the fact that the logarithm of operators in Gp is well defined,

we are able to extend the afore-mentioned minimality result to a global re-

sult in Gp, where the Finsler metric is now the p-norm of the Schatten ideal

Bp(L2) (see Theorem 6.3).

Remark. We end this introduction by fixing some notation. The Sobolev

space H1
0 is a Hilbert space with the inner product given by

[f, g] =

∫
Ω

fḡ dx +

∫
Ω

∇f · ∇ḡ dx.

To avoid confusion among the several norms considered, we denote by | ·
|1 (= [ · , · ]1/2) the norm on H1

0 , | · |2 (= 〈 · , · 〉1/2) the norm on L2, ‖ · ‖ the

operator norm in B(H1
0 ), and by ‖ · ‖B(L2) the operator norm in B(L2). If

a given operator X acts both on L2 and H1
0 , we shall denote by σL2(X) its

spectrum as an operator on L2, and by σH1
0
(X) its spectrum as an operator

on H1
0 .

2. Background on operators on spaces with two norms

Let H be a Hilbert space with an inner product 〈 · , · 〉 and the associated

norm ‖ · ‖. Let (E, | · |E) be a Banach space. Assume that E is a dense

linear subspace of H and suppose that the norms satisfy ‖ · ‖ ≤ C| · |E for

some positive constant C. Throughout this article, we are interesting in the

special case where E = H1
0 and H = L2.

Let B(E) (resp. B(H)) denote the algebra of bounded operators on E

(resp. H). An operator X in B(E) is said to be symmetrizable if

〈Xf, g〉 = 〈f,Xg〉 , f, g ∈ E.

Given an operator X ∈ B(E), we denote by σE(X) the spectrum of X over

E. We use the obvious notation σH(X) for the spectrum of X over H. In the

following theorem we collect the basics results on symmetrizable operators.

Theorem 2.1 (M. G. Krein [10], P. D. Lax [14]). Let X be a symmetrizable

operator. The following assertions hold:

i) X is bounded as an operator on H.
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ii) σH(X) ⊆ σE(X).

iii) If λ belongs to the point spectrum of X as an operator on E, then λ

belongs to the point spectrum of X as an operator on H. Moreover,

the eigenspace ker(X − λ) over E and H is the same.

iv) If X is a compact operator on E, then X is a compact operator on

H.

Remark 2.2. It is not difficult to see that the two possible norms of a

symmetrizable operator X satisfy ‖X‖B(H) ≤ ‖X‖B(E) .

A more general approach to study operators on spaces with two norms can

be found in [8]. Since any f ∈ H determines a continuous functional 〈 · , f〉
of the space E∗, it follows that E ⊆ H ⊆ E∗. A bounded operator X on E

is called proper if X ′(E) ⊆ E, where X ′ is the (Banach) adjoint of X. If X

is proper, X+ denotes the restriction of X ′ to E. It can be shown that X+

is the restriction to E of the adjoint on H.

Theorem 2.3 (I. C. Gohberg, M. K. Zambickǐı [8]). Let X be a proper

operator. The following assertions hold:

i) X is bounded as an operator on H.

ii) σH(X) ⊆ σE(X) ∪ σE(X+), where the bar indicates complex conju-

gation.

iii) If X is a compact operator on E, then X is a compact operator on

H. Moreover, σH(X) = σE(X) and the eigenspaces of X in E and

H corresponding to the non zero eigenvalues coincide.

If E is also a Hilbert space with an inner product denoted by [ · , · ], it follows

that there is a positive operator A on E such that [Af, g] = 〈f, g〉. Thus X

is symmetrizable if and only if AX = X∗A, where the adjoint is taken with

respect to E. The following result will be useful.

Theorem 2.4 (J. Dieudonné [6]). Let A be a positive operator on a Hilbert

space E. Let X be a bounded operator on E such AX = X∗A. Then there

is a unique self-adjoint operator Y on E such that A1/2X = Y A1/2.

3. Basic facts on G

From the definition of the group, it follows that any operator in G extends

to an isometry of L2, which has a dense subset in its range, namely H1
0 .

Then, operators belonging to G extend to unitary operators onto L2. Thus

one can describe G alternatively as

G = {G = U |H1
0

: U ∈ U(L2) such that U(H1
0 ) = H1

0 }.



THE GROUP OF L2-ISOMETRIES ON H1
0 5

Moreover, there is a third algebraic characterization of G. Note that the

sesqui-linear form 〈 · , · 〉 is bounded and positive definite in H1
0 , thus there

exists a positive operator A ∈ B(H1
0 ) such that

〈f, g〉 = [Af, g] = [f, Ag].

Therefore, a straightforward computation shows that

(3.1) G = {G ∈ Gl(H1
0 ) : G∗AG = A}.

From this characterization it becomes apparent that G is a closed subgroup

of Gl(H1
0 ). We shall see in Section 3.1 that it is a Banach-Lie group, and a

submanifold of B(H1
0 ). Its Lie algebra is

Γ = {X ∈ B(H1
0 ) : X∗A+ AX = 0 }.

Note that X ∈ Γ if

〈Xf, g〉 = [AXf, g] = −[X∗Af, g] = −[Af,Xg] = −〈f,Xg〉 ,

i.e. if X is antihermitic for the L2-inner product. Therefore one has the

following spatial characterization of Γ:

Γ = {X = Z|H1
0

: Z ∈ B(L2), Z∗ = −Z, Z(H1
0 ) ⊂ H1

0 }.

In fact, if X = Z|H1
0

as above, then the operator X : H1
0 → H1

0 veri-

fies 〈Xf, g〉 = −〈f,Xg〉 for f, g ∈ H1
0 , and therefore is bounded in H1

0

by the uniform boundedness principle. Conversely, if X ∈ B(H1
0 ) satisfies

〈Xf, g〉 = −〈f,Xg〉, then iX lies in B(H1
0 ) and it is symmetric for the

L2-inner product. It follows by Theorem 2.1 that iX extends to a bounded

self-adjoint operator on L2.

In order to understand G, it will be useful to provide some examples

of elements in G. As is standard notation, if f, g ∈ H1
0 , denote by f ⊗ g

the rank one operator in B(H1
0 ) given by f ⊗ g(h) = [h, g]f . Apparently,

(f ⊗ g)∗ = g ⊗ f , ‖f ⊗ g‖ = |f |1|g|1, and if B,C ∈ B(H1
0 ), B(f ⊗ g)C =

Bf ⊗ C∗g.

Example 3.1.

(1) A straightforward verification shows that a unitary operator U on

H1
0 which commutes with A, belongs to G. Conversely, if a unitary

operator on H1
0 belongs to G, then it commutes with A.

(2) Let f ∈ H1
0 such that |f |2 = 1. Then f⊗Af is a rank one idempotent:

(f ⊗Af)2 = (f ⊗Af(f))⊗Af = ([f, Af ]f)⊗Af = 〈f, f〉 f ⊗Af = f ⊗Af.
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Note that f ⊗ Af extends to an orthogonal projection on L2, if ⊗
Af ∈ Γ and

eif⊗Af = eif ⊗ Af + (1− f ⊗ Af) ∈ G.

By the above remarks, f ⊗Af is an orthogonal projection on H1
0 if

and only if f is an eigenvector of A.

