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We study the quantum theory of a Fermi surface coupled to a gapless boson scalar in D = 4 − ε space-time
dimensions as a simple model for non-Fermi liquids (NFL) near a quantum phase transition. Our analysis takes
into account the full backreaction from Landau damping of the boson, and obtains an RG flow that proceeds
through three distinct stages. Above the scale of Landau damping, the Fermi velocity flows to zero, while the
coupling evolves according to its classical dimension. Once damping becomes important, its backreaction leads
to a crossover regime where dynamic and static damping effects compete and the fermion self-energy does not
respect scaling. Below this crossover and having tuned the boson to criticality, the theory flows to a z = 3 scalar
interacting with an NFL. We finally analyze the IR phases of the theory with arbitrary number of flavors Nc.
When Nc is small, the superconducting dome covers the NFL behavior; strikingly, for moderately large Nc,
we find that NFL effects become important first, before the onset of superconductivity. A generic prediction of
the theory is that the Fermi velocity and quasiparticle residue vanish with a power law ωε as the fixed point is
approached. These features may be useful for understanding some of the phenomenology of high-Tc materials in
a systematic ε expansion.
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I. INTRODUCTION

Understanding the dynamics of finite density quantum field
theory (QFT) is a central problem in theoretical physics. A
paradigmatic example is given by a Fermi surface interacting
with gapless bosons, which underlies a wide range of systems
in high energy and condensed matter physics. It can lead to
a parametric enhancement of superconductivity and to the
formation of new phases, and is believed to be relevant for
the description of strongly correlated electron systems [1–3].
It also drives the dynamics of QCD at finite density, which
exhibits rich phenomena in neutron stars and heavy ion colli-
sions [4]. While there has been sustained progress over the last
decades, a definite understanding of the possible phases and
long distance dynamics of finite density QFT is still lacking.

In this work, we study the coupled field theory of a massless
scalar field and a finite density of fermions, with a Yukawa-type
interaction L ⊃ gφψ†ψ . We do this in a controlled weak cou-
pling expansion around the critical space-time dimensionality
D = 4 − ε. Our goal is to perform a systematic analysis of the
quantum effects in this theory, determine its renormalization
group (RG) evolution, and describe the possible low-energy
phases.

There are several phenomenological and theoretical reasons
for undertaking this task. First, there is growing evidence that
high-Tc superconductivity (SC) and non-Fermi liquid (NFL)
behavior occur near quantum phase transitions, where interac-
tions between bosonic excitations and finite density fermions
become important. The theory of a gapless boson interacting
with a density of nonrelativistic fermions is perhaps the
simplest QFT example that can model this. It can also accom-
modate different generalizations, such as multiband contri-
butions or anisotropies, some of which will be explored here.

The second motivation is to develop analytic approaches
that can shed light on the strong dynamics present in many
condensed matter systems of interest. Different nonperturba-
tive techniques have been applied, including large N , field-
theory dualities and, more recently, holography. Here, we will

instead work near the critical 3 + 1 space-time dimension
where the theory is under perturbative control, and set up
a systematic ε expansion (of which only the lowest order
will be calculated). This has been successful in other areas
of critical phenomena [5], and we hope that it can also help
understand strongly correlated electron systems. This idea, of
course, has a long history, and related developments appear
in Refs. [6–16]. We will find that, already in the lowest order
in ε, some of the properties of the theory present striking
similarities to phenomena that are believed to occur in strongly
interacting systems. An encouraging example of this (see
Sec. VI B) will be a robust prediction of an NFL regime
driving superconductivity and where the Fermi velocity and
quasiparticle residue flow to zero as a power of the frequency
∼ωε , something which is observed in some high-Tc materials.

The results of our analysis are very encouraging for describ-
ing the phenomenology of the cuprates, certain heavy fermion
systems and iron-based superconductors. These materials
appear to have quantum phase transitions where the Fermi
liquid behavior breaks down, and a nontrivial interplay with
superconductivity is observed. See Refs. [17–19] for reviews
and references to experimental results. Their phase diagram
is believed to have a non-Fermi liquid coexisting with the
superconducting dome, so it is very interesting that the theory
considered in this paper can realize such a regime by varying
the parameter Nc in Sec. VI B. Another direction where our
approach may connect to experimental results is the recent
measurement in YBCO that the effective mass m∗ is strongly
enhanced as the quantum critical point is approached [20].
Here we find that in the perturbative fixed point in d = 3 − ε

dimensions, the effective mass diverges as m∗ ∼ 1/ωε . The
model considered in this paper then provides a controlled
framework where phenomenological properties of strongly
correlated materials may be understood.

Turning to more conceptual motivations, coupling a Fermi
surface to a massless boson poses qualitatively new problems
in the renormalization of nonrelativistic QFT, which are absent
in relativistic field theories or in Fermi liquids without the
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gapless boson. The main reason is that these modes have
very different RG scalings that compete at the quantum level,
making the analysis difficult and not fully understood. We
will address this with the help of the ε expansion, which
provides a formal RG prescription. However, doing so reveals
(see Sec. III B) the existence of nonlocal counterterms in the
theory, i.e., poles in ε whose residue is a singular function of
frequency and momenta. We will offer only a partial resolution
to this issue, which is currently under investigation [21]. The
weakly coupled theory that we study in this work then serves
to test RG approaches in a controlled setup, and can help to ex-
hibit their limitations. It is an important open problem to
develop a Wilsonian RG that extends [22,23] to include a
critical boson. Given our results below, this appears to be quite
challenging (especially for gauge fields), and we hope that this
work will motivate further developments in this direction.

Finally, a crucial ingredient that finite density brings in is
the Landau damping of bosons due to the Fermi surface. This
happens at a relatively high scale—one loop below kF —and
in turn it leads to strong corrections on the dynamics of the
quasiparticles. Previous approaches to this problem have fo-
cused on the long distance limit, using an overdamped form of
the boson propagator with a z = 3 dynamical exponent [8]. Our
analysis will go beyond this limit, in that starting from the UV it
incorporates the full form of Landau damping. This will allow
us to study the approach to the Landau damping region from
the perturbative theory, and will reveal a new crossover regime
where static and dynamic damping effects compete. The com-
plete RG flow will exhibit how the boson interpolates between
the dynamical exponent z = 1 in the UV and z = 3 in the IR,
and its corresponding backreaction on the Fermi surface.

Outline

Let us now provide an outline of our results. The first
step is to perform a perturbative one-loop RG analysis, which
we present in Sec. III. This requires calculating the fermion
self-energy, vertex renormalization, and boson vacuum polar-
ization. The first, presented in Sec. III A, exhibits a nonzero
anomalous dimension that signals NFL behavior, and a running
Fermi velocity v/c → 0, something that was also observed
in [16]. The vertex correction is computed in Sec. III B, and
has the nonlocal counterterm discussed above. We will extract
from here a local contribution (proportional to the derivative
of the self-energy) and will use it to renormalize the coupling.
In this case, the one-loop corrections exactly cancel, and the
beta function is proportional to the classical dimension of the
coupling (of order ε). The theory in 4 − ε dimensions then
does not admit a one-loop fixed point, although, as we discuss
below, a finite N generalization will exhibit critical behavior.

The effects from Landau damping are studied in Sec. III C.
This analysis also explains how to tune the boson to criticality,
something that will have important consequences on the low-
energy dynamics. After that, in Secs. IV V B, we will develop
an RG description that takes into account Landau damping and
its backreaction on the fermions, and that interpolates between
the UV perturbative regime and the deep IR. Let us summarize
the results of this analysis:

(1) Above the scale of Landau damping, the dynamics
correctly reproduces the one-loop results.

(2) The effects of Landau damping become important in
a way that depends on v/c. For slow fermions, this occurs
at a scale MD ∼ gkF

√
v. What follows is a new kind of

crossover regime where static and dynamic screening effects
are comparable, and that extends up to a parametrically lower
scale vMD . The fermion dispersion relation deviates from the
usual logarithmic running or from a scaling form. For models
with v � c, this intermediate range collapses into a more direct
crossover at the scale MDv−1/2.

(3) Both the fast and slow fermions then transit into the
low-energy overdamped regime, where perturbation theory
reorganizes in terms of the effective coupling g

√
v, and the

flow of the Fermi velocity continues to v/c → 0, albeit with
a different slope than in the UV. The result is a z ≈ 3 boson
coupled to the Fermi surface, with the interaction flowing to
strong coupling. This is eventually cut off by a BCS enhanced
instability.

Finally, in Sec. VI B, we study a generalization of the
theory to include SU(Nc) × SU(Nf ) non-Abelian symmetries,
where Nc generalizes the SU(2) spin, while Nf can arise from
additional channels in the electronic system. Focusing directly
on the overdamped regime, we find that the one-loop beta
function changes sign for Nc > 1, leading to an NFL fixed
point where the Fermi velocity and quasiparticle residue Z

have a power-law decay towards zero. Furthermore, by varying
Nc, the model interpolates between an NFL completely
covered by the SC dome, to the case where NFL effects become
important before the onset of superconductivity. The theory
could also have other instabilities and/or competing orders, and
we leave a more detailed discussion of the IR phases to future
work. The different energy regimes for the theory with Nc

Microscopic model

Perturbative one-loop

Intermediate non-scaling regime

Landau overdamped

scales

vμLD

kF

μNFL ∼ kF e−1/α̃

μBCS ∼ kF e−
√

Nc/α̃

μLD ∼ kF (Nf/Nc)α̃

NFL regime

BCS instability

FIG. 1. (Color online) Energy scales for a Fermi surface coupled
to a gapless boson. One-loop perturbation theory is valid up to the
Landau damping scale μLD. For slow fermions v/c � 1, we find
a large window of scales between vμLD and μLD, where static and
dynamic screening effects are equally important. This collapses to
a rapid crossover for fast fermions. For small Nc, the approach
to the NFL regime is stopped by the BCS instability. However,
for moderately large Nc, the NFL regime sets in before the BCS
instability, as in the figure.
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“colors” and Nf “flavors,” with coupling α̃ ≡ g2Nc/(12π2v),
are summarized in Fig. 1.

