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h i g h l i g h t s

• Data of adoption of innovations provide evidences of a complex behavior.
• A key factor of the model is the idiosyncratic resistance to change.
• Social influence is included by favoring the adoption or acting against it.
• The inclusion of repentance generates a rich landscape including cycles.
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a b s t r a c t

The dynamics of adoption of innovations is an important subject in many fields and areas,
like technological development, industrial processes, social behavior, fashion ormarketing.
The number of adopters of a new technology generally increases following a kind of logistic
function. However, empirical data provide evidences that this behavior may be more
complex, as many factors influence the decision to adopt an innovation. On the one hand,
although some individuals are inclined to adopt an innovation if many people do the same,
there are others who act in the opposite direction, trying to differentiate from the ‘‘herd’’.
People who prefer to behave like the others are called mimetic, whereas individuals who
resist adopting new products, the stronger the greater the number of adopters, are named
contrarians. Besides, in the real world new adoptersmay have second thoughts and change
their decisions accordingly. In this contribution we include this possibility by means of
repentance, a feature which was absent in previous models. The model of adoption of an
innovation has all the ingredients of a previous version, in which the agents decision to
adopt depends on the appeal of the novelty, the inertia or resistance to adopt it, and the
social interactions with other agents, but now agents can repent and turn back to the old
technology. We present analytic calculations and numerical simulations to determine the
conditions for the establishment of the new technology. The inclusion of repentance can
modify the balance between the global incentive to adopt and the number of contrarians
who prevent full adoption, generating a rich landscape of temporal evolution that includes
cycles of adoption.
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1. Introduction

Innovation is at the core of the changing in living conditions all along the human history. It is also one of the main
driving forces of sustainable economical development in modern societies. However, even when innovations may represent
a clear improvement over existing technologies, its adoption is not guaranteed because it depends on other factors that can
restrain the adoption process, like the individual resistance or a high price. Besides, the adoption may be boosted by means
of advertising or interpersonal influence. Rogers [1] was the first one to address theoretically the problem of innovation
adoption, as early as 1962. In his qualitatively description, he claims that adoption curves are S-shaped (logistic) as a function
of time: there are few early adopters, and only when their number becomes larger than a threshold, adoption develops up
to a saturation point.

Systems of heterogeneous interacting individuals are complex systems whose properties have been studied in the
contexts of economics (see [2–4] and references therein), criminality [5], game theory [6], and in many other social and
biological systems. It has been shown that when the individuals are mimetic, i.e. they choose to imitate the behavior
of the others (also called herding or congregator behavior), the possible equilibria have well known properties [7,8]. If
some individuals do not exhibit a mimetic behavior, adoption dynamics is more involved, but also more interesting. Such
individuals, called contrarians, have been described in different contexts in the literature. Galam [9] introduced contrarian
agents in voter models, in such a way that they adopt opinions that are systematically opposite to the one of the majority
of their neighbors. Subsequent extensions of this 2-state model explain the global balance between the two competing
opinions observed in some real situations, in caseswhere the number of contrarians exceeds a threshold value [10,11]. Other
possibilities have been proposed more recently by Crokidakis et al. [12], where agents can have either positive (mimetic) or
negative (contrarian) interaction with a given probability, and by Masuda [13], who considered different models in which
the decision of each contrarian depends on its neighborhood (made of contrarians and/or mimetics).

With or without contrarians, the time evolution of the fraction of adopters is a Markov chain: n(t + 1) = F(n(t)).
The fixed points attractors of the dynamics satisfy n = F(n). However, as demonstrated by Goles et al. [14], systems
with interacting binary agents evolve toward fixed points only when the interactions are symmetric and positive. Negative
symmetric interactions may lead either to fixed points or to cycles of length 2, depending on details of the dynamics and
on the initial state. These results rely on the existence of an energy function that is a decreasing (more rigorously, non-
increasing) function of time under the system’s dynamics. However, a systemwith contrarians does not necessarily have an
underlying energy function, because the interactions between mimetic agents and contrarian agents are not symmetric.
Being an individual property, contrarians have negative interactions with all other agents. Thus, interactions between
contrarians are symmetric – both being negative – but interactions between a contrarian and a mimetic agent are anti-
symmetric. Consequently, the existence of fixed points is not guaranteed.

The dynamics of adoption inmodels with only mimetic individuals has been studied a long time ago by Bass [7], in which
was probably the first mathematical, however phenomenological, formulation of the problem. Later, Phan et al. [15] studied
the problem in different types of networks, showing that the fraction of adopters increases with time through avalanches
that depend on the underlying network structure. Moreover, the fraction of adopters at equilibrium in the absence of
contrarians has been obtained analytically in [16] for a uniform distribution of the resistance to adopt and small values of
the interaction weights. Numerical results have been obtained when contrarians are included: in the context of innovation
the most important consequence of the inclusion of contrarians is the non-trivial restraining effect on the adoption curves,
i.e, a small fraction of contrarians produce a large reduction on the final fraction of adopters [16].

All these models are suitable for situations where users cannot change their decisions, such as the case of expensive
technologies. But there are other situations, as for example the choice of an operating system, a software, or an internet
supplier, where the decision can be revised periodically. In such cases, adopters may change their minds and abandon the
innovation. In this article we investigate that possibility on a society where individuals exhibit a mimetic or contrarian
behavior (kept fixed during the whole adoption process), but they can repent for their decisions, going back to a non-
adopter state. We study this model using analytical and numerical approaches, and considering different distributions of
the idiosyncratic resistance to adopt.