(3) Let S be a finite dimensional subspace of H1
0 , and let f1, ..., fk a

basis of S which is orthonormal for the L2-inner product 〈 · , · 〉.
Then there exists a closed subspace T of H1

0 such that S +T = H1
0 ,

and S, T are orthogonal for 〈 · , · 〉. Indeed, let

E =
k∑
j=1

fj ⊗ Afj ∈ B(H1
0 ).

Note that E(f) =
∑k

j=i 〈f, fj〉 fj, i.e. E is the L2 orthogonal pro-

jection onto S. Then T = ker(E). Let U0 be an operator in B(S),

which is isometric for the L2-norm | · |2, and put

G : H1
0 → H1

0 , G|S = U0 and G|T = 1T .

Then it is easy to check that G ∈ G.

The former two examples consist of operators which are of the

form 1 + compact (in fact finite rank). Let us show two examples

which are not of this form: multiplication and composition operators.

(4) Let H1,∞(Ω) be the space of complex-valued functions in L∞(Ω)

such that their first partial derivatives in the distributional sense

also belong to L∞(Ω). Pick θ ∈ H1,∞(Ω) satisfying |θ(x)| = 1, and

consider Mθ defined by

Mθf(x) = θ(x)f(x), x ∈ Ω.

Then, Mθ is a linear operator which acts both in L2 and H1
0 . It is

a unitary operator in L2, and preserves H1
0 : clearly Mθ(H

1
0 ) ⊂ H1

0 ,

and (Mθ)
−1(H1

0 ) = Mθ̄(H
1
0 ) ⊂ H1

0 , i.e. Mθ(H
1
0 ) = H1

0 . It follows that

Mθ ∈ G.

(5) Let ψ : Ω→ Ω be a volume-preserving C1 diffeomorphism such that

the partial derivatives ψixj and (ψ−1)ixj , i, j = 1, . . . , n, are bounded

on Ω. It is not difficult to show that the operator Uψ : H1
0 → H1

0 ,

Uψ(f) = f ◦ ψ is an isomorphism (see e.g. [18, Proposition 2.47]).

Moreover, it also satisfies that∫
Ω

|Uψ(f)|2 dx =

∫
Ω

|f ◦ ψ|2 dx =

∫
Ω

|f |2 |det(Dψ−1)| dx =

∫
Ω

|f |2 dx,



THE GROUP OF L2-ISOMETRIES ON H1
0 7

where we have used that |det(Dψ−1)| ≡ 1. This shows that Uψ ∈ G.

3.1. Smooth structure. Now we prove the preceding statement about the

Lie algebra of G.

Lemma 3.2. The Lie algebra of G is Γ.

Proof. In order to prove this assertion it suffices to show that

Γ = {Y ∈ B(H1
0 ) : etY ∈ G for all t ∈ R}.

If X ∈ Γ, (X∗)kA = (−1)kAXk. Then (etX)∗A = etX
∗
A = Ae−tX =

A(etX)−1, i.e. etX ∈ G. Conversely, if etY ∈ G for all t, we may differentiate

the identity etY
∗
A = Ae−tY at t = 0, to obtain Y ∗A = −AY . �

Lemma 3.3. Let G ∈ G. The following assertions hold:

i) Let L be a half-line in the complex plane, from 0 to infinity. If

σH1
0
(G) ∩ L = ∅, then there exists X ∈ Γ such that eX = G.

ii) If ‖G− 1‖ ≤ 1, then there exists X ∈ Γ such that eX = G.

Proof. i) We first note that one can consider eiθG in place of G, where θ

is a suitable angle, to reduce the proof to the case where L is the negative

real axis. Thus we will assume that L is the negative real axis.

Since 0 /∈ σH1
0
(G) and 0 /∈ σH1

0
(G−1), then it is possible to find a sim-

ple closed curve γ, which does not intersect L and contains σH1
0
(G) and

σH1
0
(G−1) in its interior. In addition, we can choose γ satisfying γ = γ.

From the assumption σH1
0
(G)∩L = ∅, it follows that there is a well defined

branch of the logarithm, and X = log(G) can be defined using the Riesz

functional calculus. If γ is counterclockwise oriented, then

X∗A = − 1

2πi

∫
γ

log(z) (G∗ − z)−1Adz = − 1

2πi

∫
γ

log(z)A(G−1 − z)−1 dz

=
1

2πi

∫
γ

log(z)A(G−1 − z)−1 dz = A log(G−1) = −AX.

Hence X ∈ Γ, and the proof is complete.

ii) Under the assumption ‖G − 1‖ ≤ 1, we have that σH1
0
(G) does not

intersect the negative real axis (note that 0 /∈ σH1
0
(G)). Then the result can

be deduced from i). �

This lemma allows us to exhibit local charts for G, modeled on Γ:

Proposition 3.4. The group G is a real Banach-Lie group endowed with

the norm topology of B(H1
0 ).
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Proof. Let us consider the open subsets U = {X ∈ B(H1
0 ) : σH1

0
(X) ⊆

R + i(−π, π) } and W = {G ∈ Gl(H1
0 ) : arg(z) ∈ (−π, π), ∀ z ∈ σH1

0
(G) }.

The exponential map of Gl(H1
0 ), i.e.

exp : U → W , exp(X) =
∞∑
i=0

Xn

n!

is a real analytic bijection (see [19, Lemma 2.11]). According to Lemma

3.3 i), it follows that exp(U ∩ G) = W ∩ Γ. Then a standard translation

procedure can be used to cover G. The smoothness of the group operations

follows from that of the group operations in Gl(H1
0 ). �

Remark 3.5. In the case where Ω = Rn, it was shown in [5] that G is

an algebraic subgroup of Gl(H1
0 ). Hence the Banach-Lie structure of G

followed from a general result on algebraic subgroups (see [9, Theorem 1]).

It is noteworthy that G is an algebraic subgroup of Gl(H1
0 ) for any open

set Ω, and thus by the same result on algebraic subgroups, we have another

proof of the smooth structure of G.

3.2. The relationship with the equation u − ∆u = h. In this section

we assume that Ω is bounded and ∂Ω is smooth. Let f, g : Ω → C be C∞

functions with compact support contained in Ω. Note that these functions

can be smoothly extended to Rn by setting to be zero on the complement

of Ω. Then,

〈f, g〉 = [Af, g] = 〈Af, g〉+

∫
Ω

∇Af(x) · ∇ḡ(x)dx,

and by Green’s formula,

〈f, g〉 = 〈f, Ag〉 −
∫

Ω

Af ∆ḡdx = 〈f, A(g −∆g)〉 .

Since this holds for any smooth function f , it follows that A(g −∆g) = g.

Thus, if we denote by h = g −∆g, then Ah = g. In other words, if g is the

unique solution of the non-homogeneous Helmholtz equation

(3.2)

{
u−∆u = h,
u|∂Ω = 0,

then Ah = g. If h ∈ H1
0 , then Ah = uh is the weak solution of (3.2). That

is, 1−∆ is the unbounded right inverse of A in H2
0 , or equivalently, A is the

solution operator of equation (3.2). These facts are certainly well known (see

e.g. [18]). Moreover, if Ω is bounded and ∂Ω is smooth, then A is compact. If

G ∈ G, the equality G∗AG = A can be interpreted as follows: G∗uGh = uh,

or putting h = G−1f ,

G∗uf = uG−1f ,
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which means that G intertwines solutions of (3.2).

