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• An exponential distributed time-delay nonlinear model is numerically simulated.
• First passage time statistics for a distributed delay system have been worked out.
• We report the mean first passage time as a function of the mean time-delay.
• The crossover and a power-law behavior for the mean first passage time are shown.
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a b s t r a c t

The stochastic dynamics toward the final attractor in an exponential distributed time-delay
nonlinearmodel is studied, in the small noise approximation. The passage time statistic for
this non-Markovian type of systemhas beenworkedout usingMonte Carlo simulations.We
report the mean first passage time ⟨te⟩MC from the unstable state as a function of the mean
time-delay ϵ ≡ λ−1. We have compared our Monte Carlo simulations for λ ≫ 1 against
previous results (Cáceres, 2008) and we have found excellent agreement in the adiabatic
regime. The crossover for λ ∼ 1 and a power-law behavior ⟨te⟩MC ∼ λ−ν for λ ≪ 1 have
also been found in agreement with recent theoretical predictions (Cáceres, 2014).

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

It has been shown that the stochastic dynamics in nonlinear models can be studied in a mean-field approximation by
characterizing the first passage time statistics of the random escape problem [1–4], if the model has a distributed time-
delay structure the stochastic problem turns to be a non-Markovian problem but it can also be studied in a similar way [5].
In particular it has been proved that the Mean First Passage Time (MFPT) from the linear unstable state characterizes the
onset of the pattern formation independently of the structure of the saturation. However, this MFPT strongly depends on
the mean time-delay parameter occurring in the model. In the present paper we wish to present a Monte Carlo simulation
for an exponential distributed time-delay nonlinear model, these results are going to be comparedwith the aforementioned
theoretical predictions [5].

The relaxation analysis associated to time-delay nonlinear problems are under continuous investigation and will be the
subject of our program. The first obvious complication in a delay model is the lack of a mathematical theory to tackle the
passage time statistics (escape times) for a general non-Markovian problem [6–8]; the second difficulty in the dynamical
analysis is the non-linear nature of the problem [3,9]. As far as we know, this is the first time that a systematic approach
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has been presented to solve the characterization of the onset-time from an initial unstable state toward the attractor in
distributed time-delay nonlinear stochastic models.

In the present paper we are going to focus on the numerical simulations to study the stochastic dynamics and the escape
time from theunstable point in an exponential distributed time-delay Logisticmodel, allowing in thisway to characterize the
general mechanism of relaxation of the system. We have compared the present numerical results against recent theoretical
predictions [5] showing a very good agreement. In particular the adiabatic regime has shown to be in excellent agreement
with the non-delay case [1,4]. The important point in studying the present delay Monte Carlo simulations will be, therefore,
to compare a general theoretical prediction against a concrete nonlinear non-Markovian model. We emphasize that using
symmetry arguments, the present conclusions (from the distributed time-delay Logistic model) apply also to the analysis of
an exponential distributed time-delay bistable stochastic flux, as we will show.

2. The distributed time-delay nonlinear model

Consider the following exponential distributed time-delay problem:

dN
dt

= F(N,NG), (1)

NG(t) =


∞

0
G(s)N(t − s)ds,


∞

0
G(s)ds = 1, G(s) = λe−λs.

Note that the definition of NG(t) involves a weighted average of N(t) over different past times s, this definition is different
from a Mori-like time-convolution between the N(t) and a given kernel (not necessarily positive).

Because the distribution G(s) is an exponential the variable NG(t) fulfills a closed differential equation in terms of N and
NG. To prove this, from Eq. (1) we first write NG(t) in the alternative way

NG(t) =

 t

−∞

G(t − s)N(s)ds, (2)

then taking the time derivative in Eq. (2) we get

dNG

dt
= G(0)N(t)+

 t

−∞


d
dt

G(t − s)

N(s)ds.

The initial condition for NG(0) is related to a pre-function ϕ(t) for t ∈ (−∞, 0). This is simple to see from the fact that
NG(0) =

 0
−∞

G(−s)N(s)ds =


∞

0 G(s)ϕ(−s)ds. Now using the fact that the G(t) fulfills Ġ(t) = −λG(t) we finally arrive to
ṄG = λ (N − NG). Therefore the distributed delay system of equations (1) can be replaced by the set of differential equations

dN
dt

= F(N,NG), (3)

dNG

dt
= λ [N(t)− NG(t)] , λ > 0. (4)

The situationwhenG(s) is a biparametric exponentialmodel (with a sharp peak around the delay time tD) can also be tackled
in a similar way [5]. Note that from Eqs. (3) and (4) NG(t) is a slave variable when λ ≫ 1. Here by definition G(t) is positive
and can be thought as a probability distribution, then the mean time-delay characterizing the time-lag in an exponential
distributed model is:

ϵ =


∞

0
tG(t)dt = 1/λ.

