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1 Introduction

The possibility of understanding gauge symmetry enhancement from a Double Field Theory

(DFT) perspective was addressed in various recent articles [1–3]. The discussion was done

in the context of the bosonic string since, even if ill defined, it is the simplest example

in several aspects and allows to identify the relevant ingredients. In the present note we

follow similar steps as in [3] in order to describe the gauge symmetry enhancement (and

breaking) in the heterotic string from a DFT-like formulation.

Gauge symmetry enhancement is a very stringy phenomena associated to the fact

that the string is an extended object and, therefore, it can wind around non-contractible

cycles. String states are thus characterized by a stringy quantum number, the so-called

winding number, counting the number of times that the cycle is wrapped by the string. The

exchange of winding and momentum states (accompanied by a transformation of moduli

fields) leads to T-duality invariance, a genuine stringy feature.

At certain moduli points (fixed points of T-duality transformations) vector boson states

in some combinations of windings and momenta become massless and give rise to enhanced

gauge symmetries (see for instance [4–6]). Of course, the effective low energy theory, where

massive states are neglected, can be described by an usual gauge field theory Lagrangian,

containing gravity, with no reference to any windings. An intriguing aspect is that this
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field theory somehow encodes information about stringy effects. Moreover, even if gauge

symmetry breaking is achieved as usual, with some scalar fields acquiring vevs, this higgsing

process must encode information about moduli away from the fixed point.

Interestingly enough, this effective theory close to self-dual points originated in the

bosonic string, can be embedded [3] into a DFT-like formulation. In DFT (we will be more

precise below) the internal configuration space includes, besides the usual space coordinates

dual to KK momenta, new coordinates dual to winding states and therefore, coordinates are

doubled. This DFT rewriting allows to highlight the stringy aspects of these gauge theories.

Actually, in a generalized Scherk-Schwarz [7–9] compactification of this DFT the fluxes,

computed from an internal vielbein depending on doubled coordinates, appear to depend

on moduli and become the structure constants of the enhanced group at fixed points. We

show below that this rewriting also works for the bosonic sector of a toroidally compactified

heterotic string. Moreover, we show that by invoking supersymmetry, a corresponding

fermionic sector can also be introduced.

In section 2 we present a brief discussion of symmetry enhancement and show the

DFT rewriting of heterotic string theory effective action close or at the enhancing points.

It is also shown how breaking of gauge symmetry is encoded into the moduli dependence

of fluxes. A simple illustration for the case of circle compactification is provided. Ideas

presented in [3] are recurrently used throughout the article.

The introduction of fermions is discussed in section 3. In particular we show that if

the gaugings in shift matrices of gauged supergravities, associated to fermionic mass terms,

are replaced by Scherk-Schwarz (moduli dependent) fluxes, the masses of fermions are in

correspondence with their bosonic partners, as expected from supersymmetry.

Several details are presented in the appendices. In appendix A a quick introduction

to DFT and generalized Scherk-Schwarz like compactification is provided with emphasis in

the heterotic case where the ingredients needed in our construction are highlighted. For a

more complete introduction to DFT we provide some of the original references in [10–14]

and refer the reader to some reviews [15–17] (where a more extensive list of references

can be found). In appendix B a brief account of heterotic string features needed for our

discussion is presented.

Concluding remarks and a brief outlook are presented in section 4.

2 Heterotic gauge symmetry enhancement and DFT rewriting

Toroidal compactification of the SO(32) (or E8 × E8) heterotic string to d space-time

dimensions leads to a generic gauge group

GL ×U(1)10−d
R (2.1)

where the Left group GL is generically a product of non-abelian and abelian gauge groups.

The rank of GL is rL = 16 + 10 − d = 26 − d originated from the 16 Cartan generators

of the ten dimensional gauge group plus the r = 10 − d vector bosons coming from left

combinations of the KK reductions of the metric and the antisymmetric tensor. Different

gauge groups do appear when moving along moduli space. At generic points in moduli
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space GL = U(1)26−d
L while a point of maximum enhancement leads to GL = SO(52− 2d)

for the SO(32) string case.

We present some basic details in appendix B. Let n = nc + rL = dimGL be the

dimension of GL at some moduli point with nc denoting the number of charged generators.

The effective low energy theory will thus be a GL × U(1)10−d
R gauge theory coupled to

gravity and the Kalb-Ramond antisymmetric tensor field in d dimensions. There are also

(nc + 26 − d)(10 − d) scalars. Thus, the counting of degrees of freedom leads to: d2

corresponding to graviton plus B field, nc + 36 − 2d vectors from GL × U(1)10−d
R and

(nc + 26 − d)(10 − d) scalars. Recall that the number of scalar fields corresponds to

(26−d)(10−d) moduli plus nc(10−d) extra scalars that should become massive at generic

points where the broken gauge group is U(1)26−d
L ×U(1)10−d

R .

It is interesting to notice that the total number of degrees of freedom coincides with

dim
O(d+ n, d+ r)

O(d+ n)×O(d+ r)
= d2 + d(nc + 36− 2d) + (nc + 26− d)(10− d). (2.2)

Indeed, this coset-like writing provides a clue of how to express the effective theory in a

DFT-like form as discussed in appendix A.