II. CLASSICAL THEORY

Let us begin by defining the theory and reviewing its
properties at the tree level. We consider a critical boson
interacting with a Fermi surface via a Yukawa-type coupling
in D = d + 1 space-time dimensions. We are interested in
the case d = 3, where the theory becomes weakly coupled,
enabling a controlled perturbative expansion. We will also
perform an ε expansion of the form d = 3 − ε; this will be
useful both as a regulator (so-called dimensional regulariza-
tion) and also to understand how the results here are modified
as the physically important limit d = 2 is approached.

The Euclidean action is

S =
∫

dτ ddx

{
1

2
[(∂τφ)2 + c2( 
∇φ)2]

+ψ†[∂τ + εF (i 
∇) − μF ]ψ + g0φψ†ψ

}
. (2.1)

Here, μF is the chemical potential, εF is the quasiparticle en-
ergy, and the Fermi surface is defined by εF (
kF ) = μF , where
kF is the Fermi momentum. For our purpose of understanding
the RG evolution and Landau damping backreaction, it will be
enough to consider a spherical Fermi surface. The details of
εF and the spin structure of ψ depend on the specific model
and UV completion of the theory. For instance, a massive
Dirac fermion, at energies and chemical potential much smaller
than the mass, gives an effective action for the particles of
the form (2.1), with εF (
k) = 
k2

2m
, while the antiparticles have

energy ω ∼ m and decouple.
Let us discuss in more detail the interactions in this

theory. The Yukawa interaction written above can be gen-
erated, for instance, by decoupling a four-Fermi interaction
via a Hubbard-Stratonovich field. This, in general, gives a
momentum-dependent coupling,

Sψ−φ =
∫

dτ ddk ddq g(k,q)φ(q)ψ†(k + q)ψ(k) ; (2.2)

the constant coupling that we use in the tree level action (2.1)
arises from the limit of zero momentum transfer q from
the boson and zero Fermi surface angular momentum, g0 =
g(|
kF |,0). We will find that one-loop corrections generate
a Yukawa coupling with strong momentum dependence.
Furthermore, for simplicity in this work, the φ4 interaction
will be fine-tuned to vanish. While this is not important below
the Landau damping scale (φ4 becomes irrelevant in that case),
this coupling can lead to a richer RG flow in the UV limit. This
has been recently studied in Ref. [24].

A. Spherical scaling

It is useful to study the system in terms of a spherical
scaling towards the Fermi surface [22,23].1 Here, the fermion

1A different approach that is also often used in the literature is the
“patch scaling” [10,11,25]. Also, a tree level RG analysis for the
coupled boson-fermion system is given in Ref. [26].

momentum is written in terms of a radial distance k⊥ towards
the Fermi surface,


k = n̂(kF + k⊥), (2.3)

where n̂ is a d-dimensional unit vector, normal to the Fermi
surface. In the low-energy theory, k⊥ � kF , and the fermion
kinetic term is then of the form

Sf =
∫

dτ
d�n

(2π )d−1

dk⊥
2π

ψ†(
k)

×
(

∂τ + vk⊥ + w

2kF

k2
⊥ + · · ·

)
ψ(
k). (2.4)

Here, d�n is the volume element for the unit sphere
parametrized by n̂, and

v = ε′
F (kF ), w = kF ε′′

F (kF ).

Furthermore, the fermion was redefined to absorb an overall
power kd−1

F . From now on, it will be convenient to set the
boson speed c = 1, and v is in units of the boson velocity. For
brevity, we refer to quadratic (and higher order) corrections to
the fermion dispersion relation as “curvature effects.”

Given the fermion momentum 
k in the direction n̂, the boson
momentum can be decomposed in components


p = n̂p⊥ + p‖, (2.5)

where p‖ is tangential to the Fermi surface. Its kinetic term
becomes

Sb =
∫

dτ
dp⊥
2π

dd−1p‖
(2π )d−1

1

2
φ(− 
p)

(
∂2
τ − p2

⊥ − p2
‖
)
φ( 
p).

(2.6)

In this spherical decomposition, the Yukawa interaction is
[recall (2.3)]

Sint = g

∫
dτ

d�n

(2π )d−1

dk⊥
2π

ddp

(2π )d
φ( 
p) ψ†(
k + 
p)ψ(
k).

(2.7)

Finally, let us consider the effect of a classical scaling
transformation. As usual, the boson momentum scales towards
the origin, p′

μ = ebpμ; however, the fermion scales towards the
Fermi surface,

k′
0 = ebk0, k′

⊥ = ebk⊥, (2.8)

with the unit vector n̂ fixed. The action is classically invariant
for

φ′(p′) = e− d+3
2 bφ(p), ψ ′(p′) = e− 3

2 bψ(p), g′ = e
d−3

2 bg.

(2.9)

The fermion scales as a two-dimensional fermionic field (a
consequence of the Fermi surface), while the boson retains
its d + 1 scaling dimension; the coupling becomes classically
marginal at d = 3, the dimension on which we focus.

B. Renormalization and ε expansion

Let us now study the ε expansion for d = 3 − ε space
dimensions. The small parameter ε also provides a non-
Wilsonian RG, very convenient especially for gauge theo-
ries [27,28]. Setting d = 3 − ε implies here that the dimension
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of the Fermi surface is now formally 2 − ε. Quantum correc-
tions to the correlation functions will have poles as ε → 0,
which are subtracted with counterterms in order to yield finite
physical results. The dependence of the counterterms on ε can
then be used to obtain the beta functions of the theory [29,30].
Note that this is different from the ε expansion in [14], where
the analytic continuation is done on the codimension of the
Fermi surface, instead of in the dimension. As a result, the
low-energy theory in both approaches will be different.

We begin from the original action (2.1) and denote its
fields and couplings by a subindex “0.” These are the “bare”
quantities, which are expressed in terms of counterterms and
physical couplings as follows:

ψ0 = Z
1/2
ψ ψ, φ0 = Z

1/2
φ φ,

g0 = με/2 Zg

Z
1/2
φ Zψ

g, v0 = Zvv, (2.10)

where g is dimensionless and μ is an arbitrary RG scale. The
action becomes

S =
∫

dτddx

{
−1

2
Zφφ

(
∂2
τ + c2Zc


∇2
)
φ

+Zψψ†[∂τ + Zvε(i 
∇)]ψ + με/2Zggφψ†ψ

}
. (2.11)

At this stage, we have kept the quasiparticle energy ε(p) =
εF (p) − μF as a general spherically symmetric function
that vanishes at p = kF . We will find below an interesting
interplay between small ε and curvature effects from nonzero
ε′′(p).

One consequence of the curvature of the Fermi surface is
to renormalize the chemical potential, which is simply taken
into account by a shift of the original μF ; we assume that this
has been done in what follows and do not write explicitly the
required shift. Furthermore, the one-loop boson self-energy is
finite, so the scalar counterterms are not needed, Zφ = Zc = 1.
It is also convenient to introduce

Zψ = 1 + δψ, ZψZv = 1 + δv, Zg = 1 + δg. (2.12)

The quantum corrections that have poles as ε → 0 are,
as shown in Sec. III, the fermion self-energy and vertex
renormalization. Let us consider their effects. The inverse
fermion propagator including counterterms and the self-energy
 is

− G−1
F (k0,
k) = (ik0 −,ε(
k)) + (i δψk0 − δvε(
k)) + (k0,
k).

(2.13)

In minimal subtraction, δψ and δv are chosen to cancel the
poles of . The vertex renormalization � contributes to the
cubic interaction as Lint = με/2g(1 + δg + g−1�) φ ψ†ψ .
The ε divergence of the vertex will turn out to have a nonlocal
dependence on the boson momentum, and we discuss below
in Secs. III B and III E a proposal for fixing δg .

The last step is to obtain the beta functions. This is done by
differentiating both sides of (2.10) with respect to the arbitrary
scale μ, and noting that the bare couplings are independent
of μ. This gives the formulas for the fermion anomalous

dimension, running velocity and coupling,

γψ = 1

2
μ

dδψ

dμ

βv = 2γ v − μ
dδv

dμ
(2.14)

βg =
(

−ε

2
+ 2γψ − μ

dδg

dμ

)
g.

The counterterms in minimal subtraction depend on μ only
through the running couplings; the derivatives in the above
expression are then μ

dδX(g)
dμ

= ∂gδX βg , giving a system of
equations that can be solved for the beta functions order by
order in 1/ε. In what follows, we will apply this renormalized
perturbation theory to study one-loop effects, and then to the
theory including Landau damping effects.

III. PERTURBATIVE ANALYSIS

We are now ready to study the quantum interactions
between the Fermi surface and gapless boson, for which we
will use the spherical scaling and ε expansion introduced in
Sec. II. In this section, we present the one-loop calculations of
these quantum corrections in the perturbative regime. These
include the fermion self-energy , the vertex correction �, as
well as Landau damping (vacuum polarization) �, which are
shown in Fig. 2. In the low-energy theory, the first two have
poles at small ε and determine the one-loop RG evolution; in
contrast, the vacuum polarization is finite and does not affect
the one-loop beta functions. However, it dominates over the
tree level frequency term over a large range of energies and
momenta, and it has to be taken into account in order to obtain
the correct IR physics. This will be done below in Sec. IV.
There are also one-loop effects that generate four-boson and
four-fermion interactions, as can be seen in Fig. 3. Details of
the calculations can be found in Appendix.