In particular, when λ → ∞we recover the usual non-delay case. In general, wemay expect that if the time-scale ϵ is longer
than the ‘‘natural period’’ of the system, large amplitude oscillations will result. On the other hand, the time-lag could have
an increasingly destabilizing effect onN(t) giving rise first to damped oscillations and then possibly to divergent oscillations.

In general putting N(t) = N∗ (1 + n(t)) and NG(t) = N∗ (1 + nG(t)) where F(N∗,N∗) = 0 and calling a = −∂N
F |N=NG=N∗ ; b = −∂NGF |N=NG=N∗ the linear stability analysis, around the attractor N∗, for a perturbation like n(t) ∝

exp (−ct + iωt) leads to the conclusion that the rate of change dn/dt is affected by n(t) and the weighted average nG(t)
in the form: ṅ = −an − bnG, where the damped rate c and the frequency of oscillations ω are related by

c + iω =
λ

2


1 +

a
λ


±


1 +

a
λ

2
−

4
λ
(a + b)


, (5)

therefore oscillations may happen (ω ≠ 0) if and only if:

1 +

a
λ

2
< 4

λ
(a + b) .
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In the Logistic model F(N,NG) = r

NG(t)−

N(t)2

K


with exponential distributed time-delay we get: a = −∂NF |N=NG=N∗

= 2r , b = −∂NGF |N=NG=N∗ = −r . Therefore (a + b) = r > 0 so the system is stable and does not present oscillations for
any value of λ. This result is in direct contrast to the fixed birth time-delay model (leading to ṅ = −2rn(t) + rn(t − τD))
for which increasing τD affects both stability and the type of damping [10]. In the present work we will be interested in the
analysis of the Logistic system. However other distributed time-delay dynamical models can also be studied in a similar
fashion, for example the archetypal bistable flux: Ṅ = NG − N3.

3. Stochastic approach in the exponential distributed time-delay model

Fluctuations are ubiquitous in real systems and we are often forced to consider stochastic perturbation in the dynamical
systems because some parameters may fluctuate in time or because there are degrees of freedomwhich are not considered
in the model [6–8,11,12]. The simplest way to introduce these fluctuations into the dynamical system (3) and (4) may,
therefore, be written in the form

dN
dt

= F(N,NG)+
√
θξ(t), (6)

dNG

dt
= λ [N(t)− NG(t)] , λ > 0, (7)

where ξ(t) is a zero mean Gaussian white noise characterized by the correlation ⟨ξ(t)ξ(t ′)⟩ = δ

t − t ′


, and

√
θ is the

noise parameter.
If we consider F(N,NG) =


NG(t)− N(t)3


in Eq. (6) we can study the onset-time of the pattern-formation in a

distributed time-delay bistable flux. Due to the symmetry of this archetypal bistable flux the onset-time, from the non-
equilibrium initial state N(0) = 0, can also be studied if we consider the Logistic model F(N,NG) = r


NG(t)−

N(t)2

K


with the reflecting Boundary Conditions (BC) at the origin. Therefore in what follows of the present work we will focus
in this last situation (so we can compare the present results against previous non-delay Monte Carlo simulations of the
Logistic equation [4]). This is so because, for small noise, if the unstability is linear the dominant value of the onset-time does
not depend on the saturation term (see Appendix A); therefore in the present work we will consider the set of stochastic
differential equations (SDEs) (6) and (7) with

F(N,NG) = r

NG(t)−

N(t)2

K


. (8)

This system is going to be solved under the restriction N(t) ≥ 0. In order to accomplish this fact we will impose reflecting
BC on the realizations when N(t) = 0.

In a populationmodel the positive or negative character of theGaussian noise represents gain or lose in the time-variation
of dN(t)/dt due to the extrinsic factors. The present additive noise is not tempted to describe ‘‘extraneous predation’’,
Eqs. (6)–(8) represent a possible noise-additive character in a delay Logistic deterministic dynamics. This additive noise
model is a plausible ansatz when the unspecified random contributions are more important at low density [5].