Following similar steps as presented in [1, 3] for the bosonic string case, we propose an

expression for such an action and then discuss its specific features. Namely,

Seff =
1

2κ2
d

∫
ddx
√
ge−2ϕ

[
R+ 4∂µϕ∂µϕ−

1

12
HµνρH

µνρ

−1

8
HABFAµνFBµν +

1

8
(DµH)AB(DµH)AB − V

]
. (2.3)

Here

V = − 1

12
fAB

KfLC
D
(
HALHBCHKD − 3HALηBCηKD + 2 ηALηBCηKD)− Λ (2.4)

is a scalar potential where the last two terms are just constants. The scalars parametrize the

coset O(n,r)
O(n)×O(r) of dimension (nc+26−d)(10−d). The indices can be conveniently split in a

L-R basis (named a C base) as A = (a, Î) where a = 1, . . . rL, rL+1, . . . rL+nc = n = dimGL
index runs over the Left group GL. In addition the Î = 1, . . . r index corresponds to the

Right U(1)r group. The index contractions are performed with ηAB, the O(rL + nc, r)

invariant metric

ηAB =

(
1rL+nc 0

0 −1r

)
. (2.5)

HAB is the (so-called) internal generalized metric encoding information about scalar

fields. R is the d-dimensional Ricci scalar and FAµν and Hµνρ

FB = dAB − 1

2
√

2
fCD

BAC ∧AD

H = dB + FC ∧AC −
1

3!
√

2
fABCA

A ∧AB ∧AC , (2.6)

are the gauge field and B field strengths.
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The covariant derivative of the scalars is

(DµH)AB = (∂µH)AB +
1√
2
fKLAA

L
µHKB +

1√
2
fKLBA

L
µHAK . (2.7)

Finally, the fABC = ηAKf
K
BC are completely antisymmetric constants. Interestingly

enough this action can be interpreted as a generalized Scherk-Schwarz reduction of a DFT-

like action, as we briefly sketch in appendix A, the constants fKBC being the generalized

fluxes of the compactification.1 There are (r+n)(r−1+n)(r−2+n)
3! such fluxes which must

satisfy the quadratic constraints

f[AB
KfCD]K = 0 . (2.8)

If indices are allowed to transform then the action is globally invariant under

O(nc + 26− d, 10− d) and it can be identified with the bosonic (electric) sector of a half-

maximal gauged supergravity action [18–21].

In spite of the fact that this huge number of gaugings was explored in several situations,

its physical interpretation deserves further investigation. For instance, if we restricted to

a = 1, . . . , r = 10 − d, and in r = 6 dimensions, the above counting of fluxes would corre-

spond to the 220 gaugings of electric sector of O(6, 6) gauged supergravity. These gaugings

have been identified (see for instance [15, 19, 22–24]) as geometric and non geometric fluxes

in (orientifold) string compactifications. Here we will restrict to a very specific choice of a

subset of all possible fluxes, relevant to our discussion.

In order to make contact with the heterotic string effective action we first expand the

generalized metric in terms of scalar fluctuations encoded in the scalar matrix Ma,Î with

dimGL × r = (nc + 26− d)(10− d) independent degrees of freedom. Namely we write

HABC = δAB +H(1)AB +
1

2
H(2)AB + . . . (2.9)

such that matrix elements vanish unless

H(1)

aÎ
= Ma,Î , H(1)

Îa
= MT

a,Î
(2.10)

H(2)
ab = (MMT )ab, H(2)

Î Ĵ
= (MTM)Î Ĵ .

Moreover, we make a specific choice for flux values (therefore breaking the global

symmetry), by identifying them with the gauge group structure constants. Namely,

fABC =

{
fabc GL structure constants

0 otherwise
,

where fabc is the subset of all possible fluxes (with Left indices) reproducing the structure

constants of the GL group algebra. When couplings are adequately adjusted the above

1Recall that other kinds of fluxes like fA could be present [8, 9, 15, 34] as shown in appendix A. Here

we set them to zero since they are not relevant for our discussion.
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action reduces to the GL ×U(1)10−d
R gauge theory action

S =
1

2κ2
d

∫
ddx
√
ge−2ϕ

(
R+ 4∂µϕ∂µϕ−

1

12
HµνρH

µνρ

)
− 1

8

(
δabF

aµνF bµν + δÎ Ĵ F̄
ÎµνF̄ Îµν −

1

2
gd
√
α′MaÎF

a
µνF̄

Îµν

)
−DµMaÎDνM

aÎgµν +O(M4), (2.11)

reproducing the bosonic sector of heterotic string low energy theory at a fixed point. Here

a labels the Left gauge group (generically non- Abelian) generators with vector bosons

AaLµ and Î = 1, . . . r the Abelian group U(1)Î associated to vector bosons AÎRµ. The scalar

fields live in the (dimGL)q̂=0 adjoint representation of GL and carry zero vector charge

q̂ = (q̂1, . . . , q̂r) = 0 with respect to U(1)rR right group. Thus, the covariant derivative

in (2.7) becomes

DµMaÎ = ∂µMaÎ + gdf
k
laA

l
LµMkÎ

, (2.12)

where gd = κd

√
2
α′ . Notice that no scalar potential is generated for this choice of structure

constants.

In the next section we show, in the context of DFT, how gauge symmetry breaking

can be achieved by allowing structure constants to depend on moduli, as expected from

string theory.

2.1 Gauge symmetry breaking from DFT rewriting

In string theory the structure constants can be read out from 3-point vertex vector boson

operators. For the Cartan generators, which we label with the index ǏL = (i = 1, . . . r;

I = 1, . . . 16), the associated Left vector bosons vertex operators are of the form

V (ǏL) ∝ ∂zyǏ ψ̃µeiK.X , whereas for charged operators we have V (lL) ∝ ψ̃µeilL.y(z)eiK.X

where lǏL are the Left internal momenta defined in (B.2), and Xµ(z) and Kµ are the space-

time coordinate and momentum, respectively. Recall that the internal momenta depend on

specific values of KK momenta pm and winding numbers p̃m as well as on the Λ16 weights2

P I . We encode these values into a “generalized momentum vector”

P̌ = (P;P I), with P = (pm, p̃
m). (2.13)

Let us encode denote by Φ = (g,B,A) a generic moduli point. Since momenta depend

on moduli fields we actually have lL = lP̌L(Φ) and similarly, lR = kP̌R(Φ).