Example 3.6. One simple example in which A can be explicitly computed

occurs when Ω = (0, 1). Let us compute its eigenvalues: uh = Ah = λh

implies that uh − u′′h = 1
λ
uh, i.e.{

u′′h + ( 1
λ
− 1)uh = 0

uh(0) = uh(1) = 0

Then, λ = (k2π2 + 1)−1 with eigenfunction sin(kπx). If we normalize these

eigenfunctions in H1
0 , we get sk(x) =

√
2√

k2π2+1
sin(kπx) and

A =
∞∑
k=1

1

k2π2 + 1
sk ⊗ sk.

Example 3.7. Let Ω ⊂ R2 denote the open disk x2 + y2 < 1. In this exam-

ple, the eigenvalues and eigenfunctions of the Laplacian can be expressed

in terms of the Bessel functions Jm (m ≥ 0), which are defined by

Jm(s) =

(
s

2

)m ∞∑
p=0

(−1)p

Γ(p+ 1)Γ(m+ p+ 1)

(
s

2

)2p

,

where Γ stands for the Euler Gamma function. We refer the reader to [18,

Example 34.2] for a detailed solution of the homogeneous Helmholtz equa-

tion in this example. It can be shown that the eigenvalues of the Laplace

operator are given by λ = z2
m,j for m = 0, 1, . . . and j = 1, 2, . . ., where zm,j

denotes the positive zeros of Jm. It is convenient to express the correspond-

ing eigenfunctions in polar coordinates:

em,j(r, θ) =

 Jm(zm,jr)e
imθ if m > 0,

J0(z0,jr) if m = 0,
J−m(z−m,jr)e

imθ if m < 0.

According to formulas (5.14.6) and (5.14.9) in [12],∫ 1

0

rJm(zm,jr)Jm(zm,kr) dr =

{
0 if j 6= k,
1
2
J2
m+1(zm,j) if j = k.

Then, it follows that

|em,j|2 =
√
π |Jm+1(zm,j)|.

Hence, the solution operator is given by

A =
∞∑

m=−∞

∞∑
j=1

1

1 + z2
m,j

sm,j ⊗ sm,j ,

where the eigenfunctions sm,j =

√
1+z2m,j√

π|Jm+1(zm,j)| em,j are normalized in H1
0 .
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Example 3.8. In the case Ω = Rn, A can be explicitly computed. It is well

known that H1
0 (Rn) = H1(Rn) (see e.g. [18, Proposition 24.9]), where the

latter is the space of functions in L2(Rn) with first partial (distributional)

derivatives also belonging to L2(Rn). A function f ∈ H1(Rn) if and only if

(1 + |ξ|2)1/2f̂(ξ) ∈ L2(Rn), where f̂ denotes the Fourier transform of f , and

the inner product is given by

[f, g] =

∫
Rn

(1 + |ξ|2)f̂(ξ)ĝ(ξ)dξ.

Therefore, the solution operator is given by

Âf(ξ) =
1

1 + |ξ|2
f̂(ξ).

3.3. The extension map. As we stated in the introduction, we may iden-

tify G with the subgroup of the unitary group U(L2) given by

UH1
0
(L2) := {W ∈ U(L2) : W (H1

0 ) = H1
0 }.

In fact, the map

(3.3) G −→ UH1
0
(L2), G 7→ Ḡ ,

is a bijection, where Ḡ denotes the unique unitary operator Ḡ acting on L2

which extends the operator G ∈ G. In what follows, we will endow UH1
0
(L2)

with the operator norm topology of B(L2), while G will be considered with

the operator norm topology of B(H1
0 ).

Proposition 3.9. Let G1, G2 ∈ G, then

‖Ḡ1 − Ḡ2‖B(L2) ≤ max{ ‖G−1
1 ‖ , ‖G−1

2 ‖ } ‖G1 −G2‖.

In particular, the map in (3.3) is continuous. The inverse of this map is not

continuous.

Proof. Note that operators in G are proper (see Section 2). In particular,

note that G+ = G−1 for any G ∈ G. Denote by rH1
0
(X) and rL2(Y ), respec-

tively, the spectral radius of X ∈ B(H1
0 ) and Y ∈ B(L2). Then,

‖Ḡ1 − Ḡ2‖B(L2) = ‖1− Ḡ1
−1
Ḡ2‖B(L2)

= rL2( 1− Ḡ1
−1
Ḡ2 ) (since 1− Ḡ1

−1
Ḡ2 is normal)

≤ max{ rH1( 1−G−1
1 G2 ) , rH1( (1−G−1

1 G2)+)}

= max{ rH1( 1−G−1
1 G2 ) , rH1( 1−G−1

2 G1 )}

≤ max{ ‖1−G−1
1 G2‖ , ‖1−G−1

2 G1‖ }

≤ max{ ‖G−1
1 ‖ , ‖G−1

2 ‖ } ‖G1 −G2‖ ,
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where in the first inequality we used Theorem 2.3. Combining the preceding

inequality with the continuity of the inversion map on G gives that the map

in (3.3) is continuous.

Now we are going to prove that the inverse of the extension map is not

continuous for any open subset Ω of Rn. Let x ∈ Ω and C := (a1, b1) ×
. . .× (an, bn) ⊂ Ω be a neighborhood of x. Consider the following sequence

of smooth functions

θn : Ω→ C, θn(x1, . . . , xn) = ei
sin(nx1)

n .

Then, as we remarked in the fourth example of 3.1, the multiplication op-

erators Mθn belong to G. Given any f ∈ L2 such that |f |2 = 1, note that

|Mθn(f)− f |22 =

∫
Ω

|ei
sin(nx1)

n − 1|2 |f(x)|2 dx

= 2

∫
Ω

(
1− cos

(
sin(nx1)

n

))
|f(x)|2 dx

≤ 2

∥∥∥∥1− cos

(
sin(nx1)

n

)∥∥∥∥
∞
→ 0.

Thus, ‖Mθn − I‖B(L2) → 0. On the other hand, let f be a C∞ function with

compact support such that f(x) ≡ 1 for x ∈ C. We have

|Mθn(f)− f |21 ≥
∫
C

∇θnf · ∇θ̄nf̄ dx =

∫
C

cos2(nx1) dx

= (b2 − a2) . . . (bn − an)

(
1

2n
cos(nx1) sin(nx1) +

x1

2

∣∣∣∣b1
a1

)
→ 1

2
(b1 − a1)(b2 − a2) . . . (bn − an) > 0,

so that ‖Mθn − I‖ 9 0, and this shows that the inverse of the extension

map is not continuous. �

4. Norms and spectra of elements in G

Note that if G ∈ G, the equality G∗AG = A implies that ‖A‖ ≤
‖A‖‖G‖2, and thus ‖G‖ ≥ 1. Examining the previous examples, it can

be shown that there are elements in G with arbitrarily large norm.