We explore the parameters space by comparing the results of simulations with a mean field analytic approach, analyzing
the phase diagram of the system for different proportions of mimetics and contrarians. The paper is organized as follows: In
Section 1 we present the model, in Section 2 we consider a uniform distribution of the resistance to adopt (analytically and
numerically), and in Section 3 we analyze the case of a logistic distribution. Conclusions are presented in Section 4.

2. The model of adoption with social interactions

A ‘‘microscopic’’ model of adoption dynamics has been proposed recently by some of us [16]. The model considers
heterogeneous idiosyncratic individuals in the presence of advertising. For the sake of clearness we show below the payoff
(P) function that every agent evaluates, adopting the novelty if its value is positive:

P = A − Ri + Jin, (1)
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where A represents the advertising, Ri is the individual resistance to adopt, and Ji is the agent weight interaction that
multiplies n, the fraction of adopters. Mimetic individuals have a positive interaction with the adopters (Ji > 0), increasing
their payoff function with the fraction of them. Contrarians, instead, have the opposite behavior, with a preference to adopt
that decreases (Ji < 0) when the fraction of adopters increases. Both, mimetics and contrarians, cannot change their minds,
consequently, the fraction of adopters is a non-decreasing function of time.

Similarly to the model described above, we consider here a system of N individuals that must decide whether to adopt
or not a novelty. Again, the parameter A ≥ 0 is a global incentive to adopt, the same for all agents. This incentive is
proportional to the advantages introduced by the new technology, to advertising, and to eventual social values associated
with the possession of the new product. On the other hand, each individual has a resistance to adopt the innovation given by
a Ri = R + ri (1 ≤ i ≤ N), where R is the population’s average resistance and the ri are (quenched) idiosyncratic deviations
distributed among the population according to a probability density function P(r) of zero mean and standard deviation s.
This resistance can be associated to suspicion against the novelty, to a certain laziness that induces to remain with the old
technology or to limited resources for the acquisition of the new technology. When confronted with the decision to adopt
or not the new technology, we assume that there are two kinds of individuals: a fraction f of the population is composed by
contrarian agents, i.e., they resist to imitate what others do, while a fraction 1− f of the population is mimetic, so they tend
to follow the herd. We assume these attitudes also remain fixed during the adoption process. At each time step, each agent
weights the global decision of the others with a strength Ji, which represents the social influence on his own decision. As we
said, mimetic individuals have positive Ji and contrarians have negative Ji, so the first ones increase, while the second ones
decrease, their willingness to adopt the innovation proportionally to the fraction of adopters n.

As it stands, the model has in principle five parameters: A, R, s, Ji, and f , but we can get rid of two by using |Ji| as a
normalization factor for the others and defining an effective incentive d, as follows:

d ≡
A − R

J
, σ ≡

s
J

(
i.e., ui ≡

ri
J

)
. (2)

Notice that this normalization is equivalent to consider |Ji| = J = 1. So depending of the type of agents (mimetic or
contrarian), the payoffs (1) can be written as:

πM
i = d − ui + ni if i is mimetic, (3a)

πC
i = d − ui − ni if i is contrarian, (3b)

where ni is the fraction of adopters without counting individual i:

ni =
1

N − 1

∑
k̸=i

ωk, (4)

with ωk = 1 if k is an adopter and zero otherwise.
When calculating the payoffs we can check each individual at random and immediately update his decision according to

the sign of its payoff. On the other handwe can perform a synchronous updating of all agents at once. In the later case agents
determine their payoffs taking into account the present value of the number of adopters, n, and this value is refreshed only
after all agents have been checked. We will discuss this point in further detail in the next section.

If adopters are not allowed to change theirminds, as in the originalmodel, only the payoffs of non-adopters are important
for the dynamics; however, the equilibrium properties of the present model depend both on adopters and non-adopters
payoffs. In the limit of large populationswith large numbers of adopterswemay replaceN−1 ≈ N , drop down the constraint
k ̸= i in the equation above and approximate ni by the bare fraction of adopters n:

ni ≈ n ≡
1
N

∑
k

ωk. (5)

Individuals adopt the new technology whenever their payoffs are positive. The adoption dynamics may become quite
complex upon introduction of contrarians that decide according to the majority rule [16]. Here we include the possibility of
coming back from previous decisions, thus, individuals will abandon innovation if the payoff is negative.

When considering a large number of agents we can take the limit N → ∞. Introducing the fraction of adopters (5) in
Eqs. (3), and assuming that the idiosyncratic normalized resistance to adopt ui are quenched random variables of probability
density P(u), the adoption probability (the probability of positive payoff) in the limit N → ∞ is

P(ω = 1|M) =

∫ d+n

−∞

P(u)du (6a)

P(ω = 1|C) =

∫ d−n

−∞

P(u)du (6b)

where M stands for mimetic and C for contrarian agents.
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If the fraction of adopters at time t is n(t), the adopters’ dynamics is given by the following equation:

n(t + 1) = (1 − f )
∫ d+n(t)

−∞

P(u)du + f
∫ d−n(t)

−∞

P(u)du

=

∫ d+n(t)

−∞

P(u)du − f
∫ d+n(t)

d−n(t)
P(u)du (7)

In the absence of contrarians, f = 0, the phase diagram of the model is well known [2,3,8]. The stationary states satisfy

n =

∫ d+n

−∞

P(u)du (8)

which is easily solved (see [8]).
In the following sections we include contrarians and the possibility of repentance, we assume payoffs given by Eqs. (3)

and we include the possibility of changing decisions for both mimetic and contrarian agents. Agents adopt if the payoffs
are positive and do not adopt otherwise. Moreover, those that have adopted previously may go back to no-adoption if the
payoffs turn out to be negative. We analyze two particular distributions P(u), the uniform distribution and the logistic one,
and we compare the results with the original model without repentance [16].