At specific points Φ0 in moduli space and for certain values of P̌ such that

kP̌R(Φ0) = 0, (lP̌L(Φ0))2 = 2 (2.14)

gauge symmetry enhancement occurs (B.5). At these points

l
(P̌)
L (Φ0) ≡ α(P̌) (2.15)

2For the sake of clarity we concentrate in the SO(32) string but same conclusions are valid for the E8×E8

heterotic case with lattice Λ8 × Λ8.
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become the roots α(P̌) of the GL gauge group. Notice that there is an associated root to

each of the nc possible values of P̌, satisfying the massless vector condition (2.14).

Three point amplitudes involving Left vector boson vertices can be expressed as

〈VL(l
(P̌1)
L )VL(l

(P̌2)
L )VL(l

(P̌3)
L )〉 ∝ f

α(P̌1)α(P̌2)α(P̌3)(Φ)
E(ε1,K1; ε2,K2; ε3,K3) , (2.16)

where E(εi,Ki; i = 1, 2, 3) is a Lorentz invariant antisymmetric function of polarization

vectors εµi (Ki) and space-time momenta Kµ
i . The constants f

α(P̌1)α(P̌2)α(P̌3)(Φ) are antisym-

metric and vanish unless internal momentum is conserved, namely P̌3 = −P̌1 − P̌2. At a

self-dual point Φ = Φ0 this indicates that structure constants fα1α2α3 vanish unless α1 +α2

is a root. In this case, we can normalize by setting f
α(P̌1))α(P̌2)α(P̌3)(Φ) = 1. Momentum

conservation also implies that, at the self-dual point, amplitudes mixing Left and Right

indices vanish. However, away from the fixed point, the vertices develop a dependence on

lR, VL(l = (lL, lR)) ∝ eil
P̌
L(Φ).y(z)+lP̌R(Φ).ȳ(z̄)eiK.X and therefore mixing now occurs. In fact,

it is found that the only non vanishing amplitudes are

〈VL(l(P̌))VL(l(−P̌))VL(Ǐ)〉 ∝ l(P̌)
L (Φ)Ǐ ; 〈VL(l(P̌))VL(l(−P̌))VR(Î)〉 ∝ l(P̌)

R (Φ)Î .

Following [3], we propose to identify the amplitude coefficients with some algebra structure

constants, even (slightly) away from the fixed point Φ0. Namely we set

fα(P̌)α(−P̌)ǏL
(Φ) = l

(P)
L (Φ)Ǐ , f

α(P)α( ˇ−P )Î
(Φ) = l

(P̌)
R (Φ)Î (2.17)

with the other constants being obtained as permutations, and we propose the algebra

[
Eα, E−α

]
= l

(α)Ǐ
L HǏ + l

(α)Î
R ĤÎ

[
HI , Eα

]
= l

(α)I
L Eα[

Eα1 , Eα2

]
= fα1α2α3Eα3

[
ĤI , Eα

]
= l

(α)I
R Eα . (2.18)

We have used α = α(P) to alleviate the notation and, as we found above, fα1α2α3 = 1 if

α3 = α1 +α2 is a root and vanishes otherwise. All other commutators vanish. It is easy to

show that (2.18) satisfies Jacobi identities and, therefore, defines a Lie algebra.

Recall that, at the self-dual point where kαR(Φ0) = 0 and fα−αÎ = l
(α)Î
L = αÎ , the

algebra reduces to the gauge algebra of GL group in the Cartan-Weyl basis. For instance

[Eα, E−α] = αÎHÎ for charged generators Eα and Cartan generators HÎ , as expected.

Interestingly enough, by performing a linear combination of generators it can be shown that

there is still an underlying GL algebra. To visualize the linear combination let us define

a double Cartan operator HA =
(
HǏ , ĤÎ

)
and the double (moduli dependent) momentum

L(α)
A =

(
l
(α)Ǐ
L , l

(α)I
R

)
. The algebra (2.18) can now be written as

[
Eα, E−α

]
= L(α)

A HA[
HA, Eα

]
= L(α)

A Eα[
Eα1 , Eα2

]
= fα1α2α3Eα3 .

(2.19)
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It is worth observing that an O(rL, rR) transformation can be performed over the

double Cartan generator, namely the one given by the inverse of δIJ 0 AJnδnm
−AJmδJI δnm Gnm −Bnm − R

2A
I
nA

I
m

−AJmδJI δnm −Gnm −Bnm − R
2A

I
nA

I
m

 , (2.20)

such that L(α) is mapped to P̌ (see (2.13)) and H to new double Cartan’s H leading to[
Eα, E−α

]
= P̌(α)

A HA[
HA, Eα

]
= P̌(α)

A Eα[
Eα1 , Eα2

]
= fα1α2α3Eα3 .

(2.21)

This final algebra has the same form independently of moduli values. Furthermore since

the algebra (2.18) and (2.21) are isomorphic, due to (2.20), we conclude that the algebra

at the self-dual point is the same at all other (neighborhood) points.

In generalized Scherk-Schwarz like compactifications of DFT, the generalized fluxes

fABC are defined from the generalized algebra satisfied by the internal frame (A.13). Let

us assume for the moment that a specific choice of frame exists such that these fluxes are

the structure constants found in (2.18). Once these fluxes are identified we must replace

them into the action (2.3). The output is that the resulting action is the gauge broken

symmetry action where vector bosons and scalars acquire masses proportional to structure

constants mixing Left and Right indices, namely fα(P)α(−P)Î(Φ).

2.1.1 Goldstone bosons

We start by inspecting the couplings between vectors and scalars arising from kinetic

terms in (2.3). By keeping the first term in the internal metric expansion (2.9),

HABC = δAB +H(1)AB + . . . we find that

DµHABDµHAB ≈ 4∂µM
ABfKLAδKBA

µL = 4∂µM
aÎfaLÎA

µL (2.22)

= 4∂µM
aÎfabÎA

µb . (2.23)

Here we have used the exapnsion into Left and Right indices A = (a, Î), we have used the

metric (2.5), the antisymmetry of fABC and the fact that the only non vanishing fluxes are

of the form fabc, fabÎ .