Example 4.1. (1) Consider Ω = (0, 1) and pick f(x) = sin(πx) +

sin(kπx). Clearly |f |2 = 1. Thus, as in the second example of the

first section, G = eif⊗Af = eif⊗Af+(1−f⊗Af) ∈ G. Apparently,

‖G‖ ≥ max{‖f ⊗ Af‖, ‖1− f ⊗ Af‖} ≥ ‖f ⊗ Af‖ = |f |1|Af |1 .
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A straightforward computation shows that

|f |21|Af |21 =
1

4

(
2 + π2(k2 + 1)

)(
1

π2 + 1
+

1

k2π2 + 1

)
.

Therefore, for large k, the norm of G can be arbitrarily big.

(2) Let Ω be an open and bounded subset of Rn such that ∂Ω is smooth.

Under this assumptions, the operator A is compact. Let f ∈ H1
0 such

that |f |1 = 1 and Af = λf , for some λ 6= 0. Set θ : Ω ⊂ Rn → C,

θ(x) = eik(x1+...+xn) for some k ∈ R. Then,

|Mθf |21 = 〈θf, θf〉+

∫
Ω

∇θf · ∇θ̄ f̄ dx

= 〈f, f〉+

∫
Ω

|f |2 |∇θ|2 + 2Ref̄ θ∇f · ∇θ̄ + |∇f |2 dx

= [f, f ] +

∫
Ω

nk2|f |2 + 2f ∇f · ~k dx = 1 + nk2λ+ k
n∑
j=1

∫
Ω

f
∂f

∂xj
dx,

where ~k = (k, ..., k). Since f ∈ H1
0 , integrating by parts,∫

Ω

f
∂f

∂xj
dx = −

∫
Ω

∂f

∂xj
f dx = 0.

Therefore,

‖Mθ‖ ≥
√

1 + nk2λ.

Since any operator G ∈ G can be extended to a unitary operator Ḡ on

L2 such that Ḡ(H1
0 ) = H1

0 , it is clear that operators in G are proper and

G+ = G−1. Thus by Theorem 2.3 we know that

(4.1) σL2(Ḡ) ⊂ σH1
0
(G) ∪ σH1

0
(G−1).

Let us examine now the spectra of the examples 3.1.

Example 4.2. (1) If U is a unitary in H1
0 which commutes with A, then

clearly

σH1
0
(U) = σL2(U),

and it is a subset of T = {z ∈ C : |z| = 1}.
(2) Examples 2 and 3 in Section 3.1 are constructed as operators G act-

ing on a L2-orthogonal decomposition of H1
0 , H1

0 = S + T , with S
finite dimensional, and the operators acting as the identity on T .

Therefore their spectra in B(H1
0 ) are finite, and consist of eigenval-

ues, and therefore are also eigenvalues of the extension Ḡ of G to L2.

In particular they are elements of T. It is apparent by construction,

that also in this case both spectra coincide.
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(3) As in Example 3.1.4, consider Mθ, where θ : Ω → C is an element

of H1,∞(Ω), now with |θ(x)| = 1. Clearly, σL2(Mθ) = R(θ) ⊂ T, the

essential range of θ. Also in this case the spectra coincide (though

none of the elements are eigenvalues). Indeed, if Mθ − λ = Mθ−λ is

invertible in B(L2), then the function θ−λ does not vanish in Ω, and

moreover (θ− λ)−1 is also in H1,∞(Ω). Then the operator M(θ−λ)−1 ,

the inverse of Mθ − λ on L2, defines a bounded operator in H1
0 ,

and therefore Mθ − λ is invertible on H1
0 . Conversely, suppose that

Mθ−λ is invertible in B(H1
0 ), and let B be its inverse. Since Mθ−λ is

proper, it follows that B is proper if and only if Mθ̄− λ̄ = (Mθ−λ)+

is invertible in B(H1
0 ) (see [8, p. 148]). Using that Mθ−λ is bijective,

it is straightforward to show that Mθ̄ − λ̄ is also bijective. By the

open mapping theorem, Mθ̄ − λ̄ is invertible in B(H1
0 ). Therefore B

is proper, and by Theorem 2.3, it has a bounded extension to L2.

Hence λ /∈ σL2(Mθ).

Example 4.3. The examples of elements of G so far have spectra in T.

There is an example by Gohberg and Zambickǐı [8], adapted by Barnes

in [4] to the case of a pair of Hilbert space norms, of an operator whose

extension is symmetric, but whose spectrum does not lie in the real line.

Namely, in this latter form, Barnes considers the Hilbert space `2, and the

dense subspace `2
0, consisting of sequences (an)n such that

∑∞
n=1 4na2

n <∞.

Comparing with our situation, one has [ , ] in `2
0, given by

[a, b] =
∞∑
n=1

4nanb̄n,

which makes `2
0 a (complete) Hilbert space, and the usual inner product

〈 · , · 〉 of `2, which is bounded in `2
0. This latter inner product is implemented

by a diagonal compact operator A, whose eigenvalues are 1
4n

.

The above counterexample does not apply to our situation, where the

operator A is the solution operator. Let us reconstruct below the analogue

of Barnes’ example, and show that in our context, its spectrum is real.

Consider Ω = (0, 1),

ek(x) =
√

2 sin(kπx) , and sk(x) =
1

γk
ek(x),

the eigenvectors of A, normalized, respectively, in L2 and H1
0 (where γk =√

k2π2 + 1). Let T = S+B in L2, where S is the unilateral shift and B is the

backward-shift. Thus T is self-adjoint in L2, and σL2(T ) ⊂ R. Apparently,
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T (H1
0 ) ⊂ H1

0 . Indeed,

S(sk) =
1

γk
S(ek) =

1

γk
(ek+1) =

γk+1

γk
sk+1.

AnalogouslyB(sk) = γk−1

γk
sk−1 (putting e0 = s0 = 0). Thus if f =

∑N
k=1 cksk,

|Sf |21 =
∣∣ N∑
k=1

ck
γk+1

γk
sk+1

∣∣2
1

=
N∑
k=1

|ck|2
γ2
k+1

γ2
k

.

The fractions
γ2k+1

γ2k
are bounded by 2. Thus

|Sf |21 ≤ 2
N∑
k=1

|ck|2 = 2|f |21.

It follows that S is bounded in H1
0 (and ‖S|H1

0
‖ ≤
√

2). Analogously B is

bounded in H1
0 (with ‖B|H1

0
‖ ≤ 1, because

γ2k−1

γ2k
≤ 1). We claim that the

spectrum of T in H1
0 is real, and coincides with its spectrum in L2 (the

analogous of T in `2
0 has non real spectrum). Indeed, let T ′ in H1

0 be given

by

T ′(sk) = sk−1 + sk+1.

Clearly T ′ is self-adjoint in H1
0 . Let T ′N be given by T ′N(sk) equal to T (sk),

if k ≤ N , and to T ′(sk) if k ≥ N + 1. Since T ′ and T ′N differ on a finite

dimensional subspace, their essential spectra coincide: σe(T
′
N) = σe(T

′) ⊂ R.

On the other hand T − T ′N(sk) = 0 if k ≤ N , and

T − T ′N(sk) = (
γk−1

γk
− 1)sk−1 + (

γk+1

γk
− 1)sk+1,

if k ≥ N + 1. In our case, where Ω = (0, 1), these fractions tend to 1.