When λ ≫ 1, from Eqs. (6)–(8), introducing an adiabatic perturbation theory [13] into the corresponding 2D Fokker–
Planck (FP) representation it is possible to write down an associated 1D FP [11] for the marginal process N(t)

∂tP (N, t|N(0)) =


∂NU ′(N)+

θ

2
∂2N


P (N, t|N(0)) , (9)

where

U(N) = −
r (1 − ϵr)

2
N2

+
r (1 − ϵr)

3K
N3

+ O

ϵ2

. (10)

As before, ϵ = λ−1 is themean time-delay from the exponential distributionG(s), thusU(N) is a perturbed delay-dependent
adiabatic potential [5]. Thus Eq. (9) represents a genuine Markovian adiabatic approximation.

Note that the FP equation (9) is equivalent of adding noise (white and Gaussian) to the deterministic dynamics in the
form

dN = −U ′(N)dt +
√
θdW (t), N(t) ≥ 0, (11)

where dW (t) is aWiener differential. In order to study the realizationsN(t) of this SDE, theWiener paths have to beworked
outwith care to assure thatN(t) ≥ 0, this issuewas considered using the Stochastic Paths Perturbation Approach (SPPA) [4].
In the context of the FP equation (9) it means that we will be interested in a reflecting BC at N = 0.
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3.1. The mean first passage time in the Markovian approximation

To study the first passage time statistics for a non-Markov process is a complex task, and to calculate the passage time
statistics for a general 2DMarkov problem is also a non-trivial problem [6]. In this section we are going to use the previous
adiabatic approximation, Eq. (9), to calculate the Mean First Passage Time (MFPT) in the Markovian approximation. We will
show that this value is the characteristic time-scale to reach the domain of attraction in the small noisy version of Eq. (1),
i.e., the scaling-time to characterize the stochastic relaxation toward the attractor.

It has been proved that from a linear instability there is a universal scaling-time which characterizes the transition from
the microscopic disorder to macroscopic order. The pioneer calculations were done by using a stochastic self-consistent
scaling theory [3,14], and from that result this onset timehas been called Suzuki’s scaling-time τS . The dominant contribution
in terms of the noise intensity

√
θ is given by: τS ∝ ln(1/θ). However, if the instability were nonlinear this scaling-time

would follow a different law in terms of the noise intensity. This fact can also be seen from the self-consistent scaling
theory [3], and from the SPPA [15–18].

Alternatively, by using the first passage time theory for aMarkovian process it is also possible to prove that asymptotically
Suzuki’s scaling-time is just the MFPT calculated from N = 0 to Nf . To get an analytical expression for this MFPT we now
introduce an asymptotic calculation in the small noise parameter

√
θ . For small noise the dominant scaling-time for the

onset of the macroscopic order O (1) is universal and independent of the nonlinear saturation term, therefore the dominant
contribution in the small parameter θ has been shown to be

τ(Nf ) =
1
2A


ln

N2
f A

θ
− ψ


1
2


+ · · ·


, (12)

where ψ
 1
2


≃ −1.9351 is the Digamma function ψ (z) =

d
dz lnΓ (z) and A is the rate in the linear instability term.

Corrections to this dominant contribution will depend on the saturation term. A Markovian perturbative calculation is
presented in Appendix A to evaluate this corrections explicitly in the Logistic model. On the other hand, in Appendix B
we calculate this Suzuki’s scaling time using the SPPA for a bistable stochastic flux. There, in addition we present the first
passage time distribution P (te). Then, the stochastic dynamics toward the final attractor in an exponential distributed
time-delay bistable model can be studied in the instanton-like approximation.

Hence the scaling-time for the relaxation in a structured nonlinearmodel (with an exponential distributed time-delay) is
characterized in the Markov approximation by the curvature of the perturbed delay-dependent adiabatic potential around
the unstable point, i.e., the scaling-time is given by (12) with A ≡ A(ϵ) = U

′′

(N = 0), see (10). However, what about
if we want to consider a situation far away from the adiabatic approximation, in this case the system is dominated by its
non-Markovian character and this problem has been tackled using a different technique.