The conclusion is that, for a given vector boson Abµ, there is a combination of

Î = 1, . . . , r = 10− d, would-be Goldstone bosons scalar fields fabÎM
aÎ ≡ fα−αÎM

αÎ =

l
(P)
R (Φ)ÎM

αÎ (whenever fabÎ 6= 0). We have recast the expression in a Cartan-Weyl ba-

sis by recalling that the only non vanishing fluxes (away from the point of enhancement)

containing a Cartan index are of the form fα−αÎ .

Interestingly enough, this combination arises as a conformal anomaly contribution in

the OPE of energy momentum tensor with scalars whenever these scalars become massive,

away from the fixed point (see [1] for a bosonic string example). This indicates that the

– 7 –
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combination l
(P)
R (Φ)ÎM

αÎ(K) of internal R-momentum and scalar polarizations, must be

set to zero.3

Let us see, as an example, how vector bosons and scalar masses arise.

2.1.2 Vector masses

In order to read the vector boson masses we must just look at quadratic terms in the scalar

kinetic term. Thus, following similar steps as above but now keeping just the constant

term in the internal metric expansion (2.9) HAB = δAB + . . . we find

1

8
(DµH)AB(DµH)AB ≈ 1

8
(fRLBδKA + fRLAδKB)ηRK(fPSAδP

′B + fPSBδP
′A)ηPP ′A

L
µA

µ
S

= 2
1

8
(fRLBf

PSAδP
′B + fRLBf

PSBδP
′A)δKAηPP ′η

RKALµA
µ
S

= −1

2
fÎaLf

ÎaSALµA
µ
S = −(fα−αÎ(Φ))2|Aα|2 , (2.24)

where, again, a Cartan-Weyl rewriting was used in the last term. Namely, away from the

fixed point, the vector bosons acquire a mass mAα given by

m2
Aα =

∑
Î

(fα−αÎ(Φ))2 = l2L(Φ) . (2.25)

2.1.3 Scalar masses

From a DFT point of view, the scalar masses arise from quadratic terms in scalar fluc-

tuations in the scalar potential. Thus, by inserting the expansion (2.9) into the scalar

potential (2.4) we find:

− 1

12
fABCfDEFH(1)ADH(1)BEδCF − 1

12
fABCfDEFH(2)AD

(
3δBEδCF −3ηBEηCF

)
. (2.26)

We notice that, due to the relative minus sign between Left and Right indices in ηAB

(see (2.5)) the second term vanishes unless indices organize as δbeδÎ Ĵ leading to

1

2

∑
α,Î

fα−αÎfα−αÎH
(2)αα =

1

4

∑
α,Î,Ĵ

(fα−αÎ)
2|MαĴ |2 =

1

4

∑
α,Ĵ

m2
α|MαĴ |2 , (2.27)

where

m2
α =

∑
Î

(fα−αÎ(Φ))2 = m2
Aα (2.28)

is the mass (square) of the scalar field MαĴ , coinciding with the vector boson mass.

On the other hand, the first term contribution in (2.26) leads to

1

2

∑
α

(∑
Î

fα−αÎM
αÎ

)2

. (2.29)

3Alternatively, such a combination of scalar vertex operators must be included into a new massive,

anomaly free, vector field.
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However, this contribution is irrelevant since
(∑

Î fα−αÎM
αÎ
)

is the Goldstone boson

combination.

Let us stress that the obtained masses coincide with the masses computed from string

mass formula (B.3).

2.2 Examples

Here we discuss a simple illustration of the above construction in the simplest case of

compactification on a circle of radius R. In this case (B.2) reads

KI
L = P I +RAI p̃ (2.30)

kL =

√
α′

2

[
p

R
+
p̃

R̃
− P.A− R

2
A.Ap̃

]
kR =

√
α′

2

[
p

R
− p̃

R̃
− P.A− R

2
A.Ap̃

]
.

A massless state requires kR = 0 (N̄F = 1) and then kL =
√

2α′ p̃
R̃

.

2.2.1 SU(2) × SO(32) × U(1)

A possible set of massless vectors is provided by choosing p = p̃ = ±1, by setting the radius

to its self-dual value R =
√
α′ = R̃ and AI = 0. Together with the massless vector state

associated to KK compactification (with p = p̃ = 0 = P I) mode these massless vectors

lead to an SU(2) Left group.

In addition, an SO(32) group associated to the weights P = (±,±, . . . 0) ap-

pears (underlining meaning permutation over the 16 entries) and the corresponding

16 Cartan oscillators. Therefore, at this moduli point, the enhanced gauge group is

SO(32)L× SU(2)L ×U(1)R. In the notation of (2.19) this full set of massless states corre-

sponds to P̌SU(2)×SO(32)×U(1) = (±1,±1; 0, . . . ; 0), (0, 0;±,±, . . . 0).

We can break the enhanced gauge group SO(32)L × SU(2)L × U(1)R to SO(32)L ×
U(1)L × U(1)R or to U(1)17

L × U(1)R depending on the direction of the moduli space on

which we move.

For instance, by sliding away from the self-dual radius, charged SU(2) vectors become

massive with mass square m2
− with m− =

√
2
α′a− = 1

R−
1
R̃

, where a± are defined in (A.16).

The algebra (2.19) becomes[
E+, E−

]
= 2(a+H3 + a−H3̄)

[
EP , E−P

]
= PIHI[

H3, E±
]

= ±a+E±
[
HI , EP

]
= PIEP[

H3̄, E±
]

= ±a−E±
[
EP1 , EP2

]
= fP1P2P3EP3 . (2.31)

The subindices ± denote the two roots of SU(2), the subindex 3 denotes the corresponding

Cartan whereas fP1P2P3 are the structure constants of SO(32) where PI are the roots and

HI the Cartan generators. At the self-dual radius we have a− = 0, a+ = 1 and the SU(2)

gauge algebra is recovered.