Before presenting the results, it is important to clarify the
origin of the UV divergences and running couplings that we
will be calculating. At high energies and momenta (compar-
able to kF ), the one-loop corrections are made finite by the
curvature of the Fermi surface; in particular, near 3 + 1
dimensions one finds that the self-energy and vertex depend
logarithmically on kF . These corrections will arise as UV
divergences (or poles in ε) here because we are focusing on
the low-energy theory very close to the Fermi surface.

FIG. 2. One-loop corrections for the Fermi surface interacting
with a scalar field. From left to right: fermion self-energy, vertex
renormalization, and boson self-energy. The boson is represented by
dashed lines.
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FIG. 3. Some one-loop corrections that induce φ4 and ψ4 inter-
actions. The boson is represented by dashed lines. The quartic boson
correction is calculated in Sec. III D, while ψ4 in the BCS channel is
related to the superconducting instability, discussed in later sections.

A. Fermion self-energy

We begin by computing the one-loop fermion self-energy
in the renormalized perturbation theory (2.11):

(k0,
k) = −g2με

∫
dDp

(2π )D
1

p2
0 + 
p2

1

i(k0 + p0) − ε(
k + 
p)
,

(3.1)

with ε( 
p) = εF ( 
p) − μF . In the limit when the external
frequency and momentum k⊥ are much smaller than the
curvature of the Fermi surface, the fermion propagator can
be linearized around the Fermi surface, obtaining

(k0,
k) ≈ −g2με

∫
dp0 dp⊥ dD−2p‖

(2π )D
1

p2
0 + p2

⊥ + p2
‖

× 1

i(p0 + k0) − v(p⊥ + k⊥)
. (3.2)

Here the momenta are defined by 
k = n̂(kF + k⊥), 
p = n̂p⊥ +

p‖. The small corrections from the curvature of the Fermi

surface will be discussed in Sec. III F.
In D = 4 − ε with small ε,  has an ε pole (plus finite

terms), which determines the beta functions from (2.14). This
has been computed before in [16], with the result (for external
frequency and k⊥ of the order of the RG scale μ)

(k0,
k) = g2

4π2(1 + |v|) [ik0 + sgn(v)k⊥]
1

ε
+ O(ε0) (3.3)

and is also reproduced in Appendix. The nonanalytic depen-
dence on the Fermi velocity will play an important role below;
sgn(v) is defined to vanish at v = 0. In the theory including
curvature effects, the discontinuous jump in sgn(v) is replaced
by a smooth function of width controlled by μ/kF , where μ

is the RG scale.
An important property of the self-energy is that it is not

proportional to the tree level kinetic term ik0 − vk⊥, indicating
both the usual wave function renormalization and that the
Fermi velocity is also receiving quantum corrections.

B. Vertex renormalization

Next, let us calculate the one-loop vertex correction

�(k; q) = μεg3
∫

dDp

(2π )D
1

(p0 − k0)2 + ( 
p − 
k)2

× 1

ip0 − ε( 
p)

1

i(p0 + q0) − ε( 
p + 
q)
, (3.4)

where k is the external fermion momentum and q is the boson
one. For external frequencies and momenta much smaller than

kF , we can again neglect quadratic and higher order terms in
the fermion propagator, approximating

�(k; q) ≈ με g3

(2π )D

∫
dp0 dp⊥ dD−2p‖

(k0 − p0)2 + (k⊥ − p⊥)2 + p2
‖

× 1

ip0 − vp⊥

1

i(p0 + q0) − v(p⊥ + q⊥)
. (3.5)

Here the components of the momenta are given by 
k = n̂(kF +
k⊥), 
p = n̂(kF + p⊥) + p‖, and 
q = n̂q⊥ + q‖.

Extracting the ε pole in � is more nontrivial than for the
self-energy. The reason is that there are now two contributions
to the pole: one from the UV region, and another from a
small low momentum region where the two fermionic poles
approach the real axis. The calculation is performed explicitly
in Appendix, obtaining

�(k; q) = g3

4π2

1

1 + |v|
iq0 + sgn(v)q⊥

iq0 − vq⊥

1

ε
+ O(ε0). (3.6)

This result is quite striking: the Fermi surface interacting with
a gapless boson has a three-point function with an ε pole
that depends nonlocally on (q0,q⊥). The denominator in (3.6),
which is the same as that of the fermionic quasiparticles,
suggests that this effect comes from integrating out light
degrees of freedom near the Fermi surface. We note that
nonlocal contributions in nonrelativistic QFTs have been
observed before in, e.g., Refs. [31–33].

In order to understand better the origin of this behavior,
it is useful to relate the vertex to the fermion self-energy by
a Ward-type identity (which is not exact in this theory). To
derive it, the one-loop expression

�(k; q) = με g3
∫

dDp

(2π )D
D(k − p) GF (p) GF (p + q)

(3.7)

(where D and GF are the boson and fermion propagators) is
multiplied on both sides by iq0 − vq⊥. For q0 and q⊥ much
smaller than kF , it is enough linearize the inverse propagators,
iq0 − vq⊥ ≈ GF (p)−1 − GF (p + q)−1 and hence

(iq0 − vq⊥) �(k; q) = g [(k + q) − (k)] . (3.8)

Replacing here the one-loop expression (3.3) for  repro-
duces (3.6).

The diagrammatic Ward identity implies quite generally
that whenever the Fermi velocity runs [such that (q) is not
proportional to iq0 − vq⊥] the vertex correction will have the
singular dependence found in (3.6). Although the identity (3.8)
is not expected to be valid to all orders, this phenomenon
is apparently more general. In the theory with a gauge field
instead of a scalar field, the same singular behavior is found,
and in that case the Ward identity is a consequence of gauge
invariance. This follows from the coupling of the gauge
field to the Fermi surface, L ⊃ ψ†(
k + 
q)Vμ(n̂)Aμ(
q)ψ(
k),
with Vμ = (i,−v 
k/|
k|), and from the Ward identity of gauge
invariance:

qμ�μ(k; q) = g [(k + q) − (k)] . (3.9)
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Since at one-loop �μ ∝ Vμ, we have

�μ(k; q) = gVμ

(k + q) − (k)

Vνqν

. (3.10)

When the velocity runs, the numerator in this expression is
no longer proportional to V · q, leading to a momentum-
dependent logarithmic divergence as in (3.6).

The correct physical interpretation and consequences
of (3.6) are currently under investigation [21], and here we only
wish to make a few preliminary remarks. At first, (3.6) is quite
puzzling: renormalizing the theory would, in principle, require
counterterms that depend on q0/q⊥, and similarly the RG flow
would depend on this ratio. One point to note, however, is that
the UV divergences of the low-energy theory are actually IR
effects in the microscopic model that describes the physics at
scales above kF . Indeed, in the theory (2.1), which includes
the curvature of the Fermi surface, the poles in ε are replaced
by log kF factors. The interpretation of (3.6) in this UV theory
is then as a singular IR dependence of the three-point function
on external frequencies and momenta. Nevertheless, the
appearance of these singular contributions casts doubt on the
existence of a well-defined effective field-theory description
for the system, and more generally for nonrelativistic QFT.

Returning to the low-energy theory near the Fermi surface,
it is necessary to understand both the contribution of (3.6)
to the RG flow, and also its role in correlation functions.
Let us consider the first point. The singular dependence on
(q0,q⊥) suggests that we have integrated out light degrees of
freedom. This can be seen if we replace ε by a hard cutoff;
analyzing the loop integral one finds contributions both from
UV region and also from the IR (p0 ∼ q0,| 
p| ∼ |
q|), where
the two fermion poles are on different sides of the real axis.
The singular momentum dependence then comes from virtual
low momenta particle-hole pairs.

Equation (3.5) reflects the non-Wilsonian nature of the ε

expansion when applied to the Fermi surface interacting with
a massless scalar, enhanced by a logarithmic divergence. In
general, we expect Wilsonian and non-Wilsonian approaches
to have the same UV divergences; this is based on the intuition
that the high-momentum region of the loop integral dominates.
When this holds, including the IR region in the integration
does not change the leading UV dependence. However, here
we see that this is not the case in the presence of a Fermi
surface—-the phase space suppression of the low-momentum
regime is compensated by an IR enhancement from the light
quasiparticles, with the result that IR degrees of freedom
also contribute to the UV divergence. It will be important to
understand if a Wilsonian RG for the Fermi surface interacting
with a gapless boson can be defined, a point to which we hope
to return in the future. This seems challenging, especially given
the relations (3.8) and (3.10) between a running Fermi velocity
and the singular behavior of the vertex.

Independently of whether a consistent Wilsonian RG exists
where the singular behavior of the vertex is resolved, (3.5) is
the correct one-loop 1PI correction to the three-point function.
It will therefore be necessary to determine the effect of this
singular correction on the physical observables and higher
order correlation functions [21]. Somewhat similar issues
arise in the proof of Migdal’s theorem [36], although in
that case the vertex is not logarithmically enhanced. The

expression (3.5) for the vertex also suggests a resonance
between the quasiparticles and the boson if v ∼ c. It will
be interesting to understand the consequences of this and if,
for instance, summation over soft modes can lead to similar
divergences and also needs to be taken into account.

C. Vacuum polarization and tuning to criticality

The vacuum polarization for the boson (the last diagram
in Fig. 2) gives the familiar Landau damping of the scalar
due to virtual particle-hole pairs. We will discuss the vacuum
polarization in some detail, in order to determine how to tune
the scalar to criticality.