4. Concerning the non-adiabatic calculation of the MFPT

A non-adiabatic analysis of the stochastic escape times from the unstable state can be carried out by introducing the SPPA
into the dynamics of exponential distributed time-delay models [5]. In the small noise approximation the SPPA consists of
obtaining information about the first passage time statistics without solving the Fokker–Planck equation. This is done by
analyzing the stochastic realizations of the process under study when they are written in terms of Wiener paths [1,4,15,17,
18]. From the SPPA in the small noise approximation the MFPT from N = 0 to N = Nf can be obtained analytically from
Eqs. (6)–(8) as:

⟨te⟩ =
1

2Anon−A


ln

N2
non−AAnon−A

θ
− ψ


1
2


+ · · ·


, λ > 0, (13)

here Nnon−A and Anon−A are explicit functions of the delay parameter λ the threshold value Nf and noise intensity θ , see
Ref. [5] for its derivation

Nnon−A =
2ΞNf

1 + Ξ
+


θ

λ (1 + Ξ)

1 − Ξ

1 + Ξ
(14)

Anon−A =

λ2 (1 − Ξ)

 ,
where

Ξ =

1 + 4r/λ.

Compare the result (13) with the Markov approximation given in Eq. (12). In particular from Eq. (13) and in the limit of
large λ ≫ 1 (small mean time-delay ϵ = 1/λ) the SPPA predicts an effective rate

Anon−A → r (1 − rϵ + · · ·) , ϵ → 0, (15)
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Fig. 1. The MFPT (in arbitrary units) for Nf = 1/2 and r = K = 1 for the exponential distributed time-delay equation (1) using (8), as a function of the
delay parameter λ for the noise intensity θ =


10−4, 10−6


. The asymptotic value of the MFPT ⟨te⟩MC for λ ≫ 1 are 4.93 · · · and 7.25 · · · for the noise

intensity θ =

10−4, 10−6


respectively, and are in excellent agreement with the Monte Carlo simulations of Ref. [4]. The crossover at λ ∼ 1 as well as the

power-law behavior (λ ≪ 1) for the MFPT ⟨te⟩MC ∼ λ−ν can be seen from the simulations. Thick green lines, for λ ≪ 1, correspond to the fitting (ν ≃ 0.6)
with the Monte Carlo simulation for λ ∈


10−2

− 10−1

. The theoretical prediction in the adiabatic regime, i.e., Eq. (13) using the asymptotic expressions

(15) and (16) shows an excellent agreement against the simulations. The SPPA scaling prediction ∝ 1/
√
λ (for λ ≪ 1) is in agreement with the present

Monte Carlo simulations (within the error bars) at the highly non-adiabatic regime.

which is in agreement with the adiabatic Markov approach to O (ϵ), see Eq. (12). In addition the threshold Nnon−A, in the
same limit, gives

Nnon−A → Nf (1 + rϵ + · · ·)−
√
θ
 r
8
ϵ3/2 + · · ·


, for ϵ → 0. (16)

Note that, this last correction cannot be obtained from the Markov approximation. For example, the second term in
Eq. (16) is a small perturbationwhich comes from the fluctuations ofNG induced from the dynamics ofN(t). In the non-delay
case (ϵ = 0) this result has been tested for the particular noisy Logistic equation and we have found excellent agreement
against the numerical solutions of the associated SDE [4]. The comparison of the SPPA against delayMonte Carlo simulations
for any λ is shown in Fig. 1.

In the opposite limit λ ≪ 1 (highly non-adiabatic regime, i.e., large mean time-delay ϵ = 1/λ) it has been shown [5]
from Eq. (13) that the dominant term (for fixed θ ) is given by

⟨te⟩ ≈
1

2
√
λr

ln (1/2)− ψ(1/2)+ ln

1 − 2Nf


2
√
λr
θ

2
 , for λ ≪ 1, (17)

precluding the behavior ⟨te⟩ ∝ 1/
√
λ for λ ≪ 1. A similar power-law behavior for the MFPT: ⟨te⟩MC ∼ λ−ν was found from

the present numerical simulations.