– 9 –



J
H
E
P
1
0
(
2
0
1
7
)
0
4
6

By turning on Wilson lines AI the group is broken to U(1)17
L × U(1)R. The algebra

becomes[
E+, E−

]
=

(
2− 1

2
A2

)
H3+

(
1

2
A2

)
H3̄ +AIHI

[
EP , E−P

]
= PIHI−(P ·A)H3−(P ·A)H3̄[

H3, E±
]

= ±
(

2− 1

2
A2

)
E±

[
HI , EP

]
= PIEP[

H3̄, E±
]

= ±
(

1

2
A2

)
E±

[
EP1 , EP2

]
= fP1P2P3EP3[

HI , E±
]

= ±AIE±
[
H3̄, EP

]
= −(P ·A)EP . (2.32)

As discussed, the vector boson masses are identified with the structure constants mix-

ing Left and Right indices. Therefore we find that SU(2) charged vectors A±µ ac-

quire a mass mSU(2) = |f3̄±
±| = 1

2A
2 whereas SO(32) charged vectors masses are

mSO(32) = |f3̄P−P | = |P ·A|. As discussed in the general case, the above commutators sat-

isfy Jacobi Identities and define an SU(2) × SO(32) algebra now involving massive states.

Let us recall that from DFT perspective the algebra is obtained through generalized Lie

derivatives of the twists EA(Y). The explicit twist for the SU(2) sector is given in (A.15).

2.2.2 SO(34)

Other enhanced groups can be obtained at different points in moduli space. points

in moduli space can lead to different enhancements. For instance, by choosing [4, 5]

R̃ =
√

2α′ and RA = (−1, . . . 0) we notice that for p̃ = 0 massless states are obtained

if P = (±,±, . . . 0), namely an SO(32) root, if KK momenta p = −P 1 is selected. More-

over, the SO(32) weights P = (±,±, . . . 0), (0, . . . 0), (2, . . . 0) combined with p̃ = ±1 lead to

lL = (±;±, . . . 0) states that combined with the SO(32) roots lead to massless states with

charged operators associated to lL = (±;± . . . 0) corresponding to the well known SO(34)

enhanced group [4, 5].

Recall thet our description holds at the neighborhood of the SU(2) × SO(32) × U(1)

point (defined by a specific choice of generalized momentum P̌SU(2)×SO(32)×U(1) and moduli

fields) or SO(34) point with different generalized momenta P̌SO(34) and moduli fields but

it is not possible to continuously interpolete between both points.

3 Including fermions

The action (2.3), for d = 4, is nothing but the N = 4 bosonic (electric) sector of a generic

gauged supergravity theory (see for instance [18–20, 25, 26]). We then see that, Scherk-

Schwarz reduction of DFT provides a way of deriving this gauged supergravity sector.

Inclusion of the magnetic sector requires considering EFT (see for instance [27, 28])

or an extension of the initial global group. The inclusion of fermions from a DFT point

of view was considered in several works [29, 30] and, in particular, a Scherk- Schwarz like

reduction was proposed in [32] in the context of the superstring.

The aim of the present section is to show that the mechanism of gauge symmetry

enhancing- breaking through moduli dependent fluxes, found for the bosonic sector, is

reproduced in the fermionic sector.

– 10 –



J
H
E
P
1
0
(
2
0
1
7
)
0
4
6

By invoking supersymmetry we conclude that the fermionic sector is just the fermionic

sector of gauged supergravities discussed in the literature. We first concentrate in the

N = 4 case in four dimensions and discuss its generalization later on. Therefore, we

must deal with the global symmetry group O(6 + n, 6). In particular we concentrate in

the fermionic mass terms. For instance, quadratic terms containing the gravitini ψµi and

gaugini λaj read [18, 25, 26]

e−1Lf.mass =
1

3
g Aij1 ψ̄µi Γµν ψµj + ig A2 ai

jψ̄µi Γµ λaj +A3ab
ij λ̄ajλ

a
j + h.c. , (3.1)

where the matrices Aij1 , A2 ai
j , A3ab

ij are known as shift matrices. Here indices i span

the spinorial representation of SO(6) or, equivalently, the 4-dimensional representation of

SU(4), the universal cover of SO(6). SO(6) vectors vm̂ can be recast in terms of the antisym-

metric combinations of spinorial representations, or, equivalently in terms of antisymmetric

SU(4) six dimensional representation vij through vm̂(γm̂)ij = vij where

vij = v[ij] and vij = (vij)∗ =
1

2
εijklv

kl. (3.2)

The shift matrices are known to depend on scalars through the coset representatives UAĀ(x)

defining the scalar matrix (A.11). For internal indices such matrix reads

HAB(x) = δĀB̄ UAĀUBB̄ , (3.3)

with

UAĀ(x) ≡ (UAa;UAÎ) = (UAa;UAij) , (3.4)

and where the SO(6) vector index Î was expressed in terms of the spinor indices ij in the

last term.