3. Uniform distribution

In this section, we present first results of simulations and then we discuss analytic results for a uniform distribution,
i.e. P(u) = (2 u0)−1 in [−u0, u0] and P(u) = 0 elsewhere. We will compare the results of this model with the model without
repentance when u0 = 0.5 (P(u) = 1) [16].

3.1. Numerical results

When performing the simulations we consider two different dynamics, corresponding to synchronous and non-
synchronous updates. In the case of synchronous Parallel Dynamics (PD), the payoffs are evaluated for all agents at the same
time, then the status of each agent is changed or not accordingly to their payoff and thereafter the new fraction of adopters, n,
is updated. In theMonte Carlo sequential dynamics (MC), one agent is selected at randomand its status is updated depending
on its payoff, then the number of adopters is immediately adjusted. This process is repeated N times, which corresponds to
one MC step. The reason for considering these two dynamics is that the first one (PD) is better adapted to be compared with
analytical results, while MC simulations could provide a better description of the changes in real societies. The difference
between the two dynamics is that in the MC method a sequential update is performed, which means that the number of
adopters changes in a continuous way during each MC step, while in the PD case the number of adopters is updated at the
end of each step, after evaluating the payoffs of all agents. A second difference between the two types of dynamics is that
with the PD procedure all agents are visited, while in MC dynamics they may not.

In order to illustrate the dynamics let us first consider a very simple case with just two agents, N = 2, and the three
possible combinations: two mimetics, one mimetic and one contrarian, and two contrarians. We choose parameters such
that for both agents d is slightly higher than ui, for example d = 0.01 and u1 = u2 = 0. The results are exhibited on Fig. 1
(black filled squares correspond to PD and red open circles toMC dynamics). In the case of twomimetic agents, both of them
will adopt immediately and no further changes are observed, the system arrives at a fixed point. With one mimetic and one
contrarian, both agents adopt in the first time step but then only the mimetic remains as adopter. The system gets to a fixed
point with n = 0.5. In the cases above the description corresponds strictly to PD while some random variations are possible
with MC dynamics. An interesting time evolution arises when there are two contrarians because both of them adopt when
n = 0, but as soon as they adopt, ni = 1/2 (notice that for small values of N , the approximation given by Eq. (4) is not valid),
so the contrarian’s payoff becomes negative and at the next evaluation both become non-adopters. Therefore, the system
exhibits a strictly periodic behavior in parallel simulations. In MC simulations, however, there are no oscillations: after the
first agent adopts, when the second is selected, it will not adopt because its payoff will be negative, so the evolution stops
at 50% of adopters. Obviously, the N = 2 case does not correspond to any real system, but we include it here, despite being
an over simplification, because it helps understand the results on large systems that we present below.

Let us now consider the case with an intermediate number of agents, N = 100; henceforth we use the approximation
given by Eq. (5). In Fig. 2, it can be verified that when the fraction of contrarians is large, f = 0.9, the system exhibits
oscillations in the parallel dynamics case, while there are no oscillations with Monte Carlo dynamics. For a lower fraction of
contrarians, f = 0.5, oscillations are of smaller amplitude and there are no oscillation when f ≤ 0.2.

For a much larger number of agents, N = 107, oscillations are damped in the long term. Even for a high proportion of
contrarians, f = 0.9, and with parallel dynamics, oscillations decay after a short transient, as can be seen in Fig. 3. For a
lower fraction of contrarians, oscillations are very short lived; for f = 0.5, for instance, no more than three cycles are seen
in Fig. 3(b). The previous results, all put together, suggest that for uniform distribution of resistance to adoption – which is a
raw simplification of the society representation – oscillations are possible for a large number of contrarians, but are a finite
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Fig. 1. Case of two agents: (a) Two mimetics, the final value of n is n = 1; (b) one mimetic and one contrarian, n quickly converges to n = 0.5; (c) two
contrarians, the system exhibits oscillations. Black squares correspond to PD and open red circles to MC dynamics. In all cases, d = 0.01 and u1 = u2 = 0.
(For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

Fig. 2. Fraction of adopters as a function of time for N = 100 agents and different values of the fraction of contrarians f : (a) f = 0.2, no oscillations;
(b) f = 0.5, small amplitude oscillations; and (c) f = 0.9, large amplitude sustained oscillations. Black squares correspond to PD and open red circles to
MC dynamics. In all cases, d = 0.4 and u0 = 0.5. (For interpretation of the references to color in this figure legend, the reader is referred to the web version
of this article.)

size and/or transient effect. We have investigated the relation between oscillations and system size, and it seems that the
critical number of agents is around N ≈ 10 000.

It is also interesting to investigate the effect of the advertising. The values considered, d = 0.4 may be too high. It can
be argued that a too high value of the incentive to adopt could have a role in the appearance, or not, of oscillations. And it
has. In order to check this we try a lower value of the incentive, d = −0.2. As u goes from −0.5 to +0.5 that value of d
implies that 30% of the agents have an idiosyncrasy below d, i.e. 30% are potential early adopters. As we are interested in
possible oscillations we focus on a high concentration of contrarians, f = 0.9, and three system sizes, N = 2, N = 100, and
N = 107. The results are shown in Fig. 4 where a clear feature can be seen: the asymptotic values for the average fraction of
adopters are much lower (n ≈ 0.15) than in the case of d = 0.4. This is expected because the advertising is what promotes
the adoption in the first place. But on the other hand the oscillatory behavior is very similar to previous results with a bigger
value of d, so our conclusions regarding the oscillatory behavior (and the existence or not of oscillations) are robust against
a change of the advertising. However, if the width of the distribution is narrower, no oscillations appear for low values of d.