Therefore ‖T − T ′N‖ tends to 0. By the semicontinuity property of the (es-

sential spectrum), this implies that σe(T ) ⊂ R. It was proved in [4], that an

extendable (or proper) operator, whose extension is self-adjoint, such as T ,

has the property that σH1
0
(T )\σe(T ) consists of isolated eigenvalues of finite

multiplicity. As remarked before, these eigenvalues are necessarily real. It

follows that σH1
0
(T ) ⊂ R.

However, modifying the example above one can obtain an element of G
whose spectrum as an operator of H1

0 (Ω) is not contained in T.

Example 4.4. Let Ω be a bounded domain in Rn such that ∂Ω is smooth.

We will show an example of a symmetrizable operator belonging to iΓ with

non real spectrum. In particular, this implies the existence of an operator

in G with spectrum not contained in T.
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Let A be the solution operator of equation (3.2), whose eigenvalues are

related to the eigenvalues of the Laplacian in Ω. It is a classical result

by Hermann Weyl in 1911 [20], that the eigenvalues of the Laplacian of a

bounded domain Ω in Rn grow as

µk ∼ 4π

(
Γ(n

2
+ 1)

|Ω|

)2/n

k2/n,

as k → ∞. Since Ω is bounded and ∂Ω smooth, A is compact, and con-

sequently, there exists an orthonormal basis of eigenfunctions (ek)k of L2.

Moreover, the eigenfunctions (ek)k belong to H1
0 . By a straightforward com-

putation taking into account the relationship between the L2 and H1
0 inner

products, it follows that sk = ek
γk

is an orthonormal basis of H1
0 , where

γk =
√

1 + µk.

The orthonormal basis (ek)k can be used to define the following bounded

operator

S : L2 → L2, S(ek) = e2k .

Set B = S∗. Note that

B(ek) =

{
0, for k odd,
ek/2, for k even.

Then T = S + B is a self-adjoint operator on L2, so that σL2(T ) ⊆ R. On

the other hand, for any f ∈ H1
0 , f =

∑∞
k=1 cksk, it is easily seen that

|Sf |21 =

∣∣∣∣ ∞∑
k=1

ck
γ2k

γk
s2k

∣∣∣∣2
1

=
∞∑
k=1

|ck
γ2k

γk
|2 ≤ K|f |21,

where K is a constant that bounds the convergent sequence (γ2k/γk)k. In

a similar fashion, one can see that B is bounded on H1
0 . Hence T (H1

0 ) ⊆
H1

0 , and T turns out to be bounded on H1
0 . The expression of T in the

orthonormal basis of H1
0 is given by

T (sk) =

{ γ2k
γk
s2k, for k odd,

γ2k
γk
s2k +

γk/2
γk

sk/2, for k even.

We claim that σH1
0
(T ) contains all the points inside and on the ellipse

λ =
n
√

2eiθ +
1
n
√

2
e−iθ, θ ∈ [0, 2π].

To this end, note that due to Weyl’s asymptotic formula,

lim
k→∞

γ2k

γk
=

n
√

2 and lim
k→∞

γk/2
γk

=
1
n
√

2
.

Consider
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T ′(sk) =

{
n
√

2s2k, for k odd,
n
√

2s2k + 1
n√2
sk/2, for k even.

Then the operators T ′N defined by T ′N(sk) = T (sk) if k ≤ N , and T ′N(sk) =

T ′(sk) if k ≥ N+1, satisfy ‖T ′N−T‖ → 0. Given ε > 0, the semicontinuity of

the essential spectrum implies that σe(T
′
N) ⊆ σe(T ) + ε for N large enough.

Since σe(T
′
N) = σe(T

′), it follows that σe(T
′) ⊆ σe(T ). So what is left is to

show that the ellipse is contained in σe(T
′). To prove the latter, note that

the subspace

S = span{ s2k : k ≥ 0 }

reduces T ′. Then it follows that σe(PST
′|S) ⊆ σe(T

′), where PS denotes

the orthogonal projection onto S. But PST
′|S is a Toeplitz operator with

n
√

2 under the diagonal and 1/ n
√

2 over the diagonal. Thus σe(PST
′|S) =

σH1
0
(PST

′|S), and according to a result by M. G. Krein [11, Theorem 13.2],

the spectrum of this Toeplitz operator is the above defined ellipse.

4.1. Image of the exponential map. The first examples of elements in

G given in Section 3.1 were operators G = G0⊕IT , where G0 acts in S with

dimS <∞, and S + T = H1
0 an L2-orthogonal sum.

Proposition 4.5. If G = G0 ⊕ IT ∈ G as above, then there exists a finite

rank operator Z ∈ Γ such that

G = eZ .

Proof. Note that G = 1+F , where F has finite rank (inside S). This implies

that the spectrum of G is finite and consists of eigenvalues of modulus

one and finite multiplicity. According to Theorem 2.3 iii), we know that

σL2(G) = σH1
0
(G) and the multiplicity of each non zero eigenvalue coincide

. Therefore there exists a self-adjoint operator Z of finite rank in L2 such

that Ḡ = eiZ . Note that the eigenvectors of Ḡ are eigenvectors of G, so that

the eigenvectors of Z lie in H1
0 and they are finite. Then Z(H1

0 ) ⊂ H1
0 , and

thus X = iZ|H1
0
∈ Γ with G = eX . �

We point out a simple necessary condition on the spectrum of an operator

in G that belongs to the image of the exponential map.

Remark 4.6. If G = eX , with X ∈ Γ, we claim that σL2(Ḡ) ⊂ σH1
0
(G).

Indeed, let Z ∈ B(L2) such that Z∗ = −Z and Z|H1
0

= X. Recall that from

[10, Theorem 2] we have that σL2(Z) ⊆ σH1
0
(X). By the former set inclusion
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and a repeated application of the analytic spectral mapping theorem we find

that

σL2(UG) = { eλ : λ ∈ σL2(Z)} ⊆ { eλ : λ ∈ σH1
0
(X)} = σH1

0
(G),

which proves our claim.

Next we study multiplication operators when the set Ω is bounded. The

following lemma about functions is probably well known, but we give a

proof bellow.

Lemma 4.7. Let Ω be a bounded, connected and open subset of Rn. If

θ ∈ H1,∞(Ω), then θ is Lipschitz on Ω.

Proof. We may suppose that n = 2. Take two arbitrary points (x, y), (x̄, ȳ) ∈
Ω. There exists a continuous curve γ : [0, 1] → Ω such that γ(0) = (x, y)

and γ(1) = (x̄, ȳ). Then it possible to approximate γ by a polygonal with

segments parallel to coordinate axis. Moreover, each segment can be chosen

inside of Ω. Let (x, y) = (x1, y1), (x2, y1), (x2, y2), . . . , (xm, ym) = (x̄, ȳ) de-

note the vertices of the polygonal. Now recall that the function θ is locally

Lipschitz because θ ∈ H1,∞(Ω) (see [7, p. 131]). Therefore θ has partial

derivatives almost everywhere, and it also holds that locally the function

can be written as the integral of these partial derivatives. Then note that

|θ(xj+1, yj)− θ(xj, yj)| ≤
∫ xj+1

xj

∣∣∂θ
∂x

(x, yj) dx
∣∣ ≤ ∥∥∂θ

∂x

∥∥
Ω,∞ (xj+1 − xj).