The inverse boson propagator at one loop is (see Appendix
for more details)

D−1(p) = p2
0 + 
p2 + �(p) + �ct, (3.11)

where

�(q) = −μεg2
∫

dDp

(2π )D
1

ip0 − ε( 
p)

1

i(p0 + q0) − ε( 
p + 
q)
,

(3.12)

and �ct is a constant counterterm that will adjust the boson
to criticality (to be fixed below). For external frequencies and
momenta smaller than kF ,

�(q) = −με g2kD−2
F

(2π )D

×
∫

dp0 dp⊥dD−2n̂

(ip0 − vp⊥)[(i(p0 + q0) − v(p⊥ + n̂ · 
q)]
.

This integral turns out to be convergent, but it depends on the
order of integration. For ε → 0, it evaluates to

�(q0,
q) = −M2
D

(
C − q0

v|
q | tan−1 v|
q |
q0

)
, (3.13)

where the Debye scale

M2
D ≡ g2k2

F

2π2v
. (3.14)

The constant C depends on the ratio of the frequency and
momentum cutoffs: C = 1 for �p0 � �p⊥ , while C = 0 in
the opposite limit. This can also be checked using residues,
which gives C = 1 integrating over p0 first, and C = 0
integrating over p⊥ first. We will discuss the consequences
and interpretation of this UV ambiguity in a moment.

Before getting to this, let us discuss the unambiguous part
of (3.13), namely the overall sign and the inverse tangent term.
It will be useful to compare this result with the familiar Debye
screening of the electrostatic potential A0 in a charged Fermi
liquid,

�00(q) = M2
D

(
1 − q0

v|
q | tan−1 v|
q |
q0

)
. (3.15)

� and �00 depend on the same dimensionless ratio x ≡ q0

v|
q |
with the same functional form, but opposite in sign. Tech-
nically, this comes from the extra factor of i in the coupling
iA0ψ

†ψ as compared to φψ†ψ in the Euclidean theory. Physi-
cally, this difference in sign reflects the repulsive and attractive
nature of the force mediated by A0 and φ, respectively.
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Now, we need to understand how to fix C. As we just
discussed, C is ambiguous in the low-energy theory, and it can
be adjusted by using a constant counterterm �ct. To illustrate
its effects, let us consider first C = 1. In the static and dynamic
limits

�(x � 1) ≈ −M2
D, �(x � 1) ≈ −M2

D

3x2
, (3.16)

where x = q0/(v|
q |). We learn that, while � is suppressed in
the dynamic limit, it leads to an instability for nearly static
fluctuations. In contrast, the static limit for the electrostatic
potential would be, taking into account the sign difference with
the real scalar, �00(x � 1) ≈ M2

D; this positive mass squared
is the familiar Debye screening of the Coulomb interaction.

The instability means that the system should actually be in
an ordered phase where the scalar condenses. In order to tune
the boson to the critical point, from our low-energy approach,
we will then choose �ct to precisely cancel this contribution,
leading to a critical boson with one-loop vacuum polarization
(see also Ref. [8])

�(x) = M2
D x tan−1 1

x
, x ≡ q0

v|
q | . (3.17)

The scalar is now Landau damped in the static limit, and
screened in the dynamic regime:

�(x � 1) ≈ π

2
M2

D |x|, �(x � 1) ≈ M2
D. (3.18)

For nearly on-shell bosons |q0| ∼ |
q |, slow fermions v � c

will then screen the scalar, while fast fermions v � c produce a
weaker Landau damping. As an example, this is the expected
behavior in systems where φ represents the magnetic order
parameter.

More generally, we can parametrize the approach to the
quantum critical point (QCP) by tuning a control parameter u

to its critical value uc giving, to leading order in u − uc,

�(x) = M2
D x tan−1 1

x
+ (u − uc) + O((u − uc)2). (3.19)

In condensed matter systems, u can be, e.g., doping or pressure.
For u < uc, the scalar tends to condense and the system orders,
while for u > uc, the boson becomes massive and we have a
Fermi liquid.

D. Quartic boson vertex

At one loop, there is also a fermion “box” diagram that
generates a φ4 interaction in the 1PI action, shown in Fig. 3
above. This diagram is finite and does not contribute to the one-
loop beta functions, but here we shall briefly discuss it in order
to illustrate the effects of the light quasiparticles on the scalar.

Let us compute the amplitude with external momenta
(pμ,qμ → qμ,pμ) for ε = 0:

�(4)(p,q) = −6g4k2
F

(2π )4

∫
dk0dk⊥d2n̂

1

ik0 − vk⊥

1

i(k0 + p0) − v(k⊥ + 
p · n̂)

1

i(k0 + p0 + q0) − v(k⊥ + 
p · n̂ + 
q · n̂)

1

i(k0 + q0) − v(k⊥ + 
q · n̂)
, (3.20)

where we have defined the vertex as a contribution �(4)φ4 to the 1PI action. This is analogous and related to the computation
of vacuum polarization in the last section. Both vanish in a Wilsonian calculation, but the 1PI correlators are nonzero due to
contributions from the region of low frequency and low momenta. In particular, (3.20) is also finite, yet ambiguous depending
on the order of limits when doing the integration. In fact, by contracting two of the external legs, (3.20) is identical to a two-loop
correction to the vacuum polarization.

We therefore resolve the ambiguity in the integration order in the same way as with the vacuum polarization. Based on the
discussion in Sec. III C, we shall follow the procedure of integrating over k⊥ first followed by k0, which produces the critical
C = 0 behavior of Landau damping in the last section. The computation gives

�(4)(p,q) = −i
3g4k2

F

4π3|v|
∫

d2n̂
1

ip0 − v 
p · n̂

1

iq0 − v
q · n̂

[
p0 + q0

i(p0 + q0) − v( 
p + 
q) · n̂
− p0 − q0

i(p0 − q0) − v( 
p − 
q) · n̂

]
. (3.21)

The effects of integrating out the fermions can be understood most simply if we take 
p ‖ 
q, for which the integral over the Fermi
surface gives

�(4)(p,q) = 3g4k2
F

π |v|3
1

(xp − xq)2

[
2

q2
xp tan−1

(
x−1

p

) + 2

p2
xq tan−1

(
x−1

q

)

−
(

1

p
− 1

q

)2

xp−q tan−1
(
x−1

p−q

) −
(

1

p
+ 1

q

)2

xp+q tan−1
(
x−1

p+q

)]
(3.22)

and we defined xp = p0

v| 
p | , etc.

As an example, consider the limit q0 → 0 first and then

q → 0, relevant for the z = 3 boson scaling; the result is

lim

q→0

lim
q0→0

�(4)(p,q) = −12g4k2
F

πv3

p2
0(

p2
0 + v2 
p2

)2 . (3.23)

This has a pole at the quasiparticle dispersion relation and,
much as with the vertex, we find a resonance when the
boson and fermion dispersion coincide. Here again, this is
due to the non-Wilsonian contributions coming from the
light Fermi surface excitations. While the z = 3 exponent
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makes the boson self-interactions formally irrelevant below
the Landau damping scale, it would be important to understand
the effects of the momentum-dependent result (3.22), e.g.,
by resummation, since these cannot be ignored close to the
Fermi surface. For planar systems, this has been discussed in
Ref. [31].

E. RG flow at one loop

We are finally in a position to determine the RG evolution of
the theory at one loop. Having computed the relevant quantum
corrections, the counterterms are obtained by canceling the ε

poles. For the wave function and velocity counterterms, we
find [recall (2.12)]

δψ = − g2

4π2(1 + |v|)
1

ε
, δv = g2 sgn(v)

4π2(1 + |v|)
1

ε
. (3.24)

Now we need to understand how to deal with the momentum-
dependent ε pole of the vertex encountered in Sec. III B.
We will take the somewhat conservative approach of only
allowing momentum-independent beta functions; accordingly,
we interpret the vertex (3.6) as a sum of two contributions: a
local term that renormalizes the Yukawa interaction, and a
nonlocal renormalization for a different operator,2

�(k; q) = −ig∂q0(q) + �̃(k; q),

�̃(k; q) = g3 sgn(v)

4π2ε

q⊥
iq0 − vq⊥

. (3.25)

Given this, the vertex counterterm

δg = − g3

4π2(1 + |v|)
1

ε
. (3.26)

For a gauge field instead of a scalar, this is the familiar
infinitesimal Ward identity, and in fact this is how usually the
quantum vertex is defined. The full quantum corrections are
however more complicated—there is an extra term �̃, whose
implications are currently under investigation [21].

Plugging these counterterms into (2.14), we obtain the beta
functions

γψ = g2

8π2(1 + |v|) , βv = g2

4π2
sgn(v), βg = −ε

2
g.

Let us discuss the RG flow for ε = 0 first. The Yukawa
coupling is marginal at one loop, and βv shows that there
is an attractive fixed point where v → 0, also described in
Ref. [16]. [Recall that sgn(v) vanishes at v = 0.] The velocity
reaches its limiting value at a finite scale

μv=0 = e−4π2v0/g
2
0 �, (3.27)

where g0 and v0 are the values at μ = �. The non-Fermi liquid
is characterized by an anomalous dimension γψ = g2/(8π2).
At finite but small ε, the velocity still runs to zero, but this
picture is corrected by a slow running of the Yukawa coupling.
It would be interesting to compute the two-loop correction to
βg and see if they can lead to a perturbative fixed point.

2This was suggested by L. Fitzpatrick.