Note that the effect of repentance with the associated cycle dynamics is only possible if f > 0. If there are no contrarians,
even if it is possible to repent, no agent will do it because for a mimetic the payoff cannot decrease. In other words, cycles
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Fig. 3. Fraction of adopters as a function of time for N = 107 agents and different values of the fraction of contrarians f : (a) f = 0.2, no oscillations;
(b) f = 0.5, very short lived oscillations; and (c) f = 0.9, transient oscillations. Black squares correspond to PD and open red circles to MC dynamics. The
other parameters in all cases are d = 0.4 and u0 = 0.5. (For interpretation of the references to color in this figure legend, the reader is referred to the web
version of this article.)

Fig. 4. Fraction of adopters as a function of time for a large fraction of contrarians (f = 0.9), but a low value of advertising (d = −0.2). Results for different
system sizes: (a) N = 2, (b) N = 100, and (c) N = 107 . Black squares correspond to PD and open red circles to MC dynamics. The qualitative behavior is
the same as in Figs. 2 and 3 with the same value of f , but a bigger value of d. There is subtlety regarding the N = 100 case: depending on how evenly is the
actual distribution of ui , oscillations can or cannot be observed. The case shown in panel (b) correspond to an even realization of the uniform distribution.
(For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

are only possible if both, contrarians and repentance, are present in the model. Moreover, the effect of contrarians modifies
the number of adopters, and this change may induce mimetics to abandon the innovation. We remark that in this section
we have restrained our simulations to a distribution of idiosyncratic resistance to adopt that is uniform in [−0.5, 0.5], to
compare to previous results without repentance [16]. If a narrower distribution is considered, stable oscillationsmay appear
for relatively high values of the advertising. In the next section we show, as an example, that such is the case for u0 = 0.25
andP(u) = 2 (see Fig. 6).Moreover, the effect of thewidth of the distribution on the existence of oscillationswill be discussed
in detail in Section 4, as the logistic distribution is easier to work with.

3.2. Analytic results

In this section we present analytic mean field results and compare them with numerical simulations of the preceding
section. As the analytic calculations implicitly assume N → ∞ we will compare them with the numerical results for the
biggest system, N = 107.
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Fig. 5. Extreme payoffs as a function of the number of adopters, n, for the uniform distribution with d = 0.4, u0 = 0.5. π lines are extreme payoffs, blue
lines for mimetics and red lines for contrarians. In general they are given by Eq. (9), in this case by Eq. (12). (For interpretation of the references to color in
this figure legend, the reader is referred to the web version of this article.)

Due to the compact support of P , the possible (normalized) payoffs as a function of n (see Eq. (3) and Fig. 5) are
bounded by

πM
max(n) = d + u0 + n

πM
min(n) = d − u0 + n

πC
max(n) = d + u0 − n

πC
min(n) = d − u0 − n

(9)

and the fixed point equations of the dynamics, n(t + 1) = n(t) = n are:

n = nM
+ nC

; (10a)

nM
= (1 − f )

∫ max[0,πM
max(n)]

max[0,πM
min(n)]

P(u)du (10b)

nC
= f

∫ max[0,πC
max(n)]

max[0,πC
min(n)]

P(u)du (10c)

that must be solved for n. We call nM the number of adopters who are mimetic and nC those who are contrarian.
There are different regimes that have to be analyzed separately, depending on the signs of the extreme payoffs at n = 0

and at n = 1. To illustrate this point we show on Fig. 5 the extreme payoffs as a function of the number of adopters, n, for
d = 0.4 and u0 = 0.5. Blue lines are extreme payoffs for mimetics and red lines for contrarians. The area with positive
payoff corresponds to the number of mimetics (blue ones) and contrarians (red ones) but one should make attention to the
fact that these areas are weighted with the factors (1− f ) for mimetics, and f for contrarians. When f = 0.5 both areas have
the same weight. In this case, starting with n = 0 the number of adopters after the first step is of the order of n = 0.9. But
with such a high number of adopters most of the contrarians will defect the innovation and the number of adopters will fall
to n = 0.5 in the second step. After that, the number of adopters increases again, and then decreases to finally converge
to an intermediary value of n = 0.6. These decaying oscillations converging to n = 0.6 are also observed in the numerical
results, on Fig. 3(b)

We consider now the points where the extreme payoffs change sign by solving Eq. (10) for the payoff equal to zero:

n1 = −d − u0
n2 = −d + u0
n3 = d + u0 = −n1
n4 = d − u0 = −n2

(11)

Two of these points, n2 and n3, are also indicated on Fig. 5; πM
max(n) is always positive and πC

min(n) always negative, so
n1 and n4 are both negative and are not solutions. In the general case we can state that u0 > 0, n2 > n1 and n3 > n4, but
depending on the relative values of d and u0, n3 may be larger or smaller than n2. Here we would like just to analyze the two
cases that we have simulated numerically: d = 0.4 and d = −0.2, both with u0 = 0.5. In the first case (d = 0.4) one has the
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Fig. 6. Extreme payoffs as a function of the number of adopters, n, for the uniform distribution with d = 0.6, u0 = 0.25. π lines are extreme payoffs, blue
lines for mimetics and red lines for contrarians (given by Eq. (9)). Inset: Numerical results of the fraction of adopters as a function of time in the parallel
update dynamics for N = 107 (d = 0.6, u0 = 0.25, and f = 0.7). (For interpretation of the references to color in this figure legend, the reader is referred to
the web version of this article.)

following boundaries:

πM
max(n) = 0.9 + n

πM
min(n) = −0.1 + n

πC
max(n) = 0.9 − n

πC
min(n) = −0.1 − n.