5. Monte Carlo simulations of the MFPT

Delay Monte Carlo simulations of the stochastic escape times from the unstable state, associated to Eqs. (6)–(8) can be
carried out by solving numerically the following set of coupled equations

N(i + 1) = N(i)+
∆

2
r


NG(i)− N2(i)/K

+


NG(i)− N̂2(i + 1)/K


+

√
∆θηi (18)

N̂(i + 1) = N(i)+ r∆

NG(i)− N2(i)/K


+

√
∆θηi

NG(i + 1) = NG(i)+ λ∆ [N(i)− NG(i)] ,

here N̂(i + 1) is the predicator step that improves the algorithm [19] and ηi are statistical independent Gaussian random
numbers with mean zero and second moment ⟨η2i ⟩ = 1, this random numbers can be generated using the Box–Muller
formula:

ηi =


−2 ln ui1 cos 2πui2,
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Fig. 2. Data points with Monte Carlo error bars as a function of λ for two values of θ .

Fig. 3. Standard deviation σ as a function of λ for two values of the noise parameter θ .

where ui1,i2 are statistical independent uniformly distributed number in (0, 1) and ti − ti−1 = ∆ is the time interval in the
numerical approach.

We have solved the SDE (18) and calculated the histogram P (te) at the random times te when the stochastic process
N(ti) reach for the first time the threshold value Nf = K/2. In Fig. 1 we show the MFPT calculated numerically from our
histogram as

⟨te⟩MC =


∞

0
teP (te)dte.

To calculate ⟨te⟩MC from the present Monte Carlo simulations we have run 10000 realizations for θ = 10−4 and θ = 10−6,
with a time discretization of∆ = 0.01.

In Fig. 1 we show as a function of λ, the Monte Carlo data and the theoretical prediction (lines) for two values of noise
intensity θ . We have also performed a fitting with data points in the interval of λ ∈


10−2, 10−1


, and we got ν ∼ 0.6

with and adjusted R-Square of R ∼ 0.9. These fitting-lines can also been seen as thick lines in the same figure. In Fig. 2 we
show data points with the error bars for the two values of θ we have used. The error bars correspond to the Monte Carlo
Standard Deviation σ . As one can notice from this graph, Standard Deviation increases for low values of λ. This means that
the variation about mean values µ of the first passage times increases as λ → 0. Thus we can conclude that the theoretical
prediction falls within the interval µ ± σ . It is interesting to see that Standard Deviation does not depend on the noise

parameter, see Fig. 3 where we show σ =


⟨t2e ⟩MC − ⟨te⟩2MC as a function of λ.
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6. Conclusions

In order to characterize the stochastic dynamics toward the final attractor in an exponential distributed time-delay
nonlinear model, numerical simulations of the (delay) escape process have been presented. The passage time statistics can
then be studied in the small noise approximation. The first passage time statistics (from the linear unstable state N = 0)
associated to this non-Markovian type of system have been calculated numerically. We have compared our results against
recent theoretical predictions [5] and we have found agreement between them. We have also found (within the numerical
errors of our simulations and for fixed noise intensity θ ) a power-law behavior for small λ (large mean time-delay ϵ = λ−1)
which goes asymptotically as ⟨te⟩MC ∼ λ−ν for λ ≪ 1, in agreement with the theoretical prediction ∝ 1/

√
λ. We have also

shown the existence of a crossover for λ ∼ 1 in the mean first passage time ⟨te⟩MC as a function of the delay parameter λ.
The critical situation when the instability is nonlinear and/or when the noise is multiplicative can also be worked out in

a similar way by using the Stochastic Path Perturbation Approach [16–18], and the work along this line is in progress.
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Appendix A. Corrections to the MFPT in the Markov approximation

In the adiabatic approach the MFPT from 0 → Nf for a 1D continuous Markov process with reflecting BC at N = 0 is
given by Ref. [6,7,11,20]

τ(Nf ) =
2
θ

 Nf

0
dy
 y

0
exp


2
θ
[U(y)− U(z)]


dz. (19)

This is the solution of Dynkin’s equation associated to the Fokker–Planck equation (9), which is consistent to the SDE (11).
Using the perturbed delay-dependent adiabatic Logistic potential (10) up to the linear order in ϵ, we can write U(N) ≃

−
1
2AN2

+
1
3BN3 where A = r (1 − ϵr) and B = A/K . Then from Eq. (19) the MFPT is given by

τ(Nf ) =
2
θ

 Nf

0
dy
 y

0
exp


−A

θ


y2 − z2


fB (y, z) dz (20)

fB (y, z) = exp


2A

3θK


y3 − z3


.