F. Curvature effects

So far, we have studied the quantum theory in the low-
energy/momentum limit where the fermion dispersion relation
becomes linear. Now, we want to understand in more detail
the effects from the nonzero curvature, and particularly its
interplay with the ε expansion. For this, we include the leading
correction to the linear term in the quasiparticle energy,

ε(
k) = εF (
k) − μF = vk⊥

(
1 + c1

2

k⊥
kF

+ · · ·
)

. (3.28)

We will assume that ε(
k) is a smooth function such that c1 =
d log ε′(kF )

d log kF
is some order one number. Recall that v = ε′

F (kF ).
For concreteness, let us analyze the effect of the quadratic

term in (3.28) on the frequency-dependent part of the self-
energy,

−ig∂k0(k0,k⊥ = 0)

= μεg2
∫

dDp

(2π )D
1

p2
0 + 
p2

1

[i(p0 + k0) − ε( 
p)]2
, (3.29)

which also contributes to the vertex renormalization. Including
the quadratic term in ε( 
p) makes this integral convergent, in a
way controlled by the scale kF ; we need to determine how the
pole in ε arises in this context.

It is convenient to integrate first over p0 by residues.
The external frequency is set to k0 ∼ μ, the RG scale.
Furthermore, k0 can be ignored in the integrand if the lower
integration range for | 
p | is taken from k0; this is because
k0 is responsible for making the integral converge in the IR.
With these simplifications, and changing to radial coordinates
p⊥ = p cos θ , p‖ = p sin θ , we have

− ig∂k0 ≈ g2

8π2

με

kε
F

∫ ∞

μ/kF

dp

p1+ε

∫ 1

−1
d(cos θ )

× 1

(1 + v| cos θ + c1p/2|)2 . (3.30)

The loop momentum has been redefined to absorb kF , and
the absolute value comes from the residue integral. Integrating
over the angle and then over p, we obtain, at small ε,

− ig∂k0 ≈ g2

4π2(1 + |v|)
1

ε

(
1 − με

kε
F

)
. (3.31)

This result generalizes (3.3) to include the curvature of the
Fermi surface.

From this expression we can understand the interplay
between the limits of small ε and large kF . If we take the
low-energy limit μ/kF → 0 at fixed (but small) ε, then we
recover (3.3). This justifies our treatment so far of quantum
effects ignoring the curvature of the Fermi surface. If, on the
other hand, we take ε → 0 first at fixed and small μ/kF ,
then (3.31) gives

−ig∂k0 ≈ g2

4π2(1 + |v|) ln
kF

μ
,

in agreement with the self-energy for the field theory with
cutoff � ∼ kF in 3 + 1 dimensions.
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IV. INCLUDING BACKREACTION
FROM LANDAU DAMPING

In the previous section, we analyzed the theory of a Fermi
surface interacting with a massless scalar at the one-loop
level. The D = 4 theory flows to an attractive fixed point
v/c → 0 with arbitrary coupling; this is corrected by a slow
running of coupling for nonzero but small ε. At one loop, we
also recovered the familiar Landau damping in the vacuum
polarization �(x) of the scalar. Being a finite effect, it does
not contribute to the one-loop beta functions. However, the
vacuum polarization becomes important at a scale controlled
by MD in (3.14), and at this point the one-loop expansion
(based on the tree level boson propagator) breaks down. This
will in turn backreact on the fermionic sector, and can lead to a
very different dynamics from that of Sec. III. Our task is to set
up a consistent RG treatment that incorporates these effects.

The traditional approach to this question has been to start
from an IR effective theory where the boson propagator is
approximated by

D−1 ≈ 
p2 + π

4
M2

D

p0

v| 
p| . (4.1)

This admits a z = 3 dynamic critical exponent around which
one could try to build a scaling theory [8]; see also Ref. [3]
for a review and references to the original works. There are,
however, two main concerns here. First, is this approach
(which is different from a perturbative loop expansion)
self-consistent? Furthermore, starting from the perturbative
description in the UV, does the theory flow into this regime
and, if so, how is the interpolation done?

In order to answer these questions, we will use the one-
loop resummed boson propagator including the full Landau
damping to compute quantum effects on the Fermi surface.
Summing the geometric series of one-loop corrections gives
the corrected propagator

D−1(p) = p2
0 + 
p2 + �(p),

�(p) = M2
D

p0

v| 
p | tan−1 v| 
p |
p0

, (4.2)

and it will be important to keep the complete vacuum
polarization �(p). This goes beyond previous treatments in
that we keep the full one-loop resummed propagator, and not
just an IR approximation, and will allow us to determine how
the UV and IR limits are connected by RG. In the process,
we will uncover a crossover regime between these two limits,
which for small v can be made parametrically large and arises
from competing static and dynamic screening effects.

A. Basic aspects of Landau damping

Let us discuss the relevant scales in the system, and justify
the resummation procedure in more detail. From the one-loop
results, and taking for simplicity ε = 0 so that the coupling
does not run, the scale at which non-Fermi liquid effects
become important is of order

μNFL = e−4π2(1+v0)/g2
0 �, (4.3)

where v0 and g0 are the values at the cutoff scale � ∼
kF . Around this scale, the fermion anomalous dimension

contribution is comparable to the tree level kinetic term.
Similarly, the scale at which the Fermi velocity v → 0 is

μv=0 = e−4π2v0/g
2
0 �. (4.4)

We want to compare these to the scale μLD when Landau
damping �(p) becomes comparable to the tree level boson
propagator. Since �(p) depends on the ratio p0/| 
p |, the
strength of the vacuum polarization correction can vary in
different kinematic regimes, as shown in (3.18). A simple way
to define μLD is to require that for a nearly on-shell boson, �

becomes comparable to the tree level terms. This gives

μLD ≈ (v−1 tan−1(v))1/2 MD. (4.5)

Here, the parameters on the right-hand side are the physical
couplings, which have to be evaluated at μLD according to the
beta function runnings; so this is a self-consistent equation for
the physical Landau damping scale. We will see momentarily
that the running of the couplings will not play a crucial role
in the regime of interest, so to a good approximation we can
use their values at the UV cutoff � to evaluate μLD.

We will be interested in calculating the backreaction of
Landau damping on the Fermi surface. For this we need to
insert the corrected boson propagator into the fermion self-
energy diagram, and find which regions of loop energy and
momenta dominate the integral. We will find that the corrected
self-energy deviates appreciably from (3.3) at a scale which is
also of order (4.5), so the estimate of Landau damping effects
by setting the boson to its mass shell will turn out to be a good
approximation. Another point to stress is that Landau damping
effects are quite different for slow and fast fermions:

μLD(v � 1) ≈ MD, μLD(v � 1) ≈ MD

v1/2
, (4.6)

reflecting the static and dynamic limits (3.18) of the damping
factor. Therefore, v � 1 tends to suppress Landau damping,
while v � 1 has the opposite effect (recall that M2

D ∝ 1/v).
The last important scale in the problem comes from the

superconducting instability. This is enhanced by the presence
of the gapless boson, and is of order [38]

� ∼ e−γπ2v
1/2
0 /g0� (4.7)

and γ ∼ O(1). Therefore, at weak coupling, the non-Fermi
liquid regime is always covered by the superconducting phase,
� � μNFL.

Comparing the previous scales shows that μLD has a loop
suppression proportional to g2/(4π2v), while the non-Fermi
liquid scale and the gap are both exponentially suppressed.
In the weak coupling expansion, we will then always have
μLD � μNFL and μLD � �.3 The proposal is to accomplish
this by using (4.2) to compute interactions with the Fermi
surface. This amounts to summing a special class of diagrams
at every loop order, and it is necessary to understand under what
conditions other effects at the same order can be neglected.
We now argue that this is actually consistent near D = 4
space-time dimensions in the weakly coupled limit g2 � 1

3We are assuming that the UV parameters stay bounded as ε → 0,
so that the theory can be connected to the Gaussian fixed point.
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(or g2/v � 1 in the case v � 1), after including additional
logarithmic divergences from the running couplings.

The main question to address is whether higher loop
effects can introduce corrections to the boson propagator that
dominate over the one-loop �(p) that we have taken into
account. Analyzing these corrections we obtain two types of
effects. First, there are logarithmic corrections that come from
the fermion self-energy and vertex subdivergences. In the RG
approach, these effects are rendered small by calculating the
vacuum polarization in terms of the running gauge coupling
and velocity. On the other hand, there are also higher order
finite corrections which, similarly to the one-loop �(p), are
nonanalytic in x. Focusing for concreteness on the overdamped
region x � 1, we find, by evaluating higher loop diagrams,
that such effects have a well-defined Taylor expansion for
small x, so they amount to a small correction of the one-loop
term, M2

D|x| → M2
D(1 + O(g2) + · · · )|x|. Therefore having

resummed the leading one-loop corrections responsible for the
change from z = 1 to z = 3, higher loops appear to introduce
only small deviations from this behavior.4

This should be contrasted with the situation in 2 + 1
dimensions where there is no weak coupling expansion in
terms of g, and it is not clear which resummation would capture
the dynamics of the theory [34,35]. It would be interesting if an
ε expansion of our results could help to clarify this important
problem, perhaps also in combination with a large number Nf

of fermion flavors, as in Ref. [12].

B. Analytic and numeric approach

We will now reanalyze the fermion self-energy, but this time
including the effects from damping via the one-loop resummed
propagator (4.2). This section presents the basic procedure,
while Secs. IV C and IV D summarize the numerical results for
slow and fast fermions (which need to be studied separately).
Instead of dimensional regularization, which we relied on
before, it is easier numerically to work in D = 4 with a hard
cutoff �; the logarithmic divergence in � is equivalent to an
ε pole. The input couplings g and v are defined at the scale
�, and the RG is obtained from (p) by varying the external
fermion frequency or momentum.