(12)

Those boundaries are the ones plotted on Fig. 5. The boundary πM
max(n) is always positive, πM

min(n) is positive for n > 0.1,
πC
max(n) is positive if n < 0.9 and πC

min(n) is always negative, so in the corresponding contrarian integral (Eq. (10c)) the lower
bound is always 0. The fixed point can be evaluated using Eqs. (10). Considering f = 0.5 in those equations, it is easy to verify
that the equilibrium is in the region 0.1 ≤ n ≤ 0.9 and the result is n ≈ 0.63, that coincides very well with the asymptotic
limit shown in Fig. 3(b). For f = 0.9 the asymptotic value is n ≈ 0.48 that also coincides with the numerical result (Fig. 3(c)).
The figure also explains the oscillations before attaining the fixed point, as described above.

In the case with d = −0.2, the boundaries are:

πM
max(n) = 0.3 + n

πM
min(n) = −0.7 + n

πC
max(n) = 0.3 − n

πC
min(n) = −0.7 − n.

(13)

Now, the boundary πM
max(n) is always positive, πM

min(n) is positive for n > 0.7, πC
max(n) is positive if n < 0.3 and πC

min(n)
is always negative. Let us examine the case f = 0.9. If one assumes a trial value, nt , restricted to nt > 0.3 there are no
contrarians adopting and the number of adopters should be n = (1 − f )nt that is always lower than nt , in contradiction
with the hypothesis. So, nmust be lower than 0.3 and the solution is n ≈ 0.16 again in agreement with the simulations (see
Fig. 4(c)).

Finally, and as we said, sustained oscillations can be obtained for a set of parameters such that 0 < n4 ≡ d − u0 < n3 ≡

d + u0 < 1, provided that both, u0 and d be small enough. We show in Fig. 6 the extreme payoffs obtained analytically for
d = 0.6 and u0 = 0.25. The interpretation of this figure is the same as the one done for Fig. 5. Moreover, the inset of Fig. 6
shows the numerical result for the same values of parameters and f = 0.7. It can be observed that the fraction of adopters
as a function of time for parallel update dynamics present oscillations, in accordance with the analytical result.

4. Logistic distribution

While the uniform distribution is simpler than other distributions, the discontinuity at the borders generates some
complications particularly for the analytic calculations. Also, one may imagine that the distribution of idiosyncrasies in a
real society exhibit a concentration of values around the mean value and a relatively low concentration in the extremes.
Taking these points into consideration one could envisage the use of a Gaussian distribution, as most of the values of the
resistance to adopt will be distributed within a bell-shape of a few standard deviations width. However, the integral of
the Gaussian is not analytic. So, to avoid the cumbersome complications raised by the uniform and Gaussian distributions,
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Fig. 7. Thresholds value of the fraction of contrarians above which oscillations appear. The curves correspond to different values of the standard deviation
of the logistic distribution, σ , as indicated. We have represented just positive values of d as there are no oscillations for negative values. The curves go
through a minimum that is lower the narrower the distribution. Notice that there are no oscillations when the advertising is slightly higher than d = 1.
(For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

we consider hereafter a bell-shaped logistic distribution of the resistances to adopt, P(ui), that is continuous and has infinite
support. The probability density of the logistic distribution is:

P(u) =
β

2 cosh2(β u)
, (14)

with its standard deviation given by σ =
π

2β
√
3
.

Following the scheme of the previous section, we present first the numerical results.

4.1. Numerical results

We have performed different simulations with the logistic distribution given by Eq. (14). The results are presented in
Figs. 7–10. When the simulation is performed in parallel (PD), permanent oscillations may appear. This is the case for
intermediate values of the advertising, d, and relatively high values of the fraction of contrarians, f . This can be verified
in Fig. 7 where we have represented a threshold value of the fraction of contrarians fc , above which oscillations appear, as a
function of the advertising d. Notice that there are no oscillations for d < 0 or for high values of d. Oscillations are present in
a region of values of d around d = 1, i.e. when the advertising is as strong as the social interaction; oscillations are cycles of
period two and arise because contrarians adopt when the number of adopters is low, but abandon the innovation when the
number of adopters is high. However somemimetics may follow the contrarian’s behavior. The amplitude of the oscillations
decreases when decreasing f or when d is smaller or bigger than 1 (see Fig. 7). The region where stable oscillations occur is
larger the narrower the width of the distribution of idiosyncrasies, σ .

We have represented in Figs. 8 and 9 the time evolution of the number of adopters exhibiting the oscillations, when they
happen, or the convergence to a fixed point when there are no oscillations. When performingMonte Carlo simulations there
are no oscillations in none of the cases. Fig. 10 summarizes the numerical results for the logistic distribution. Red curves
(dashed) correspond to the final number of adopters (fixed points) when performing MC simulations, while black curves
correspond to Parallel Dynamics (PD). In the later case, oscillations may be observed above a critical value of the fraction of
contrarians. When there are no oscillations, the results for PD and MC simulations coincide. When oscillations are present,
PD results are different from MC results, and the plot shows bot the extreme amplitude of the oscillations and, in between,
the average value of the number of adopters.