The shift matrices then read (see for instance [18, 25, 26])

gravitini-gravitini : Aij1 ∝ (UAkl)∗UBikUCjlfABC

gravitini-gaugini : A2ai
j ∝ UAa(UBik)∗UCjkfABC

gaugini-gaugini : A3ab
ij ∝ UAaUBbUCijfABC , (3.5)

where we have used fABC to denote the electric sector gaugings f+
ABC , the + subindex

indicating the electric sector [18]. In order to read vector masses we need to keep the

constant term in the expansion of UAĀ in scalar fluctuations (see (3.3)) reproducing the

metric expansion HAB = δAB +O(M). Therefore (UAb;UAÎ) = (δA
b; δA

Î) with

UAij = δAm̂(γm̂)ij . (3.6)

By replacing this expansion into shift matrices expressions we find

Aij1 ∝ δA,â(γ
â)
∗kl
δB,Î(γ

Î)
ik
δC,ĉ(γ

ĉ)
jl
fABC = (γâ)

∗kl
(γ Î)

ik
(γ ĉ)

jl
f âÎ ĉ

A2ai
j ∝ (γ Î)

∗ik
(γ ĉ)jkfaÎĉ

A3ab
ij ∝ (γ ĉ)

ij
fabĉ. (3.7)
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By identifying the gaugings fABC with the fluxes defined above and by using that

fluxes involving more than one Right index vanish (fâÎ ĉ = faÎĉ = 0) we find that, gravitini

remain massless, as expected (same is valid for dilatini). On the other hand, gaugini masses

are proportional to fabĉ, so having the same masses as their vector boson super-partners,

vanishing at the self-dual enhancing points. Together with scalars and vector bosons they

fill up the N = 4 vector supermultiplet multiplet.

Let us argue that the discussion presented here for d = 4 extends to other dimensions.

In fact, for half-maximal theories, the scalars form a coset G/H = SO(d, d + n)/SO(d) ×
SO(d+n) and are encoded in a coset representative U ĀA = (UAa;UAÎ) as in (3.4) where A is

now a G = SO(d, d+n)-vector index, a is a SO(d)-vector index and Î is a SO(d+n)-vector

index. The index Î is expressed in terms of spinor indices since fermions transform under

H = Spin(d)×SO(d+n). From the full set of possible gaugings it is still possible to choose

a subset parametrized by an antisymmetric G-tensor, namely, fABC . For instance, in d = 4

the full set of gaugings is parametrized by ξαA and fαABC (α = ± is the electri-magnetic

index) and we have restricted to ξαA = 0 and f+ABC = fABC , f−ABC = 0. The same

applies in other dimensions.4 The fermion shift matrices would couple to scalars through

the embedding tensor and therefore they will necessarily have the same form as in (3.5)

but where i, j indices span the spinorial representation of Spin(d). The reader should be

aware that the actual mass terms of bilinear fermions are linear combinations of the above

terms including scalars factors.

As before when the gaugings are the ones coming from an enhancement point of the

string moduli space the structure constant (the fluxes) will take the values of the previous

section. In these points, the gravitini shift matrices are zero and supersymmetry is pre-

served. Away from the point of enhancement scalars vectors and fermions organized into

a massive supermultiplet.

4 Summary and outlook

In the present work we have shown how DFT can provide an interesting description of the

gauge symmetry enhancing-breaking process that occurs in the heterotic strings at specific

points of moduli space. The construction relies on previous ideas used to describe this

process in the bosonic string case. The three key ingredients encoding enhancing informa-

tion are: a global O(n1, n2) invariant gauged (super) gravity action, a scalar fluctuation

expansion of a generalized scalar metric and the presence of generalized, moduli dependent,

3-form fluxes.

The heterotic effective action is obtained by choosing the global group O(n, r) (where

n = dimGL is the dimension of the enhanced group at the fixed point and r = 10 − d
the number of compact dimensions) and by identifying 3-form fluxes fABC(Φ) with the

internal momenta of the string. Recall that indices are conveniently written as A = (a, Î)

with a = 1, . . . n, Î = 1, . . . r. At a point of enhancement Φ0 the only non vanishing fluxes

are those with only Left indices fabc(Φ0) reproducing the structure constants of the GL

4If we wanted it to also hold in d = 9 and d = 8 we should necessarily include vector multiplets, thus,

n ≥ 1. Otherwise, fABC = 0, see [25, 26, 34].
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group. Away from this point, mixed indices give rise to non-vanishing fluxes fabÎ(Φ). These

mixed indices fluxes govern the vector boson masses, the scalar masses and the structure

of the would be Goldstone bosons. It is worth emphasizing that this structure exactly

matches the string theory results with the correct full dependence on moduli fields.

By invoking supersymmetry, a fermionic sector can also be included. In particular we

have shown that moving away from the enhancing point Φ0 produces the expected masses

for gaugini partners of massive vector bosons while keeping supersymmetry unbroken.

Let us address some open questions. In DFT the generalized fluxes appear as gen-

eralized Lie derivatives, involving internal coordinates YM , of generalized internal frame

vectors EA(Y). In a generic construction, the internal coordinates transform in the vector

representation of the global group O(n1, n2), namely M = 1, . . . , n1 + n2 and the same

is valid for the frame index A. However, it appears that in order to reproduce the above

fluxes, just a dependence on the “true” internal Left and Right 16 + r + r = 36 − 2d co-

ordinates, associated to string coordinates would be needed. In fact this was shown to be

the case for some specific examples in [1, 3] (see also [2]) for the bosonic string case. In a

similar line of reasoning a dependence on Y = (Y I , yIL, y
Î
R) with I = 1, . . . 16; Î = 1, . . . r

would be expected. Therefore, the tangent space here, spanned by A would account for the

gauge symmetry enhancement, associated to states with non vanishing KK momenta and

windings, but the “physical space” would be the string torus (including Γ16). The explicit

construction for the heterotic string here remains as an open question.

Recall that our description is valid close to a given moduli point.When moving from

one point of enhancement to a new point the dimension of the gauge group can drastically

change and, therefore, the dimension of the tangent space. Even if, as stressed in [3], these

tangent directions are not physical dimensions an explanation of how, moving continuously

from one point of enhancement to another could lead to a discrete change in the number of

these extra tangent dimensions is still lacking. DFT description would presumably require

the introduction of extra states, mimicking the string theory situation. Following the

suggestions in [3] this could be presumably achieved by considering a sort of generalized

KK expansion on generalized momenta L of the different fields coming into play. Thus,

very schematically a vector boson corresponding to a charged generator would read5

ALν(x,Y) =
∑
L
A

(L)
Lν (x)eiLMYM δ(L2, 1) =

∑
L
A

(L)
Lν (x)eiK.Y+ikL.yL+ikR.yR δ(L2, 1) ,

where KI , kmL , k
m
R are functions of the moduli. Therefore, when moving continuously along

the moduli space, and for specific values of generalized momenta L in above sum, kR = 0

and the associated vector fields A
(L)
Lν (x) become massless. The neighborhood of each of

such points is what our description would be capturing.