The starting point is the self-energy integral in terms of the
Landau damped boson,

(k0,
k) = − g2

(2π )4

∫
dp0 dp⊥ d2p‖

p2
0 + p2

⊥ + p2
‖ + �(pμ)

× 1

i(p0 + k0) − v(p⊥ + k⊥)
. (4.8)

Given that �(pμ) depends on | 
p |, instead of working with
the components p⊥ and p‖, it is more convenient to introduce
radial coordinates, p⊥ ≡ p cos θ , p‖ ≡ p sin θ , where here

4It would be interesting to find an all-loop orders proof for the
behavior of finite effects at small x. Also, establishing the control of
the approximation at large x is straightforward since this is the UV
regime, where the theory is controlled by the tree level action.

p ≡ | 
p |. The one-loop integral is then

(k0,
k) = − g2

(2π )3

∫
dp0 dp

∫ 1

−1
d(cos θ )

p2

p2
0 + p2 + �

(
p0

vp

)

× 1

i(p0 + k0) − v(p cos θ + k⊥)
. (4.9)

In order to extract the logarithmic running of  and compute
the fermion anomalous dimension and velocity beta function,
we will now compute in turn ∂k0 and ∂k⊥. The RG evolution
will be obtained by varying the external frequency and setting
k⊥ = 0; the procedure for varying k⊥ instead of k0 is similar.

Integrating over cos θ and expanding for small k⊥ but
keeping the whole k0 dependence gives

(k0,
k) ≈ g2

4π3v

∫
p dp dp0

p2
0 + p2 + �

(
p0

vp

)

×
[
i tan−1 vp

p0 + k0
+ v2p

(p0 + k0)2 + v2p2
k⊥

]
.

(4.10)

Let us discuss ∂k0 first. Since tan−1(1/x) ≈ π
2 sgn(x) as x →

0, the derivative ∂k0 is a sum of a regular piece (from the
region p0 + k0 �= 0) plus a singular contribution proportional
to δ(p0 + k0):

∂k0(k0) = dr (k0) + ds(k0), (4.11)

where we have defined

dr (k0) = −i
g2

4π3

∫
p0+k0 �=0

p2 dp dp0

p2
0 + p2 + �

(
p0

vp

)

× 1

p2v2 + (p0 + k0)2
,

ds(k0) = i
g2

(2π )2v

∫
p dp

k2
0 + p2 + �

(− k0
vp

) . (4.12)

The delta-function factor from the derivative acting on the
discontinuity of tan−1(1/x) was used to perform the dp0

integral in ds . Notice that the singular contribution comes
from the low-frequency region, something that would be
missed if we were to integrate over frequency shells. In
fact, this singular contribution will be shown to dominate the
low-energy limit.

The calculation of ∂k⊥ determines the running of the
velocity and follows similar steps. The only difference is that
there is no singular contribution as a function of k⊥, as seen
in (4.10). The regular part of (k0,
k) depends only on the
combination ik0 − vk⊥; the result is therefore simply

∂k⊥(k0) = iv dr (k0). (4.13)

From (4.13) it is clear that ds is also the piece responsible for
generating the Fermi-velocity flow in the unscreened regime.
The flow as a function of external momenta can be computed
in an analogous way, and we will quote the results below.

The numerical procedure is now the following: we evaluate
the one-loop contribution to ∂k0 and ∂k⊥ from (4.11)
and (4.13), as a function of external frequency k0 and for
different values of the Fermi velocity v, with a cutoff scale
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FIG. 4. (Color online) Plot of the regular and singular contributions to −i∂k0 as a function of ln k0 for v/c = 0.01 and � = 108 in units
of MD = 1.

� for both the frequency and momenta.5 It is also convenient
to work in units of the Debye mass. The regimes v � 1 and
v � 1 lead to different RG evolutions and will be discussed
separately next.

C. Slow fermions

The numerical evaluation of ∂k0 is shown in Fig. 4 with
the choice v/c = 0.01.

First, in the regime of frequencies k0 � MD ,  depends
linearly on ln k0 and we have checked that this agrees with the
undamped result (3.3). This provides a consistency check on
our approach.

Next, the numeric evaluation shows that  starts to
deviate from the perturbative one-loop answer at a scale
k0 ∼ MD when Landau damping becomes important. This
agrees with (4.6) for slow fermions. What follows below this
scale is a very interesting crossover regime, where the effects
of screening and damping transition from the dynamic x � 1
to the static x � 1 limits. This intermediate behavior extends
roughly between the scales

vMD � k0 � MD, (4.14)

and the self-energy has a rather nonlinear dependence on the
frequency. Note that for very slow fermions this window of
energies is parametrically large. The exit from this regime
around the scale k0 ∼ vMD can be understood by examining
ds in (4.12). The theory enters the cross-over regime at
μLD ∼ MD , a scale at which we can expand �(k0,p) ∼
MD(1 − |p|2v2

3k2
0

+ · · · ), and the integrand is peaked at p ∼ MD .

As we lower k0, � deviates from the dynamical limit, and
there is an increased interplay between the dynamic and static
effects. The breakdown of the dynamical expansion is marked
by |p|2v2

k2
0

∼ 1; taking p ∼ MD , we obtain the scale k0 ∼ MDv.

Below this scale, the Landau damping transits into the static
limit � ∼ M2

D
k0

|p|v , which will begin to drive the overdamped
dynamics.

Finally, we come to the IR limit k0 < vMD . The reg-
ular contribution dr is approximately independent of the
frequency, and only ds is responsible for the logarithmic

5The leading logarithmic dependence is not modified if the
frequency and momenta cutoffs are different, as long as their ratio is
fixed.

running. In this limit, the contribution from ds can be
evaluated analytically [see (4.12)]:

ds(k0) = i
g2

4π2|v|
∫

p dp

p2 + π
2 M2

D
|k0|
vp

≈ i
g2

12π2|v| ln
�3

π
2 M2

Dk0
, (4.15)

which we checked agrees with the numeric answer. The cutoff
in this expression is of order MD , the momentum scale at which
the overdamped approximation used in (4.15) breaks down.
Furthermore, by (4.13) there is no logarithmic divergence in
 as a function of k⊥. We conclude therefore that in this new
IR scaling regime,

(k0,
k) ≈ i
g2

12π2|v| k0 ln
μ

k0
, (4.16)

where μ is the RG scale at which the physical couplings g and
v are evaluated.

There is also a one-loop renormalization of the vertex. By
direct calculation or from (4.16) together with the identity
(3.8), the result is

�(k; q) = g3

12π2|v|
iq0

iq0 − vq⊥
ln

μ

q0
. (4.17)

We will treat this nonlocal divergence as in (3.25).
We should stress that even though we have used the nonlocal

boson propagator to calculate the backreaction on the Fermi
surface, the resulting fermion self-energy is well-behaved.
Apart from the crossover regime where the system adjusts
itself to static and dynamic damping effects, we have found a
logarithmic running in the UV that reproduces the perturbative
answer, and a new regime below the scale vMD . The running
here is still logarithmic, so this is a controlled correction to the
classical theory. However, it has important differences with the
one-loop result (3.3), and we will discuss its consequences on
the long distance theory in Sec. V B.

D. Fast fermions

Let us now repeat the above procedure for fast fermions
v � c. As an example, the numerical evaluation of ∂k0 is
shown in Fig. 5 with the choice v/c = 10.

Comparing both cases v � c and v � c, we see two
main differences. First, for fast fermions, the one-loop
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FIG. 5. (Color online) Plot of the regular and singular contributions to −i∂k0 as a function of ln k0 for v/c = 10 and � = 108 in units of
MD = 1.

approximation is valid up to a parametrically lower scale
k0 ∼ MD/v1/2 (as opposed to k0 ∼ MD for slow fermions).
Taking v � c helps to power-law suppress Landau damping.
The second difference is that now the crossover regime
between the UV and overdamped limits occurs rather quickly,
instead of the broad crossover discussed above. The reason
for this can be traced back to the different behaviors (3.18).
As we have argued before, the backreaction of Landau
damping on the Fermi surface starts to become important
when p2

0 + 
p2 ∼ �(pμ) for a nearly on-shell scalar p0 ∼ | 
p |.
For a fast fermion, this means that x = p0/(v| 
p |) � 1, for
which � ∼ M2

D/v. This reproduces the scale k0 ∼ MD/v1/2

observed numerically.
Therefore there is now no intermediate regime where the

theory transitions between dynamic and static limits. Finally,
the deep IR behavior is the same for both slow and fast
fermions, given in (4.16).

V. LOW-ENERGY DYNAMICS

In this section, we analyze the physical consequences of
our previous results. After summarizing in Sec. V A the three
different regimes of the theory, in Sec. V B, we focus on the
theory in the overdamped limit. We will find that it describes
two sectors—the boson and the Fermi surface–with different
dynamical exponents, and we show that perturbation theory
reorganizes in terms of an effective coupling g2/v, which
becomes strong in the IR due to the renormalization of the
Fermi velocity.

A. Summary of regimes

It will be useful to first summarize the results of Sec. IV in
the following three energy ranges.

UV undamped limit. For energies above the Landau damp-
ing scale μLD

MD
≈ [(v−1 tan−1(v)]1/2 the fermion self-energy

calculated using the corrected boson propagator agrees with
the one-loop result and the dynamics of Sec. III applies. The
theory starts to flow to v → 0, and the fermion acquires
a nonzero anomalous dimension (3.27). As we discussed
before, for ε > 0, the coupling is relevant; in the finite N

generalization of Sec. VI A, it is also possible to find a fixed
point for g.

Crossover regime. For systems with v � c, Landau damp-
ing cuts off the perturbative flow at μ ∼ MD . Our analysis
then reveals an interpolating regime that can extend over a

parametrically large window of scales,

v MD � μ � MD. (5.1)

The physics here is controlled by the ratio x = p0/(v| 
p |), and
this region describes the interpolation between two different
UV and IR scaling regimes.