4.2. Analytic results

The dynamics of adoption, given by Eq. (7), is

n(t + 1) = (1 − f )F(d + n(t)) + fF(d − n(t)) (15)

where F(u) is the cumulative distribution

F(u) =

∫ u

−∞

P(x)dx =
1

1 + e−2βu . (16)
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Fig. 8. Temporal behavior of the fraction of adopters for the logistic distribution with σ = 0.25, d = 0.4, and different values of the fraction of contrarians
f : (a) f = 0.2, (b) f = 0.5, and (c) f = 0.9. Results are for a large number of agents, N = 107 . Open red circles correspond to the MC simulations and
black squares to PD simulations. In the PD case it is possible to see the oscillations in the number of adopters for a high concentration of contrarians. We
have considered much longer times than those represented in the figure and the oscillations are stable. (For interpretation of the references to color in this
figure legend, the reader is referred to the web version of this article.)

Fig. 9. Temporal behavior for the logistic distribution with σ = 0.25, f = 0.9 and two different values of the parameter d (the normalized effective
marketing): (a) d = −0.2 and (b) d = 0.1. Oscillations in the number of adopters are obtained if d > 0. (For interpretation of the references to color in this
figure legend, the reader is referred to the web version of this article.)

The fixed points may be obtained by solving the transcendental equation

n = y1(n) =
1 − f

1 + e−2β(d+n) +
f

1 + e−2β(d−n) (17)

through the intersections of the function y1(n)with the line y2(n) = n. Fig. 11presents someexamples for different parameter
values.

Fig. 11 represents a plot of y1(n) and the line y2(n) = n. The intersections correspond to the fixed points and are
stable solutions provided that y′

1 ≡
dy1
dn < 1. However, solutions with |y′

1| ≡ |
dy1
dn | > 1 are unstable, and we are

then obliged to consider a second iteration, i.e., y1(y1(n)). The solutions for this second iteration are represented on
Fig. 12: if more than one intersection is present, the upper and lower intersections correspond to the extreme value of
the oscillations.

The comparison between numerical and analytical solutions is discussed in detail in the caption of Figs. 11 and 12. We
find a very good agreement of both solutions, then, there is no need of further discussion of this point. We will concentrate
in the next section in the discussion of the results and comparison with a previous model [16].
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Fig. 10. This figure summarizes the numerical results for the logistic distribution of idiosyncrasies with σ = 0.25. All four panels exhibit the fraction of
adopters as a function of the fraction of contrarians for four different values of d: (a) d = 0.1, (b) d = 0.4, (c) d = 0.7, and (d) d = 1.0. As expected,
the number of adopters decreases when the number of contrarians increases. The red curves (dashed) correspond to Monte Carlo simulations and the
black ones to a parallel dynamics. An oscillatory behavior is obtained only for parallel dynamics and the black lines correspond to the average value of the
oscillations, while the shadowed areas indicates the amplitude of the oscillations. Both dynamics exhibit identical results for low and intermediate values
of f , but there exists a critical value of f when the parallel dynamics exhibits period two oscillations. When increasing d the region of oscillations increases
up to d = 0.7 and then decreases for d = 1.0. When d < 0 there are no oscillations and both dynamics produce the same results. (For interpretation of the
references to color in this figure legend, the reader is referred to the web version of this article.)

Fig. 11. Fixed points of y1(n). The fixed points correspond to the intersections of y1(n) and y2(n) (indicated by the dot-dashed gray line in the figure). When
the absolute value of the derivative is lower than one, the solutions are stable and correspond to a fixed point of the dynamics. The three panels show
different cases for different values of the parameter d of the logistic distribution of idiosyncrasies: (a) For d = −0.2 the derivatives at the intersections
are always |y′

1| < 1, thus no oscillations are expected. (b) When d = 0.1 three possible stable intersections appear in each case, and the values roughly
correspond to the numerical results plotted on Fig. 10(a). (c) When d = 0.4 and f = 0.2 the stable solution correspond to n ≈ 0.8 that coincides with the
numerical solution (see Fig. 10(b)). For f = 0.5, n ≈ 0.5 that also coincides with both PD and MC simulations. Finally, for f = 0.9 the solution is unstable
(|y′

1| > 1). However the fixed point corresponds to the value obtained with MC simulations (see Fig. 10), while PD simulations indicated the existence of
oscillations. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

5. Discussion and conclusions

An early microscopic model of decision making has been presented by Galam and Moscovici [17], using an Ising random
field model, where they concluded that aggregation effects should be analyzed separately from the effects of the agents
influence group. It is worth noting that themain ingredients of that earlymodel, namely the external environment, the social
influence, and the opinion divergency, are all represented in ourmodel. In the presentwork, besides those basic elements,we
focus on analyzing the combined effect of two important factors: the presence of contrarians and the possibility of repentance
of the agents during the decision process.
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Fig. 12. Fixed points of y1(y1(n)) with y2(n) (gray dot-dashed line). We have plot just the case with d = 0.4. It is possible to observe that for f = 0.2 and
f = 0.5 there is just one intersection, that corresponds to the stable solutions previously obtained. For f = 0.9 there are three intersections. The middle
one corresponds to the fixed point of y1(n) while the other two represent the extremes of the oscillations. These extreme values are approximately 0.12 and
0.9 and correspond to the extreme value of the oscillations in the PD simulations, see Fig. 8(c). (For interpretation of the references to color in this figure
legend, the reader is referred to the web version of this article.)