A similar estimate holds for the other partial derivative. Since there are

always a finite number of steps from (x, y) to (x̄, ȳ), we get that

|θ(x, y)− θ(x̄, ȳ)| ≤
m−1∑
j=1

|θ(xj, yj)− θ(xj+1, yj)|+
m∑
j=2

|θ(xj, yj−1)− θ(xj, yj)|

≤
∥∥∂θ
∂x

∥∥
Ω,∞|x̄− x|+

∥∥∂θ
∂y

∥∥
Ω,∞|ȳ − y|

≤
√

2 diam(Ω) max{
∥∥∂θ
∂x

∥∥
Ω,∞ ,

∥∥∂θ
∂y

∥∥
Ω,∞ } ‖(x, y)− (x̄, ȳ)‖.

�

Proposition 4.8. If Ω is bounded and connected, its closure Ω is simply

connected and θ ∈ H1,∞(Ω) such that |θ(x)| = 1, then there exists a real

function α ∈ H1,∞(Ω) such that eiα = θ, i.e.

Mθ = eiMα,

with Miα ∈ Γ.
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Proof. Consider the commutative Banach algebra A = C(Ω,C) of complex

continuous maps in Ω, with the norm

|f |∞ = sup
x∈Ω

|f(x)|.

Let GA be the invertible group of A. The maximal ideal spectrum of A is Ω,

which by hypothesis is simply connected. Therefore, by the Arens-Royden

Theorem [16],

(4.2) GA = {eg : g ∈ A}

According to Lemma 4.7 the function θ is Lipschitz. Thus, θ can be extended

to a continuous function in Ω. By equation (4.2) it follows that θ = eg, for

some continuous function g on Ω. Since |θ(x)| = 1, it follows that g = iα,

with α real. In particular, note that α is bounded on Ω.

Moreover, we claim that α ∈ H1,∞(Ω), and then it clearly follows that

Miα belongs to Γ. To prove our claim, recall that θ is continuous, so that

|θ(x)−θ(y)| < 2 if ‖x−y‖ < δ, for some δ > 0. Therefore there is an analytic

branch of the logarithm for all the points close enough to a fixed x ∈ Ω.

Then, eiα(y) = ei log(θ(y)), and α(y) = log(θ(y))+2kπ by connectedness. Thus,

α has partial derivatives almost everywhere, and∣∣ ∂α
∂xj

(y)
∣∣ =

∣∣ 1

θ(y)

∂α

∂xj
(y)
∣∣ ≤ ‖θ‖1,∞ .

Since theis bound is the same for any point, we conclude that α ∈ H1,∞(Ω).

�

The same idea provides an example of an element in G which is not in

the range of the exponential, but it should be noted that in this example

we consider Ω a compact manifold (rather than an open subset), namely

Ω = T. See [18, p. 232] for the definition of H1 in this context.

Example 4.9. Consider Ω = T, and the function z. We claim that Mz ∈ G
does not belong to the range of the exponential map. Suppose that Mz = eX

for some X ∈ Γ. Then X = Mg for some g ∈ H1. Indeed, put g = X1 ∈ H1.

Since X commutes with eX = Mz,

Xzn = X(Mz)
n1 = (Mz)

nX1 = zng = Mgz
n,

for any integer n. It follows that X = Mg. Therefore z = eX1 = eg, with g

continuous in T, which is a contradiction.
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5. Stone’s theorem in G

Clearly, the positive operator A ∈ B(H1
0 ) such that [Af, g] = 〈f, g〉 is

symmetrizable. According to Theorem 2.1, it extends to a bounded operator

on L2. Note that A has dense range, both regarded as an operator on L2 or

H1
0 . The next elementary remark shows that A(L2) ⊂ H1

0 . More precisely:

Remark 5.1. If A is regarded as an operator in B(L2), then A1/2(L2) = H1
0 .

To this end, let f ∈ L2 and (gn)n be a sequence in H1
0 such that |gn−f |2 → 0.

Then A1/2gn → A1/2f in L2. Note that A1/2gn is a Cauchy sequence in H1
0 .

Indeed, we have

|A1/2(gn − gm)|21 = [gn − gm, A(gn − gm)] = 〈gn − gm, gn − gm〉 = |gn − gm|22.

It follows that A1/2f ∈ H1
0 , and thus A1/2(L2) ⊂ H1

0 . On the other hand,

if g ∈ H1
0 , since A1/2 has dense range, there exists a sequence (fn)n in H1

0

such that |A1/2fn− g|1 → 0. The same computation above shows that (fn)n

is a Cauchy sequence in L2:

|fn − fm|22 = |A1/2(fn − fm)|21.

Therefore there exists f ∈ L2 such that |fn − f |2 → 0. Then A1/2f = g.

Moreover, we have

|A1/2f |21 = [f, Af ] = 〈f, f〉 = |f |22 .

Hence A1/2 : L2 → H1
0 is a surjetive isometry.

Remark. The surjective isometry A1/2 : (L2, | · |2) → (H1
0 , | · |) will be

denoted by A1/2 to distinguish it from the operator A1/2 acting on L2 or

H1
0 .

There is yet another characterization of G:

Proposition 5.2. Let G be an invertible operator on H1
0 . There is a unique

unitary operator UG ∈ U(H1
0 ) such that UGA

1/2 = A1/2G if and only if

G ∈ G. The map G 7→ UG is a group isomorphism from G onto the group

UR(A1/2)(H
1
0 ) = {U ∈ U(H1

0 ) : U(R(A1/2)) = R(A1/2)}.

Moreover, if AdA1/2 : B(L2) → B(H1
0 ) denotes the C∗-algebra isomorphism

implemented by the unitary transformation A1/2, AdA1/2(X) = A1/2XA−1/2,

then

AdA1/2({U ∈ U(L2) : U(H1
0 ) = H1

0}) = UR(A1/2)(H
1
0 ).

Proof. The only if part is algebraic: if there exists such a UG, then

G∗AG = A1/2U∗GUGA
1/2 = A,
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thus G ∈ G. To prove the other implication, note that when G ∈ G, the

operator A1/2G is injective and has dense range. Therefore the isometric

part in its polar decomposition U |A1/2G| extends to a unitary operator,

which we denote U = UG. Note that

|A1/2G| = ((A1/2G)∗A1/2G)1/2 = (G∗AG)1/2 = A1/2,

and thus UGA
1/2 = A1/2G. The unitary UG is clearly unique with this

property, and the mapping G 7→ UG is a group homomorphism:

A1/2G1G2 = UG1UG2A
1/2 = UG1G2A

1/2.

Clearly UGA
1/2 = A1/2G implies that UG(R(A1/2)) ⊂ R(A1/2). Since the

same is true for UG−1 = U−1
G , equality holds. Pick a unitary operator U on

H1
0 such that U(R(A1/2)) = R(A1/2). For f ∈ H1

0 , UA1/2f ∈ R(A1/2), since

A1/2 is injective, there exists gf ∈ H1
0 such that UA1/2f = A1/2gf . Thus a

map f 7→ gf is defined, which is clearly a linear bijection of H1
0 . Moreover,

since U is unitary in H1
0 ,

|f |2 = |A1/2f |1 = |UA1/2f |1 = |A1/2gf |1 = |gf |2.

Thus f 7→ gf extends to a unitary operator in L2, which by construction

fixes H1
0 , thus G defined Gf = gf , belongs to G, and clearly UA1/2 = GA1/2.