In models with v � c, Landau damping is suppressed
and cuts off the perturbative flow at the lower scale of
μ ∼ MDv−1/2. The interpolating range for the case of v � c

collapses to a rapid crossover between the undamped and
overdamped theories. It would be interesting to study this
regime in more detail, and detect potentially observable
consequences.

Overdamped limit. Finally, we come to the dynamics below
the scale vMD for slow fermions, or MD/v1/2 for fast fermions.
The low-energy theory exhibits two important features. First,
the boson propagator is now controlled by Landau damping,
with a z = 3 dynamical exponent. The RG evolution that we
have constructed then explains how z = 3 emerges in the IR,
and connects it with the perturbative UV theory with z = 1,
via the nontrivial crossover described above.

The other aspect is that the IR theory organizes as a
perturbative expansion in the effective coupling

α ≡ g2

12π2|v| , (5.2)

both for slow and fast fermions. This can be seen by redefining
the momenta to set v = 1 in the fermion dispersion relation.
Further rescaling the fields makes the fermion canonical,
changes the boson kinetic term to L ⊃ φ(v2p2

0 + 
p2)φ, and
the Yukawa coupling to g/v1/2. The tree level frequency
dependence in the boson kinetic term is subleading in the
overdamped regime, so in this limit the theory depends only
on the coupling g/v1/2, and this explains (5.2). In what follows
we will study in more detail the dynamics in this range.

B. IR dynamics

We now take a closer look at the IR theory in the
over-damped regime. It contains two dynamical exponents:
the boson has zb = 3, while for the fermion zf = 1. The
two exponents compete inside loop integrals, and one has to
determine which one dominates. One approach is to integrate
out the Fermi surface to obtain an effective action for the
boson, and then construct a scaling theory around the z = 3
exponent [8]. However, there are various reasons why this is
not the whole story. First, this action is nonanalytic, due to the
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light quasiparticles from the Fermi surface. One manifestation
is in the logarithmic corrections to Landau damping that we
discussed in Sec. IV A. Another related effect is that the
φ4 interaction calculated in Sec. III D also has a singular
momentum dependence at the fermion dispersion relation.
Furthermore, the Hertz theory is expected to break down at
the scale of superconductivity.

For these reasons, it is necessary to focus as well on the
scaling determined by the Fermi surface, which is also the
appropriate scaling for superconductivity. Let us now consider
the beta functions of the theory assuming the perturbative
z = 1 scaling. Combining (4.16) with the tree level kinetic
term gives an anomalous dimension γψ = g2/(24π2|v|), and
δv = 0 in the notation of (2.14). The velocity flows to zero with
a rate proportional to γψ . As we argued before, the effective
coupling in the low-energy theory is actually α in (5.2) and
not just g, and the beta functions become

γψ = α

2
, βv = α v, βα = −εα − α2. (5.3)

We see that even if ε = 0, the interaction is driven to strong
coupling in the IR, which is a consequence of the running
velocity v → 0 in combination with Landau damping. This
is an interesting effect: while in relativistic theories in 3 + 1
dimensions non-Abelian gauge interactions are needed to
have asymptotic freedom, in the nonrelativistic case, quantum
effects can give βα < 0 already in the Yukawa theory we are
considering. For the case of a gauge field instead of a scalar,
the analog effect makes the coupling IR free, and it is possible
to find a weakly coupled fixed point by balancing the tree
level and one-loop contributions [9]. This fixed point does not
exist in the scalar theory because the one-loop contribution is
βα < 0.

The strong coupling limit is not reached, however. The
reason is that the superconducting (SC) instability, which
sets in at a scale � ∼ e−1/

√
α�, is much larger than the

non-Fermi liquid scale μNFL ∼ e−1/α� in our perturbative
regime. Therefore the non-Fermi liquid phase is covered by
a SC dome. One interesting question is whether it is possible
to have the quantum critical point not completely covered by
the superconductor phase, as displayed in various strongly
correlated systems.6 We will find that this is indeed possible in
a non-Abelian generalization of the theory, to which we turn
next.

VI. PHASE STRUCTURE AT FINITE N

Finally, we will consider a natural extension of the theory
we have analyzed so far, to allow for nonabelian global symme-
tries SU(Nc) × SU(Nf ). The first generalizes spin rotations,
while Nf can arise in multichannel systems. Technically, our
previous results extend readily to this case, but we will find that
the low-energy physics can be quite different. Our motivation
for this is that varying Nc and Nf will allow us to access
different phases of the theory, some of which could have
applications to strongly correlated electronic systems. After

6A recent analysis of this in a different class of models appeared in
Ref. [37].

briefly discussing in Sec. VI A the extension to finite N , in
Sec. VI B, we present a preliminary analysis of the IR phases
of the theory. A rich phenomenology emerges for different
values of Nc, with the possibility of having the non-Fermi
liquid behavior drive superconductivity, something that could
be of relevance for high-Tc materials.

A. Finite-N generalization

The theory for general (Nc,Nf ) has the field content

SU(Nc) SU(Nf )

φij adj + 1 1
ψia � �

(6.1)

The invariant Yukawa interaction is L ⊃ gφijψ
†
iaψja . Let us

for simplicity consider large Nf and Nc, with Nf /Nc fixed.
In order to have a well-defined large N limit, we should also
keep

α̃ ≡ g2Nc

12π2|v| (6.2)

fixed, the analog of the ’t Hooft coupling in our model.
The non-Abelian symmetries introduce two main modifica-

tions in the one-loop results. First, Landau damping is rescaled
by a factor of Nf /Nc,

�(x) = 6
Nf

Nc

α̃ k2
F x tan−1(1/x), (6.3)

and hence Nf /Nc changes the scale at which �(x) starts
to dominate. In particular, if Nc � Nf Landau damping
is suppressed, while in the opposite limit Nf � Nc it is
enhanced. In the latter case, the ’t Hooft coupling should
be defined in terms of Nf instead of Nc so as to have a
well-defined large-N limit. As long as Nf /Nc is finite and
no parameters become exponentially large ∼e1/α̃ for α̃ → 0
(the perturbative limit around which we are expanding), the
Landau damping scale is larger than the one-loop μNFL, and the
resummed boson propagator has to be used. The justification
of this is similar to that given in Sec. IV A.

The second effect is that the anomalous dimension and
vertex contributions to βg no longer cancel. The first is mul-
tiplied by the SU(Nc) Casimir T AT A = C2(�), while for the
second the color factor is T BT AT B = (C2(�) − 1

2C2(adj))T A.
At large Nc, the vertex contribution is then suppressed. The
resulting beta functions in the overdamped regime μ < μLD

are

γψ = α̃

2
, βv = α̃ v, βα̃ = −ε α̃ + α̃2, (6.4)

which extend (5.3) to Nc > 1. We see that for Nc > 1 the
one-loop contribution to βα̃ changes sign; now quantum effects
tend to screen the coupling in the IR. As a result, and unlike
the Nc = 1 case, the non-Abelian theory admits a non-Fermi
liquid fixed point at

α̃∗ = ε, γψ = ε/2, (6.5)

where both the velocity and the quasiparticle residue flow to
zero with a power-law form

v(ω) = v(μ)

(
ω

μ

)ε

, Z(ω) = Z(μ)

(
ω

μ

)ε

. (6.6)
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FIG. 6. (Color online) Schematic representation of the phase
diagram as a function of the parameter u that tunes to criticality
and temperature, and different values of Nc. For small Nc, the
superconducting region (SC) completely covers the non-Fermi liquid
(NFL) region. As Nc increases, the NFL region extends beyond the
SC phase.

This non-Fermi liquid (NFL) fixed point is under perturbative
control, and uses Landau damping in an essential way as
discussed in Sec. V B. We should also recall that the full theory
is not critical, since the bosonic sector follows a different z = 3
scaling.

B. Preliminary analysis of IR phases

We will end our analysis with a preliminary discussion of
the IR phases. We have found that for Nc > 1, the system
has a NFL phase coupled to a z = 3 boson. Now we need to
estimate the scale of the superconducting instability. Since
〈ψia(x)ψja(x)〉 is not a singlet of SU(Nc), the one-loop
contribution is nonplanar; the gap is hence not enhanced by
Nc, and the dependence is still given by (4.7):

� ∼ e−√
Nc/

√
α̃∗�. (6.7)

The dominant l = 0 angular momentum mode for the BCS
condensate forms in the antisymmetric of SU(Nc). This should
be compared with the NFL scale μNFL ∼ e−1/α̃∗� of (6.5).
For small Nc, the NFL region is completely covered by the
superconducting dome (SC), but as Nc increases to Nc � α−1

∗
the NFL regime sets in before the superconducting instability.

Ignoring for the moment other possible instabilities, the
phase diagram of the theory is illustrated schematically in
Fig. 6. Here u is a control parameter that tunes the boson to
criticality, in the way described in Sec. III C.

It is very encouraging that already the simple theory con-
sidered in this work, in its weak coupling expansion, displays
such a rich phenomenology. This model can be potentially
relevant for various strongly correlated systems, both in d = 3
space dimensions, or by developing higher orders of the ε

expansion to try to model quasiplanar systems. Changing
the parameter Nc, the generalization of SU(2) spin, leads
to a very different interplay between superconductivity and
quantum criticality. It is intriguing that compounds dominated
by single-band or multiband interactions also display different
phase diagrams [18].