In the previous sections we have discussed in detail the effect of repentance on the adoption of an innovation. Agents can
adopt an innovation but they have the possibility of changing their minds and abandon the new technology or coming back
to the old one, if any. We have also discussed in detail two distributions for the idiosyncratic resistance to adopt: a uniform
distribution, that has been already utilized in Ref. [16], and a logistic one.

Wehave tried twodifferent dynamics for the innovationmodelwith repentance: Parallel Dynamics (synchronous update)
and MC dynamics (asynchronous update). In the first case, PD, oscillations may appear which we have analyzed in detail in
the present work. The oscillations are an effect of contrarians changing their minds when their payoffs become negative.
One can consider these oscillations kind of artificial, because the PD implies a perfect synchronization of the population (all
agents update their state simultaneously). While this is obviously unreal for a whole city or country, it could be possible for
smaller groups like communities, neighborhoods, or internet groups. On the other side, the strict asynchronous update (MC),
in which case no oscillations are observed, it is also artificial, because it means that each selected agent has an instantaneous
complete knowledge of the system whence has to take its decision. So, both dynamics are equally artificial extremes of a
reality which probably resides in some place in between. Indeed, we have checked some examples of an hybrid dynamics,
in which a part of the population updates synchronously while the other part updates in MC fashion. There are oscillations
for such an hybrid dynamics, even if, as expected, their amplitude decreases as the fraction of the population chosen for PD
update decreases.

Another interesting point is that the temporal behavior of the adoption of innovations is very sensitive to thewidth of the
distribution of the resistance to adopt ui. In the case of a wide uniform distribution, as the one utilized in Ref. [16], damped
oscillations appear as a transient state but, after a relatively short transient, the system converges to a fixed point. On the
other side, with narrower uniform distributions of ui, sustained oscillations appear, which are produced by the contrarians,
whereas mimetic agents hardly change their decision.

For a bell shaped distribution, as it is the case of the logistic one presented in Section 4, we obtain similar results. That
is, stable long term oscillations may appear for intermediate values of the advertising, d, or a large fraction of contrarians,
f , as it is evident in Fig. 7. While a high number of contrarians may be unreal considering a novel technology, that could be
the case regarding operating system choices, for example (IOS vs. Android). In any case, Fig. 7 shows that oscillations may
appear with a relatively low fraction of contrarians, provided the advertising is strong: see for example that for a narrow
distribution of idiosyncrasies (σ = 0.05) and for d ≈ 0.95 the threshold is of the order of f ≈ 0.15.

Finally, it is worth to remark that the coexistence of contrarians with the possibility of repentance makes the final total
number of adopters lower than in the casewith no regrets [16]. To check this pointwe have represented in Fig. 13 the present
results for the uniform distribution of ui together with those of Ref. [16]. It is possible to see that the shape is similar in both
cases, but when the decisions are ‘‘reversible’’ the final adoption is lower than when not. To produce this comparison we
considered the uniform distribution of idiosyncrasies because it was the one used in Ref. [16].

It is also important to note that the first oscillations are expected to be relevant ones, as it is not plausible that agents
continue to change their minds ad infinitum. In any case, being done that the presence of contrarians plus repentance
significantly reduces the final fraction of adopters, a direct consequence is that a stronger advertising campaign will be
needed if it seeks to impose innovation.
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Fig. 13. Comparison between the results of Ref. [16] (without repentance) and the present ones with repentance: final number of adopters for two values
of d (d = 0.4, squares, and d = −0.2, circles). Filled symbols correspond to no repentance and open ones with repentance (present contribution). Pairs
of curves display similar behavior with always lower values of adoption for the case with repentance. (For interpretation of the references to color in this
figure legend, the reader is referred to the web version of this article.)

Summarizing, the effect of introducing repentance are oscillations, a decrease in the final number of adopters, but also an
enhancement of the role of contrarians. Contrarians per se reduce the number of adopters. But if in addition they can change
their opinions, they reduce the number of adopters even further, and such reduction may induce a change of opinion also
in fraction of mimetic agents. Therefore, the presence of contrarians plus the possibility of repentance have an amplified
effect of reducing the final number of adopters. Also, oscillations may appear when the distribution of resistances to adopt
is smaller than 1, i.e. smaller than the social interaction, J , and such cycles are only possible if both features, contrarians and
repentance, are present.

Work in progress include the presence of impulsive agents, i.e., people that can change their technologywithout assessing
whether it is convenient. Preliminary results show that the introduction of such agents in themodel accelerates the adoption
process and increases the total number of adopters. In other words, a small number of impulsive agents in a society could be
as efficient as a strong advertising.We are also considering a dynamic distribution of idiosyncrasies, the effect of distributing
the agents on a network, and a non-linear term of social interaction that may describe the effects of fashion: people adopt a
new fashion when there are a few followers but abandon when the number of adopters increases.

Concluding, wewould like to point out that, despite its simplicity, the presentmicroscopicmodel reproduce some known
features of the innovation adoption process while given a venue for the study of more realistic cases.

Acknowledgments

One of us (JRI) acknowledges financial support of Brazilian agency CNPq (302585/2015-0). MFL and JRI acknowledge
financial support of the Argentinian agency CONICET (PIP 2015/0100296). He also thanks the kind hospitality of the IFIMAR
(Instituto de Física de Mar del Plata) during 2015–2016. MFL is member of CONICET.