In order to address the description of the enhancement process we made a specific

choice of generalized fluxes fABC with A = (a, Î) by keeping just the indices leading to the

enhanced gauge group structure constants at the enhancing moduli point and setting the

other components to zero. However, it appears interesting to explore the meaning of other

5Similar expansions were considered in [41] for the bosonic string case and for L2 = 0.
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possible components. In fact, we have already mentioned that, if we look at all indices

running from 1, . . . r + n, namely a = i, Î = 1, . . . r the corresponding fluxes encode the

geometric and non-geometric (closed string) fluxes discussed in the literature [22–24]. In

the six dimensional case, these fluxes span the 220 representation of O(6, 6). Interestingly

enough, the quadratic constraints (2.8) mixing these fluxes with the gauge group ones

would impose restrictions on the possible gauge groups. This is reminiscent of the Freed-

Witten anomaly [38] cancellation requirements discussed in [39], in the context of Type II

string, where such conditions where obtained from quadratic constraints. Such mixings, in

the heterotic string Abelian case, were found also in [40]. Notice that there are still other

fluxes components to be considered that, in the context of Type II would correspond to

mixings of open string indices with closed string ones. Heterotic/Type I duality could shed

light on their possible interpretation.
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A Heterotic DFT

In this section we briefly present some basic ingredients of DFT in the so called dynamical

fluxes formulation. Details can be found in the references [10, 11, 15–17, 33].

In this formulation, the field degrees of freedom (metric, antisymmetric field, 1-forms)

are encoded into generalized frame vectors EĀ
M that parametrize a coset G/H where G is

a duality group. Generalized metric is thus obtained from

H = EĀS
ĀB̄EB̄ , (A.1)

where the SĀB̄ is given by

SĀB̄ =

(
sāb̄ 0

0 sāb̄

)
, (A.2)

and sāb̄ is the d-dimensional Minkowski metric.

A scalar field d incorporates the dilaton. Gauge invariance appears through a gen-

eralized Lie derivative Lξ. Transformations under this derivative lead to the dynamical

fluxes.

The DFT action reads

S =

∫
dXe−2d R , (A.3)

with

R = FĀB̄C̄ FD̄ĒF̄
[

1

4
SĀD̄ηB̄ĒηC̄F̄ − 1

12
SĀD̄SB̄ĒSC̄F̄ − 1

6
ηĀD̄ηB̄ĒηC̄F̄

]
+ FĀFB̄

[
ηĀB̄ − SĀB̄

]
, (A.4)
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where the dynamical fluxes FĀB̄C̄ and FĀ are defined in terms of the generalized Lie

derivative L and vielbeins EĀ by

FĀB̄C̄ = EC̄MLEĀEB̄
M (A.5)

FĀ = −e2dLEĀe
−2d . (A.6)

The field d incorporates the dilaton field and transforms like a measure

LV e−2d = ∂P (V Pe−2d) . (A.7)

The indices M take values in the fundamental representation of the group G whereas

the flat indices Ā run over H. Usually, motivated by the bosonic string construction the

group G is chosen to be O(d, d) with d the space-time dimensions. However the construction

is more general and we can choose G = O(dL, dR) generically containing O(d, d) and

H = O(dL)×O(dR). Indices are raised and lowered with a symmetric metric that can be

chosen as

ηPQ =

(
1dL 0

0 −1dR

)
. (A.8)

A numerically similar matrix ηĀB̄ is used for flat indices.

The dynamical fluxes depend on the generic coordinates spanning a vector representa-

tion of O(dL, dR). The above action is generically non invariant under generalized diffeo-

morphisms generated by the generalized Lie derivative unless some constraints are imposed.

A consistent solution is given by a generalized Scherk Schwarz reduction where the frame is

split into a space-time dependent part and an internal one [8, 9, 15, 16]. The Lie derivative

becoming a gauge transformation plus usual space-time diffeomorphisms.

Since we are interested in the description of the heterotic case we perform a specif choice

suitable for its description (see also [15, 27, 28, 35–37]). Inspired by the coset structure

presented in (2.2) we choose dL = d+ nc + 26− d = d+ n and dR = d+ 10− d = d+ r.

We also choose the fields to depend on the coordinates XM =
(
xµ, x̃

µ,YM
)

where

YM = (ymLL , ymRR
)
. M = (mL,mR) is an internal index with mL = 1, . . . , n and

mR = 1, . . . , 10− d whereas µ = 1, . . . , d. Here r = 10 − d is the number of compact

dimensions and n = nc + 26 − d is the number of extra directions needed to achieve the

enhancement. Note that in section 2 the index M is denoted as A and mL = a, mR = Î. As

usual, x̃µ coordinates are just an artifact and can be dropped away or, in the DFT language,

the strong constraint must be used on the space-time part. Explicitly the Scherk-Schwarz

reduction ansatz reads

EĀ(x, yL, yR) = UĀA(x)E′A(yL, yR) . (A.9)

The matrix U encodes the field content in the effective theory, while E′ is a generalized twist

that depends on the internal coordinates. All the dependence on the internal coordinates

occurs through this twist.