The prediction of an NFL regime above the SC dome for
moderately large Nc should be highlighted.7 Over a broad

7Estimating the critical value of Nc for which the NFL extends
above the SC dome requires taking into account order one factors,

range of initial parameters the theory flows to this regime,
which incorporates Landau damping backreaction on the
Fermi surface, and where the velocity and quasiparticle residue
flow to zero as described in (6.6). This robust prediction
makes this model an ideal candidate to study how quantum
criticality can drive superconductivity and strange metallic
behavior, a subject of importance for understanding high-Tc

materials.
Finally, it will clearly be important to study other possible

IR phases of the theory. We have focused on the SC instability,
but there can be other instabilities such as stripe order, either
from the Fermi liquid or from the boson. For instance, at large
enough Nc/Nf a charge density wave (CDW) instability in the
Fermi surface can arise (as in QCD [39]); this can have strong
effects since the CDW may not be suppressed by large Nc.
It would also be interesting to analyze the fate of the boson,
and the interplay between its ordered phase and the NFL, SC,
and CDW phases. We hope to return to these points in the
future.

VII. CONCLUSIONS AND FUTURE DIRECTIONS

Motivated by evidence for quantum phase transitions and
NFL behavior, as well as by theoretical questions on the
renormalization of nonrelativistic QFTs, in this work we have
studied the coupled theory of a critical boson and a Fermi
surface in D = 4 − ε space-time dimensions. Using the ε

expansion and in a perturbative limit, we included the full
backreaction of Landau damping, both on the scalar field and
the fermions, and mapped the RG evolution across the different
relevant energy scales.

We found a new crossover regime, connecting the one-loop
and overdamped behaviors, where static and dynamic damping
effects are important, and there is no scaling symmetry. Below
the crossover, the theory is described by a zb ≈ 3 bosonic
sector (which includes nonanalytic corrections from the Fermi
surface), interacting with a zf ≈ 1 NFL. After generalizing
the model to allow for a non-Abelian global symmetry (the
extension of spin rotations), we identified a NFL fixed point
over a large parameter space of the theory. The critical behavior
is characterized by a Fermi velocity and quasiparticle residue
Z that flow to zero as ωε . An important property of the theory is
that by increasing the number of bosonic flavors, it is possible
to interpolate between a phase where the NFL is covered by the
SC instability, and the case where the NFL becomes important
firsts and affects the SC.

Let us end by discussing some of the future directions
of research. At a more conceptual level, the nonlocal ver-
tex renormalization found in this paper requires a detailed
understanding, something which we hope to address in the
future [21]. The nonlocality is associated with the Fermi
velocity running and the presence of low-energy modes across
the Fermi surface, so this may be a more generic phenomenon.
This raises conceptual challenges in making sense of, and
eventually constructing, low-energy effective theories for

which we have not done here, especially in the calculation of the
gap. For ε ∼ 0.1, already for Nc ∼ 5 NFL effects start to become
important near �.
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nonrelativistic QFTs. Secondly, it would be interesting to
extend the analysis to higher orders in ε, with the hope of
capturing some of the dynamics of quasiplanar systems in
a controlled framework. Finally, it will also be important to
fully explore the IR phases of such system, and investigate
how various orders compete in different regions of the phase
diagram. With bosonic fluctuations arising both from the scalar
field and as collective modes of the Fermi surface, it may be
possible to realize phenomena such as stripe order and Fermi
surface reconstruction. It would also be interesting to develop
more realistic models, and check if the spin number Nc that
played an important role in the IR phases of our theory can
also be related to multiband effects.
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APPENDIX: CONVENTIONS AND USEFUL FORMULAS

1. Field-theory conventions

We work in the Euclidean signature. Our convention for
Fourier transforms is f (x) ∼ ∫

p
e−ipxf (p), and the path

integral measure is e−S , with the action defined in the main
text. Let us focus first on the fermions, which require a
bit more of care than bosons. Under Fourier transform, the
fermion kinetic term close to the Fermi surface becomes Lkin =
−iψ†(p)(ip0 − vp⊥)ψ(p), where 
p = n̂(kF + p⊥). Recalling
that for a fermionic path integral Z = ∫

DψDψ†eψ
†
αKαβψβ

the propagator is 〈ψαψ
†
β〉 = −K−1

αβ , in our case we have the
Green’s function

〈ψ(p)ψ†(p)〉 = GF (p0, 
p) = − 1

ip0 − vp⊥
. (A1)

For a scalar field,

〈φ(p)φ(−p)〉 = D(p) = 1

p2
0 + 
p2

. (A2)

When calculating quantum corrections, we will add a su-
perindex “(0)” to these tree-level propagators.

The one-loop fermion self-energy  generated by the
interaction with a a scalar or a gauge field is given by

G
(1)
F = G

(0)
F + G

(0)
F  G

(0)
F + · · · = 1[

G
(0)
F

]−1 − 
, (A3)

where

(p) = μεg2
∫

dDq

(2π )D
G

(0)
F (p + q) D(0)(q). (A4)

There is a similar one-loop correction for the boson induced
by the fermion loop:

D(1) = D(0) − D(0)�D(0) + · · · = 1

[D(0)]−1 + �
(A5)

with

�(p) = μεg2
∫

dDq

(2π )D
G

(0)
F (q) G

(0)
F (p + q). (A6)

The extra minus sign here comes from the fermion loop. The
loop integral can be decomposed into an integral over the
momentum normal to the Fermi surface times the remaining
(d − 1)–dimensional angular part.

Lastly, consider the correction to the interaction L ⊃
με/2 gψ†(q + k)φ(q)ψ(k). Writing the quantum vertex as
(there is an overall minus sign from e−S)

− 〈ψ†(k + q)φ(q)ψ(k)〉amp = με/2(g + �(k; q)), (A7)

the one-loop contribution is given by

�(k; q) = μεg3
∫

dDp

(2π )D
D(0)(p − k) G

(0)
F (p) G

(0)
F (p + q).

(A8)

2. Some useful integrals

Our main starting point will be the integral

In ≡
∫

dp0 dp⊥ dd−1p‖
1(

Ap2
0 + B p2

⊥ + C p2
‖ + �

)n

= π
d+1

2 �
(

2n−d−1
2

)
�(n)

1√
ABCd−1�2n−d−1

, (A9)

where the coefficients in the denominator are positive and
we assume d < 2n + 1 so that the integral converges. Taking
derivatives of this expression with respect to A, B, C, or �

obtains other integrals that are also useful in our computations.
For instance, a derivative with respect to A gives

∫
dp0 dp⊥ dd−1p‖

p2
0(

Ap2
0 + B p2

⊥ + C p2
‖ + �

)n

= π
d+1

2 �
(

2n−d−3
2

)
2�(n)

1√
A3BCd−1�2n−d−3

. (A10)

We will be interested in the case d = 3 − ε with ε � 1, both
for dimensional regularization and the ε expansion.

For instance, using this formula (and the usual Feynman
parameters), we can derive the following integrals that enter
the calculation of the self-energy, for small ε:

∫
dDp

(2π )D
1

i(p0 + k0) − v(p⊥ + k⊥)

1

p2
0 + p2

⊥ + p2

= −1

ε

1

4π2

ik0 + sgn(v)k⊥
1 + |v| + O(ε0). (A11)

3. Vertex correction in dimensional regularization

This section presents the calculation of the vertex cor-
rection with external boson momenta (q0,q⊥) in dimensional
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regularization, which is proportional to the integral

I =
∫

dDp

(2π )D
1

p2
0 + p2

⊥ + p2
‖

1

i(q0 + p0) − v(q⊥ + p⊥)

1

ip0 − vp⊥
. (A12)

The dependence on the external fermion momentum is continuous, so here we have set k0 = 0, 
k = n̂kF , and we have decomposed
the internal momenta in components perpendicular and parallel to n̂.

First, the denominators are combined using Feynman parameters, and the loop momenta are shifted in order to complete
squares in the denominator:

I = 2
∫ 1

0
dx

∫ 1−x

0
dy

∫
dDp

(2π )D
[i(q0 + p0 − δ0) + v(q⊥ + p⊥ − δ⊥)][i(p0 − δ0) + v(p⊥ − δ⊥)]{

p2
0 + [1 − (1 − v2)(x + y)])p2

⊥ + (1 − x − y)p2
‖ + �(x,y)

}3 . (A13)

The original loop momenta were shifted by p0 → p0 + δ0, p⊥ → p⊥ + δ⊥, with δ0 = xq0, δ⊥ = xv2q⊥
1−(1−v2)(x+y) , and �(x,y) is

independent of momenta.
Eliminating the odd terms in the numerator and performing the loop integral using Sec. VIII B one obtains

I = π3 csc πε
2

2(2π )4

∫ 1

0
dx

∫ 1−x

0
dy

−(1 − v2)(1 − x − y)
ε
2

[1 − (1 − v2)(x + y)]
3
2 �(x,y)

ε
2

+ A(x,y)(1 − x − y)−1+ ε
2 ε

[1 − (1 − v2)(x + y)]
1
2 �(x,y)1+ ε

2

, (A14)

and we have defined A(x,y) = δ0(q0 − δ0) − δ⊥v2(q⊥ − δ⊥). The first term here is UV divergent, and now we find an additional
contribution from the second term. Naively, it is suppressed by ε; however, in the limit when y → 1 − x, the integral of the
numerator is made convergent by ε: the would-be logarithmic singularity is replaced by 1/ε, which cancels the ε suppression in
front. The leading ε dependence is then

I = π3 csc πε
2

2(2π )4

[
− 2(1 − |v|)

(1 + |v|)|v| +
∫ 1

0
dx

2A(x,1 − x)

�(x,1 − x)|v| + O(ε)

]
. (A15)

Now one can check that

A(x,1 − x) = x(x − 1)(iq0 + vq⊥)2, �(x,1 − x) = x(1 − x)
(
q2

0 + v2q2
⊥
)
, (A16)

so A(x,1−x)
�(x,1−x) is independent of x, and we have

I (q0,q⊥) = 1

ε

1

4π2(1 + |v|)
iq0 + sgn(v)q⊥

iq0 − vq⊥
+ O(ε0). (A17)
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