References

[1] E.M. Rogers, Diffusion of Innovations, fifth ed., Free Press, 2003.
[2] Mirta B. Gordon, Jean-Pierre Nadal, Denis Phan, Jean Vannimenus, Sellers dilemma due to social interactions between customers, Physica A 356 (2005)

628–640.
[3] Jean-Pierre Nadal, Denis Phan, Mirta B. Gordon, Jean Vannimenus, Multiple equilibria in a monopoly market with heterogeneous agents and

externalities, Quant. Finance 5 (6) (2005) 557–568.
[4] Mirta B. Gordon, Jean-Pierre Nadal, Denis Phan, Viktoriya Semeshenko, Pricing of goods with bandwagon properties: The curse of coordination,

in: F. Abergel, et al. (Eds.), Econophysics of Agent-Based Models, New Economic Windows, Springer International Publishing, 2014, pp. 229–232
(Chapter 13).

[5] Mirta B. Gordon, J. Roberto Iglesias, Viktoriya Semeshenko, Jean-Pierre Nadal, Crime and punishment: the economic burden of impunity, Eur. Phys. J.
B 68 (2009) 133–144.

[6] Ch. Hauert, G. Szabó, Game theory and physics, Amer. J. Phys. 73 (2005) 405–414.
[7] F.M. Bass, A new product growth for model consumer durables, Manage. Sci. 15 (1969) 215–227.
[8] Mirta B. Gordon, J.-P. Nadal, D. Phan, V. Semeshenko, Discrete choices under social influence: generic properties, Math. Models Methods Appl. Sci. 19

(2009) 1441. http://dx.doi.org/10.1142/S0218202509003887.
[9] S. Galam, Sociophysics: a review of Galam models, Internat. J. Modern Phys. C 19 (3) (2008) 409–440.

[10] S. Galam, Contrarian deterministic effect: the hung elections scenario, Physica A 333 (2004) 453–460.
[11] C. Borghesi, S. Galam, Chaotic, staggered, and polarized dynamics in opinion forming: The contrarian effect, Phys. Rev. E 73 (2006) 1–9 066118.
[12] N. Crokidakis, V.H. Blanco, C. Anteneodo, Impact of contrarians and intransigents in a kineticmodel of opinion dynamics, Phys. Rev. E 89 (2014) 013310.
[13] Naoki Masuda, Voter models with contrarian agents, Phys. Rev. E 88 (2013) 052803.

http://refhub.elsevier.com/S0378-4371(17)30585-X/sb1
http://refhub.elsevier.com/S0378-4371(17)30585-X/sb2
http://refhub.elsevier.com/S0378-4371(17)30585-X/sb2
http://refhub.elsevier.com/S0378-4371(17)30585-X/sb2
http://refhub.elsevier.com/S0378-4371(17)30585-X/sb3
http://refhub.elsevier.com/S0378-4371(17)30585-X/sb3
http://refhub.elsevier.com/S0378-4371(17)30585-X/sb3
http://refhub.elsevier.com/S0378-4371(17)30585-X/sb4
http://refhub.elsevier.com/S0378-4371(17)30585-X/sb4
http://refhub.elsevier.com/S0378-4371(17)30585-X/sb4
http://refhub.elsevier.com/S0378-4371(17)30585-X/sb4
http://refhub.elsevier.com/S0378-4371(17)30585-X/sb4
http://refhub.elsevier.com/S0378-4371(17)30585-X/sb5
http://refhub.elsevier.com/S0378-4371(17)30585-X/sb5
http://refhub.elsevier.com/S0378-4371(17)30585-X/sb5
http://refhub.elsevier.com/S0378-4371(17)30585-X/sb6
http://refhub.elsevier.com/S0378-4371(17)30585-X/sb7
http://dx.doi.org/10.1142/S0218202509003887
http://refhub.elsevier.com/S0378-4371(17)30585-X/sb9
http://refhub.elsevier.com/S0378-4371(17)30585-X/sb10
http://refhub.elsevier.com/S0378-4371(17)30585-X/sb11
http://refhub.elsevier.com/S0378-4371(17)30585-X/sb12
http://refhub.elsevier.com/S0378-4371(17)30585-X/sb13


M.B. Gordon et al. / Physica A 486 (2017) 192–205 205

[14] J. Demongeot, E. Golès, M. Tchuente, Dynamical Systems and Cellular Automata, Academic Pr., 1985.
[15] D. Phan, S. Pajot, J.-P. Nadal, The monopolist’s market with discrete choices and network externality revisited: small-worlds, phase transition and

avalanches in an ace framework, in: Ninth Annual Meeting of the Society of Computational Economics, University of Washington, Seattle, USA, 2003,
July 11–13.

[16] S. Gonçalves, M.F. Laguna, J.R. Iglesias, Why, when and how fast innovation spreads, Eur. Phys. J. B 85 (2012) 192–200.
[17] S. Galam, S. Moscovici, Towards a theory of collective phenomena: Consensus and attitude changes in groups, Eur. J. Soc. Psychol. 21 (1991) 49–74.

http://refhub.elsevier.com/S0378-4371(17)30585-X/sb14
http://refhub.elsevier.com/S0378-4371(17)30585-X/sb15
http://refhub.elsevier.com/S0378-4371(17)30585-X/sb15
http://refhub.elsevier.com/S0378-4371(17)30585-X/sb15
http://refhub.elsevier.com/S0378-4371(17)30585-X/sb15
http://refhub.elsevier.com/S0378-4371(17)30585-X/sb15
http://refhub.elsevier.com/S0378-4371(17)30585-X/sb16
http://refhub.elsevier.com/S0378-4371(17)30585-X/sb17

	Adoption of innovations with contrarian agents and repentance
	Introduction
	The model of adoption with social interactions
	Uniform distribution
	Numerical results
	Analytic results

	Logistic distribution
	Numerical results
	Analytic results

	Discussion and conclusions
	Acknowledgments
	References