Finally, a straightforward verification shows that A−1/2UGA1/2 is a uni-

tary operator of L2, which extends G. �

Corollary 5.3. The map G 3 G 7→ UG ∈ UR(A1/2) from Proposition 5.2

is a continuous group isomorphism (in the topology induced by the norm of

B(H1
0 )). Its inverse is not continuous.

Proof. Modulo the automorphism AdA, this homomorphism is the extension

map G 7→ Ḡ (see Proposition 3.9). �

Let G(t) be a strongly continuous one parameter group in G, i.e. for

t ∈ R, G(t) ∈ G, G(0) = 1, G(t+ s) = G(t)G(s), and for each f ∈ H1
0 , the

map t 7→ G(t)f ∈ H1
0 is continuous. By Proposition 5.2, this gives rise to

a one parameter group of unitaries UG(t). Let us see first that UG(t) is also

strongly continuous.

Proposition 5.4. Let G(t), t ∈ R, be a strongly continuous one parameter

group in G. Then UG(t) is a strongly continuous group of unitaries in H1
0 .

Proof. Since the map G 7→ UG is a group homomorphism, it is clear that

UG(t) is a one parameter group of unitaries. The fact that UG(t)A
1/2 =

A1/2G(t), implies that t 7→ UG(t)f is continuous for any f ∈ R(A1/2), which

is dense in H1
0 . By von Neumann’s extension of Stone’s theorem (see for
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instance [15, Theorem VIII.9]), which states that a one parameter group in

a separable Hilbert space, which is weakly measurable, is strongly continu-

ous, our result follows. Indeed, if f ∈ H1
0 , let (fn) be a sequence in R(A1/2)

such that |fn − f |1 → 0. Then, for each t ∈ R and g ∈ H1
0 ,

φn(t) = [UG(t)fn, g]→ φ(t) = [UG(t)f, g].

Since the φn are continuous, it follows that φ is measurable. �

According to Stone’s theorem, there exists a (possibly unbounded) self-

adjoint operator S : D(S) ⊂ H1
0 → H1

0 such that

UG(t) = eitS.

Let us now relate S to the Lie algebra Γ.

Remark 5.5. If G(t) is strongly continuous differentiable, i.e. if t 7→ G(t)f

is continuously differentiable for every f ∈ H1
0 , then the identity UG(t)A

1/2 =

A1/2G(t) implies that the function t 7→ UG(t)f is differentiable for any f ∈
R(A1/2). Thus R(A1/2) ⊂ D(S), and moreover, iSA1/2f = A1/2Ġ(0)f .

On the other hand, Ġ(0) is an everywhere defined operator in H1
0 , which

has an adjoint. Indeed, G∗(t) is weakly differentiable, because

t 7→ [G∗(t)f, g] = [f,G(t)g]

is differentiable, and therefore its weak derivative Ġ∗(0) is an adjoint for

Ġ(0). It follows that Ġ(0) is bounded. Thus, differentiating the identity

G∗(t)AG(t)f = Af

at t = 0 for any f ∈ H1
0 , yields

Ġ(0)∗Af + AĠ(0)f = 0.

Therefore Ġ(0) ∈ Γ. Moreover, X = iĠ(0) satisfies X∗A = AX. By The-

orem 2.4 there exists a self-adjoint bounded operator S0 in H1
0 such that

S0A
1/2 = A1/2X. Therefore, S0 = S, that is, S is bounded, and satisfies

S(R(A1/2)) ⊂ R(A1/2).

In the general case (G(t) strongly continuous), we have the following re-

sult. Let C∞0 (R) denote the space of smooth functions with compact support

on R. Let D ⊂ H1
0 be the linear span of the vectors

fϕ =

∫ ∞
−∞

ϕ(t)G(t)fdt,

where f ∈ H1
0 and ϕ ∈ C∞0 (R). This space D was used in the proof of

Stone’s theorem due to G̊arding and Wightmann (see [15]). The fact that
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D is dense in H1
0 is a general property of the space D for any underlying

Hilbert space.

Proposition 5.6. With the above notations, the following assertions hold:

i) The subspace D is dense in H1
0 , satisfies that G(t)(D) ⊂ D for all

t ∈ R, and for f ∈ D, t 7→ G(t)f is differentiable.

ii) The subspace A1/2(D) is dense in H1
0 , satisfies that UG(t)(A1/2(D)) ⊂

A1/2(D), and for f ∈ A1/2(D), the map t 7→ UG(t)f is differentiable.

iii) S(A1/2(D)) ⊂ A1/2(D), A1/2(D) is a core for S, and if f ∈ D,

iSA1/2f = A1/2Ġ(0)f.

Proof. Pick ϕ ∈ C∞0 (R) and f ∈ H1
0 , then,

G(t)fϕ =

∫ ∞
−∞

ϕ(s)G(s+ t)fds =

∫ ∞
−∞

ϕ(s− t)G(s)fds = fϕ( · −t) ∈ D,

and clearly t 7→ G(t)fϕ is differentiable. Since D ⊂ H1
0 is dense, and A has

dense range, then A1/2(D) is dense in H1
0 . Moreover,

UG(t)A
1/2fϕ = A1/2G(t)fϕ = A1/2fϕ( −t) ∈ A1/2(D),

and it is also clearly differentiable as a function in t. Therefore

eitS(A1/2(D)) = UG(t)(A
1/2(D)) ⊂ A1/2(D)

for all t ∈ R. This implies that A1/2(D) is a core for S (see [15, Theorem

VIII.11]). Finally, differentiating UG(t)A
1/2fϕ = A1/2G(t)fϕ at t = 0, one

obtains iSA1/2fϕ = A1/2Ġ(0)fϕ. �

6. Invariant Finsler metrics in G

The group G preserves the norms in L2, the usual spectral norm and the

Schatten p-norms. Therefore it is natural, from a geometric standpoint, to

consider these norms to endow G with a Finsler metric. The tangent space

(TG)G of G at G identifies with

(TG)G = gΓ = {GX : X ∈ Γ}.

Since the elements G ∈ G preserve the 2-norm ‖ ‖2, it is natural to consider,

in each tangent space, the norm

‖V ‖G = ‖V ‖B(L2).

Note that if V = GX, for X ∈ Γ, then

‖V ‖G = ‖GX‖B(L2) = ‖ḠX‖B(L2) = ‖X‖B(L2),
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because Ḡ is a unitary operator in L2. This implies that this metric is bi-

invariant for the left and right action of G on itself. Note that the tangent

spaces are not complete with this norm.

We measure the length of a differentiable curve γ in G, parametrized in

the interval I, as is usual, by

L2(γ) =

∫
I

‖γ̇(t)‖γ(t)dt =

∫
I

‖γ̇(t)‖B(L2)dt.

The rectifiable distance d2 induced by the infima of the L2-length of the

paths joining given endpoints is a continuous map when we give G the

natural topology as an open subset of the bounded linear operators on H1
0 .

However, the topology induced by this rectifiable distance on G is finer thus

what we have introduced is a weak Finsler metric on the manifold G.