By introducing the splitting ansatz (A.9) into the expression (A.1) for the generalized

metric we can write

H = SĀB̄UĀA(x)E′A(Y)UB̄B(x)E′B(Y) = HAB(x)E′A(Y)E′B(Y) , (A.10)

– 15 –



J
H
E
P
1
0
(
2
0
1
7
)
0
4
6

where all the field dependence on space-time coordinates is encoded in

HAB(x) = SĀB̄UĀA(x)UB̄B(x) . (A.11)

In particular, when the indices take internal values A,B = 1, . . . , n+ r, the matrix of HAB

parametrizes the scalar content of the theory.

By restricting the expression for the generalized Lie derivative to the specific case of

the twist it is found that

LE′AE
′
B =

1

2

[
E′ PA ∂PE

′ M
B − E′ PB ∂PE

′ M
A + ηMNηPQ∂NE

′ P
A E′ QB

]
(A.12)

[E′A, E
′
B] = LE′AE

′
B = fAB

KE′K , (A.13)

where here all indices are internal. The fluxes fAB
K of the generalised Scherk-Schwarz

reduction must be constants and must satisfy the constraints

fABC ≡ ηCKfABK = f[ABC] , f[AB
KfCD]K = 0 (A.14)

in order for the algebra to close.

When replacing above results into the initial DFT action (A.3), the expression for the

gauged DFT action (2.3) is obtained.

Let us stress that a specific selection of values for the fluxes fABC , constructed out

from the internal frame derivatives (A.12) will be associated to a specific dependence on

the generalized coordinates. For instance, for the extreme case of a coordinate independent

frame leads to an abelian compactification, and corresponds to a KK reduction, for instance.

In particular, it was shown in [1–3] that, at least for some cases, for the twists EA to

reproduce the structure constants of the gauge group the twist only depends on the true

internal coordinates of the torus. Thus, for a circle compactification of the bosonic string

the twist only depends on the circle coordinate yL and its dual yR. Explicitly [3],

E± = i
√
α′(e∓iw/

√
α′ ,±ie∓iw/

√
α′ , 0; 0) E3 = −i

√
α′(0, 0, 1; 0)

Ē3̂ = −i
√
α′(0, 0, 0; 1) , (A.15)

where w = a+yL + a−yR, w̄ = a−yL + a+yR and

a∓ =

√
α′

2

[
1

R
∓ 1

R̃

]
. (A.16)

It is easy to check that, by inserting this twist expression into (A.12) and noticing that the

only contributions to the derivatives come from ∂A = (0, 0, ∂yL ; ∂yR), the SU(2) algebra

is reproduced. Here we just assume that there exists a choice of internal coordinates such

that (A.13) leads to the desired gauge group structure constants and leave the construction

of the explicit twist for future work.
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B Some heterotic string basics

We summarize here some string theory ingredients (that can be found in string books)

needed in the body of the article. We mainly concentrate in the SO(32) string.

For a heterotic string compactified to d space-time dimensions, Left and Right momenta

are encoded in momentum

L = (lL, lR) (B.1)

defined on a self-dual lattice Γ26−d,10−d of signature (26 − d, 10 − d). By writing

lǏL = (KI
L, kL,m) with I = 1, . . . , 16 and m = 1, . . . 10 − d = r, the moduli dependent

momenta, read

KI
L = P I +RAInp̃

n (B.2)

kL,m =

√
α′

2

[
pm
R

+ (gmn −Bmn)
p̃n

R̃
− P IAIm −

R

2
AImA

I
np̃

n

]
kR,m =

√
α′

2

[
pm
R

+ (−gmn −Bmn)
p̃n

R̃
− P IAIm −

R

2
AImA

I
np̃

n

]
,

where gmn, Bmn are internal metric and antisymmetric tensor components, Am are Wilson

lines and pn and p̃n are integers corresponding to KK momenta and windings, respectively.

P I are Spin(32) weight components.

The mass formulas for string states are

α′

2
m2
L =

1

2
l2L + (NB − 1) =

1

2
K2
L +

1

2
k2
L + (NB − 1)

α′

2
m2
R =

1

2
k2
R + N̄B + N̄F + Ẽ0 , (B.3)

where N, N̄ are the number of string oscillators, Ẽ0 = −1
2(0) for NS (R) sector and the

level matching condition is 1
2m

2
L −

1
2m

2
R = 0 or, in terms of above notation

L2 =
1

2
l2L −

1

2
k2
R = 1−NB + N̄B + N̄F + Ẽ0 . (B.4)

In particular, massless charged vectors correspond to L2 = 1. As is well known, there are

10−d+16 Left gauge bosons corresponding to 16 Cartan generators ∂zY
I ψ̃µ of the original

gauge algebra as well as 10− d KK Left gauge bosons coming from a Left combination of

the metric and antisymmetric field ∂zY
iψ̃µ. The 10− d Right combinations ∂zX

µψ̃m with

m = 1, . . . 10− d generate the Right abelian group. These states have kR = 0 and lL = 0,

with vanishing winding and KK momenta.

Besides these states, a number of different situations arises. At generic points in

moduli space kR 6= 0 and therefore there are no extra gauge bosons. The gauge group

is then U(1)26−d
L × U(1)10−d

R . With Wilson lines turned off, for vanishing winding and

momenta and for P 2 = 2 the gauge group SO(32)L × U(1)10−d
L × U(1)10−d

R is obtained, as

expected from KK reduction of the effective field theory.

For moduli points in Γ16 such that

kR = 0, l2L = 2 , (B.5)
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an enhancement of the Left gauge symmetry occurs, associated to the presence of massless

gauge bosons eilL.YL(z)ψ̃µ. Actually, lL encodes the weight values associated to the charged

generators of the enhanced algebra. For specific values of moduli, momenta and windings

a maximum enhancement to SO(52−2d)L×U(1)10−d
R gauge group can be obtained. Recall

that the rank of the group is always 36 − 2d and the coset space is

O(26− d, 10− d,R)

O(26− d,R)×O(10− d,R)×O(26− d, 10− d,Z)
(B.6)

of dimension (26− d)(10− d).
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