Noting that Nf ≪ K and introducing a suitable series expansion for fB (y, z)we can write a perturbation formula for τ(Nf )
in terms of the saturation contribution fB (y, z) as follows. Denoting α ≡ θ/A and introducing the change of variable
u =


y2 − z2


/α we get

τ(Nf ) =
2α
θ

 Nf

0
dy
 y/

√
α

0

ue−u2
y2 − αu2

exp


2
3αK


y3 −


y2 − αu23/2 du. (21)

For small α we can take

y3 −


y2 − αu2

3/2
=

3
2αyu

2
+O


α2

, then we can introduce a perturbation from the saturation

term (the term 1/

y2 − αu2 should not be expanded because this function is responsible of the singular character of the

integrand), so we finally get a perturbation expansion in the small quantity y/K

τ(Nf ) ≃
2α
θ

 Nf

0
dy
 y/

√
α

0

u
y2 − αu2

exp

−u2


1 −

y
K


du

=
2α
θ

 Nf

0

D
√

1− y
K√

α


y


√
α


1 −

y
K

dy, (22)

here we have used the definition of the Dawson function D [x] [21]. Noting that y ≤ Nf ≪ K we can approximate the
function


1 −

y
K

−1/2, then the dominant contribution to the integrand of (22) looks like

D
√

1− y
K√

α


y


√
α


1 −

y
K

= D


y
√
α

 
1 +

y
2K

 1
√
α

+ O

 y
K

2
. (23)



Author's personal copy

68 M.O. Cáceres, C.D. Rojas R. / Physica A 409 (2014) 61–70

Introducing this expression in the integral we get

τ(Nf ) ≃
2α
θ

 Nf

0

D


y
√
α


√
α

dy +
2α
θ

 Nf

0
D


y
√
α


y

2K
√
α
dy. (24)

Using that α ≡ θ/A the first integral gives the dominant contribution

2α
θ

 Nf

0

D


y
√
α


√
α

dy =
N2
f

θ
Fpq


{1, 1},


3
2
, 2

,−

N2
f A

θ


, (25)

where F

{a1, . . . , ap}, {a1, . . . , aq}, z


= Fpq [a, b, z] is a generalized hypergeometric function [21]. The second integral in

Eq. (24) gives the correction due to the saturation term

2α
θ

 Nf

0
D


y
√
α


y

2K
√
α
dy =

Nf

2KA
−

√
θ/A

2KA
D

Nf


A/θ

, (26)

here in order to do the integral we have used the relation: D
′

[x] = 1 − 2xD [x]. Calling η =
N2
f A

θ
and noting that

lim
η→∞

2η Fpq


{1, 1},


3
2
, 2

,−η


→


ln η − ψ


1
2


,

where ψ (x) is the Digamma function, we can write, in the small noise limit, the final expression for the MFPT as

τ(Nf ) →
1
2A


ln

N2
f A

θ
− ψ


1
2


+

Nf

K
−

√
θ/A

K
D


Nf
√
θ/A


+ · · ·


. (27)

This means that asymptotically for small noise Suzuki’s scaling-time is equivalent to the dominant term in the MFPT. Using
that limx→∞ D [x] →

1
2x +

1
4x3

+ · · · we see that the first correction from the nonlinear saturation term is just the constant
Nf /K .

It is meaningful to comment here that Suzuki’s scaling-time τS =
1
2A


ln

N2
f A

θ
− ψ

 1
2


can also be obtained from the

SPPA working out the SDE dN = ANdt +
√
θdW (t) (without saturation) and solving the random time te at the threshold

value N(te) = Nf [4], compare also with the next appendix. In addition, a similar approach can be used when the noise is
Gaussian but non-white [1], or when the coefficient A = A(t) is a function of time (i.e.: a time dependent potential) [2,22].

Appendix B. Revisiting Suzuki’s scaling time for a noisy bistable flux

Let a dynamical flux be represented by the SDE

dX
dt

= aX(t)− bX(t)3 +
√
θξ(t); X(0) = 0, (28)

here, as before, ξ(t)dt = dW (t) is a Wiener differential. At short time any realization is dominated by the linear instability
term, then it can be approximated to O(

√
θ) by

X(t) ≃
√
θeat

 t

0
e−asdW (s) ≡

√
θeath(t), t ≥ 0. (29)

Where we have defined a new stochastic process h(t) ≡
 t
0 e−asdW (s) ≥ 0, which is the solution of the SDE

ḣ(t) = e−atξ(t), h(0) = 0, t ≥ 0.