Proposition 6.1. Suppose that G ∈ G with ‖G− 1‖B(H1) ≤ 1. Then there

exists a curve δ(t) = etX , with X ∈ Γ such that δ(1) = G, which has

minimal length among all curves in G joining 1 and G, and in particular

d2(1, G) = ‖X‖B(L2).

Proof. By Lemma 3.3, there exists X ∈ Γ such that eX = G. Moreover,

X = log(G), with log being the branch of the logarithm with singularities

in the negative real axis. By the formula (4.1),

σL2(Ḡ) ⊂ σH1
0
(G) ∪ σH1

0
(G−1).

Note that ‖G− 1‖ ≤ 1 implies that σH1
0
(G) ⊂ {z ∈ C : Re(z) ≥ 0}. Then,

if λ ∈ σH1
0
(G−1), λ = µ−1 with µ ∈ σH1

0
(G), and thus Re(λ) ≥ 0. It follows

that

σL2(Ḡ) ⊂ {z ∈ C : Re(z) ≥ 0} ∩ T = {eiθ : |θ| ≤ π/2},
and therefore ‖X‖B(L2) ≤ π/2. Note that L2(γ) equals the length of the

curve of unitaries in L2, measured with the Finsler metric given by the usual

operator norm on B(L2). It is a known fact that one parameter groups of

unitaries etX have minimal length along their paths, for time t such that

|t|‖X‖B(L2) ≤ π (see for instance [1]). Therefore δ(t) remains minimal for

|t| ≤ 2, which proves our assertion. �

6.1. The subgroups Gp. Let Bp(H1), 1 ≤ p ≤ ∞, be the Schatten ideals

of operators on H1
0 . As usual, B∞(H1

0 ) stands for the compact operators on

H1
0 . We introduce the following subgroups:

Gp := G ∩ (I − Bp(H1
0 )).

Clearly, Gp ⊂ G∞ properly. Apparently, the Banach-Lie algebra Γp of Gp is

Γp = Γ ∩ Bp(H1
0 ).
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For the subgroup G∞ there is a stronger result on the minimality of

curves. First note that using Lemma 3.3, we obtain that any G ∈ G∞ is of

the form G = eX for some compact operator X ∈ Γ.

Proposition 6.2. An operator G belongs to G∞ if and only if there exists

a compact operator X ∈ Γ such that eX = G

Proof. The sufficient part is clear. Note that the spectrum σH1
0
(G) is finite,

or a sequence in T converging to 1. In particular one can always find a half-

line L connecting 0 and infinity, which does not intersect σH1
0
(G). Thus by

Lemma 3.3, there exists X ∈ Γ such that eX = G, namely

X =
1

2πi

∫
α

log(z)(G− z1)−1dz,

where α is a simple closed curve which does not intersect L and encompasses

σH1
0
(G). Note that since 1 ∈ σH1

0
(G), one can adjust the definition of log in

a way such that 0 ∈ σH1
0
(X) (trimming eigenvalues which are multiples of

2πi). It remains to prove that suchX is compact. Note thatG−z1 belongs to

the Banach algebra C1 +B∞(H1
0 ), the unitization of the algebra B∞(H1

0 ) of

compact operators. Therefore (since log(z)(G−z1)−1 is a continuous map in

z, defined on a neighborhood of σH1
0
(G)), it follows that X ∈ C1 +B∞(H1

0 ),

i.e. X = λ+K. Since X is non-invertible, it must be λ = 0. �

In particular, if G1, G2 ∈ G∞, then there exists a compact operator

X ∈ Γ such that G2 = eXG1.

Theorem 6.3. Let G1, G2 ∈ G∞. Then there exists a compact operator

X ∈ Γ such that the curve δ(t) = etXG1 verifies δ(1) = G2 and has minimal

length among all curves joining the same endpoints in G∞ (and in G).

Proof. By the above Proposition, there exists X ∈ Γ, which is compact

and verifies that eXG1 = G2. If ‖X‖B(L2) ≤ π, the result follows using

the same argument as in Proposition 6.1, with the (unitary extension of

the) curve δ(t) = etXG1. Suppose otherwise, then there exist finitely many

eigenvalues λ of X, such that |λ| > π. Pick one such λ. If P is the spectral

projection in L2 associated to λ, then P (H1
0 ) ⊂ H1

0 . Indeed, the eigenvectors

of the extension of X to L2 belong to H1
0 (see Theorem 2.1 iii)). Therefore,

iP |H1
0
∈ Γ. There exists an integer m such that |λ − 2mπi| ≤ π. Then

X ′ = X − 2mπiP ∈ Γ is compact, and clearly verifies eX
′

= eX . Replacing

in this fashion all the eigenvalues (finite in number) which lie outside [−π, π]

yields a compact operator X0 such that eX0G1 = G2 �

Proposition 6.4. If G ∈ Gp, then there exists X ∈ Γp such that ‖X‖ ≤ π

and eX = G.
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Proof. By Proposition 6.2, there exists a compact operator X ∈ Γ with

‖X‖ ≤ π such that eX = G. It remains to prove that X ∈ Bp(H1
0 ). The

proof is similar to that case: consider now the Banach algebra C1+Bp(H1
0 ),

the unitization of Bp(H1
0 ), which is a Banach algebra with the p-norm. Since

log(z)(G−z1)−1 is continuous in the p-norm topology, it follows X = λ1+K,

with K ∈ Bp(H1
0 ). Again, since 0 ∈ σH1

0
(X), λ = 0. �

Since Γp ⊂ Bp(H1
0 ), a natural metric to consider in Gp, which takes

account of the specific spectral properties of the elements in Gp, should be

related to the p-norm. On the other hand, as remarked at the beginning

of this section, we want the metric to be invariant by the action of the

group. By Theorem 2.1, the operators X ∈ Γp, when extended to L2, are

compact and antihermitic. Moreover, the eigenvalues and multiplicities of

the extension remain the same as for X. By a classical inequality of Lalesco

[13] (see also [17]), the p-norm of the sequence of eigenvalues of X is bounded

by the p-norm of the sequence of singular values of X. The former equals

the p-norm of the extension of X to L2 (because X is antihermitic there),

the latter is the p-norm of X in H1
0 . Thus,

(6.1) ‖X‖p,B(L2) ≤ ‖X‖p.

We define the following metric in Gp: if X ∈ (TGp)G, then

‖X‖p,G = ‖X‖p,B(L2).

Theorem 6.5. Let G1, G2 ∈ Gp. Then there exists X ∈ Γp such that the

curve δ(t) = etXG1 in Gp, verifies δ(1) = G2 and has minimal length for the

above defined metric, among all smooth curves joining the same endpoints

in Gp.

Proof. By Proposition 6.4, there exists X ∈ Γp with ‖X‖B(L2) ≤ π such

that G2 = eXG1. The result now follows as with G∞, using the that in the

classical unitary groups

Up(L
2) = {G ∈ U(L2) : G− 1 ∈ Bp(L2)},

curves of the form etX , where X is antihermitic, have minimal length for the

p-norm for |t| ≤ 1 provided that ‖X‖B(L2) ≤ π (see [2] for the case p ≥ 2 or

[3] for the general case). �

Remark 6.6. Using Lalesco’s inequality, one may prove the inequality in

(6.1) for any symmetric norm in the sense of [17]. Moreover, our last re-

sult on minimality of curves can be carried out in the general setting of

symmetrically normed ideals.
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