It is important to note that even when the correlation function of the process ξ(t) is white, the stochastic process h(t)
saturates at long time (t ≫ a−1). In particular it is possible to prove that ⟨h(∞)2⟩ = 1/2a, then the stationary pdf is

P (h,∞) ≡ P (Ω) =
e−Ω2/a

√
π/a

, Ω ∈ (−∞,+∞) . (30)

Therefore we can approximate the paths (29) in the form:

X(t) ≃
√
θΩ exp(at). (31)
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Formula (31) gives the stochastic pathswewere looking for as amapping from the randomnumberΩ . These realizations
give an accurate representation of the paths for short and intermediate times, except for the small fluctuations around the
final steady state X(∞)2 = a/b, i.e., in the long-time limit t → ∞. At intermediate times, the random scape times te (when
the stochastic paths leave the initial domain O(

√
θ) and fall into the attractor of the saturation valley) can be obtained by

inverting te from (31) in the form X(te)2 ≃ θΩ2 exp(2ate) = X2
f . Therefore to O(

√
θ)we get the transformation law

te =
1
2a

log


X2
f

θΩ2


. (32)

This formula teaches us that the MFPT is just given by the mean value ⟨te⟩ over the distribution of the random variableΩ ,
using (30) we get

⟨te⟩ =
1
2a


∞

−∞

log


X2
f

θΩ2


P (Ω) dΩ

=
1
2a


ln

X2
f a

θ
− ψ


1
2


, (33)

where ψ
 1
2


≃ −1.9351 is the Digamma function, compare this formula with the previous result (27). As expected by the

symmetry of the problem, Suzuki’s scaling-time for a bistable flux [1,2,22] is the same as the one obtained for the noisy
Logistic equation with reflecting BC at the origin [4].

In order to obtain the FPTD P (te) (i.e., the probability that amplitude X2(t) reaches a given threshold O(a/b) between te
and te + dte), we begin with the relation betweenΩ and te expressed in Eq. (32). Then the FPTD P (te) follows as:

P (te) =


δ (te − te [Ω]) P(Ω)dΩ.

Using the Jacobian of the transformation
 dΩdte  = a |Ω|, we arrive to

P (te) = N
aXf
√
θ
exp (−ate) P


Ω =

Xf
√
θ
exp (−ate)


, te ∈ (0,∞) , (34)

where P (Ω) is given in Eq. (30) and the normalization constant is N −1
=

1
2erf


aXf /

√
θ

.

B.1. Anomalous fluctuations and the distributed time-delay stochastic bistable flux

From the FPTD (34) it is possible to study the dynamics of the nonlinear process by introducing the instanton-like
approximation

X(t) ≃ ±Θ (t − te) , (35)

here Θ (z) is the step function and te the random escape times characterized by P (te), this approximation gives a good
description for the analysis of the anomalous fluctuations of the process [3,4,15–18,22,23]. To calculate analytically the
anomalous fluctuation, we approximate the transient toward the global attracting solution by using (35) which is for t > te
the O(1) macroscopic amplitude size (characterizing the attractor valley). Then the transient anomalous fluctuation is
given by

σ 2
X (t) = ⟨Θ(t − te)⟩ − ⟨Θ(t − te)⟩2, t ≥ 0, (36)

where

⟨Θ(t − te)⟩ =


∞

0
Θ(t − te)P (te) dte

=

 t

0
P (te) dte,

here we have used, invoking symmetry arguments, that ⟨X(t)⟩ = ⟨±Θ(t − te)⟩ = ⟨Θ(t − te)⟩. In this instanton-like
approximation the maximum of the function σ 2

X (t) is at the most probable escape value. The function σ 2
X (t) depicts the

qualitative behavior of the anomalous fluctuationwewere looking for. From thebehavior ofσ 2
X (t)wesee that in the transient

regime the initial fluctuations are amplified and give rise to the transient anomalous fluctuations of O(1) as compared with
the initial or final fluctuations of O(

√
ϵ).
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It is interesting to note that the FPTD P (te) for the escape process from X(0) → ±Xf for an exponential distributed
time-delay stochastic bistable flux:

Ẋ = rXG − X3
+

√
θξ(t) (37)

XG(t) = λ


∞

0
e−λsX(t − s)ds,

can be read from Eq. (34) replacing Xf → Nnon−A and a → Anon−A from Eq. (14).
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