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Background: The opioid system modulates prolactin release during late pregnancy. Its role and the
participation of ovarian hormones in this modulation are explored in ether stress-induced prolactin
release.

Methods/Results: Estrous, 3-day and 19-day pregnant rats were used. We administered the antagonist
mifepristone (Mp) and tamoxifen to evaluate progesterone and estradiol action in naloxone (NAL, opioid
antagonist) or saline treated rats. Ether stress had no effect on serum prolactin levels in controls but

I[ffglv:gtrif: increased prolactin release in NAL-treated rats. Prolactin response to stress in NAL-treated rats was
Stress blocked by L-DOPA administration. Mp treatment on day 18 of pregnancy increased prolactin levels after
Naloxone stress without alterations' by NAL. Tamoxifen on days 14 and 15 of pregnancy comPletely blocked Mp
Pregnancy and NAL effects on prolactin release at late pregnancy. In contrast, stress significantly increased prolactin

levels in estrous rats and pretreatment with NAL prevented this. On day 3 of pregnancy, at 6.00 p.m.,
stress and NAL treatment inhibited prolactin levels in saline-treated rat. No effect of stress or NAL
administration was detected on day 3 of pregnancy at 9.00 a.m. icv administration of specific opioids
antagonist, B-Funaltrexamine but not Nor-Binaltorphimine or Naltrindole, caused a significant increase
in stress-induced prolactin release.
Conclusions: Opioid system suppression of prolactin stress response during late pregnancy was observed
only after progesterone withdrawal, involving a different opioid mechanism from its well-established
stimulatory role. This mechanism acts through a mu opioid receptor and requires estrogen participation.
The opioid system and progesterone may modulate stress-induced prolactin release, probably involving
a putative prolactin-releasing factor.
© 2014 Institute of Pharmacology, Polish Academy of Sciences. Published by Elsevier Urban & Partner Sp.
z 0.0. All rights reserved.

Opioid receptor subtypes

Introduction

The opioid system modulates prolactin secretion in non-
pregnant, pregnant and lactating animals [1-6]. Dual neuromo-
dulatory regulation of prolactin secretion by the opioid system
during pregnancy was previously described [7]. After stimulatory
action during the first days, a change to inhibitory control was
established at the end of pregnancy, starting around day 16 [8].
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Thus, both stimulatory and inhibitory actions of opioids, acting
through different regulatory pathways, may result in an elevation
of prolactin levels [7,9,10].

Administration of the antiprogesterone mifepristone (Mp)
facilitates prolactin release by blocking the central inhibitory
action of progesterone [7], and the effect of Mp can be enhanced by
injecting the opioid antagonist naloxone (NAL). In fact, prolactin
secretion during late pregnancy undergoes a paradoxical regula-
tion by the opioid system in which progesterone plays an
important role [7,8]. Moreover, Mp inhibits the hypothalamic
dopaminergic neuronal system [11], the main inhibitory factor of
prolactin secretion in terms of dopaminergic transmission and
tyrosine hydroxylase (TH) expression [12,13]. This effect enables a
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significant activation of lactotrophs and primes the pituitary for a
subsequent stimulatory action of NAL [14].

Several stressors may affect prolactin secretion [15-17], and
endogenous opioid peptides participate in the prolactin response
to stress [18-20]. Among the subtypes of opioid receptors (mu,
delta and kappa receptors), the activation of mu opioid subtypes
plays an important role in stress conditions [21,22]. Furthermore,
ether stress induces a rapid increase in plasma prolactin
concentrations in female, male, and androgenized rats [23], and
ovarian steroids participate in this effect [24,25]. It is known that
estradiol has a stimulatory effect on basal as well as on stress-
induced prolactin release [26,27] and evidence suggests that
progesterone may inhibit prolactin gene expression [28] and
prolactin secretion [24] in response to stress. The mechanisms by
which endogenous opioids and ovarian steroids may affect stress
responsiveness are, however, still unclear.

Interestingly, hyporesponsiveness of the hypothalamus-pitui-
tary-adrenal (HPA) axis to several stressors was described in late
pregnancy [29]. Both endogenous opioids and progesterone, more
specifically its metabolite allopregnanolone [30], seem to play an
important role in the mechanisms involved in this suppressed HPA
axis response [24,31].

Several changes occur in the maternal brain to prepare the
different neuroendocrine systems involved in mechanisms regu-
lating parturition and lactation [32,33]. Among others, endogenous
opioids and progesterone play a role in maternal oxytocin and
prolactin system adaptation [31,32].

The primary goal of this study was to examine the participation of
the opioid system in the regulation of prolactin secretion in response
to ether stress during late pregnancy and to establish a correlation
with changes in ovarian steroids. Additionally, the ether stress
response in other reproductive situations was evaluated, such as
estrus day or day 3 of pregnancy where the stimulatory effect of the
opioid system has been clearly established.

Materials and methods
Animals

Virgin female rats, 3 months old (200-220g), bred in our
laboratory and originally from the Wistar strain, were used. They
were kept in a light (6.00 a.m. - 8.00 p.m.) and temperature
(22 £ 2 °C)-controlled room. Rat chow (Cargill, Argentina) and tap
water were available ad libitum. Vaginal smears were analyzed daily;
virgin rats of 3 months of age showing two or three consecutive 4-day
cycles were used on estrus day. Other groups of rats were made
pregnant by being caged individually with a fertile male on the night of
proestrus. Vaginal smears were checked for the presence of spermato-
zoa on the following morning; if positive, that day was considered day 0
of pregnancy (normal delivery on day 22 of pregnancy). Animal
maintenance and handling were conducted according to the NIH guide
for the Care and Use of Laboratory Animals (NIH publication N° 86-23,
revised 1985 and 1991) and the UK requirements for ethics of animal
experimentation (Animals Scientific Procedures, Act 1986). All
experimental procedures were approved by the Care and Use of
Laboratory Animals Committee (CICUAL) of the Faculty of Medical
Sciences, National University of Cuyo, Mendoza, Argentina.

Surgical procedures

In pregnant rats receiving intracerebroventricular (icv) injec-
tions, stainless-steel guide cannulae were surgically implanted on
day 12, 7 days before the experiment. The animals were
anesthetized with a combination of xylazine hydrochloride
(4 mg/kg) and ketamine hydrochloride (80 mg/kg) injected ip
between 9.00 a.m. and 12.00 a.m. Rats were positioned in a

stereotaxic frame and the stainless-steel guide cannula was
inserted into the right lateral ventricle (M/L 1.5 mm, A/P-
0.4 mm relative to bregma, 4.5 mm relative to dura [34]). Cannulae
were fixed to the skull using dental acrylic and sealed until the
time of drug injection. On the day of the experiment, 5 .l of
specific antagonists were injected using a 10wl Hamilton
microsyringe connected to an injection needle that protruded
1 mm beyond the tip of the guide cannula placed in the lateral
ventricle. Placement of cannulae was verified histologically at the
end of the experiment.

Drugs

The opioid receptor antagonists : Beta-Funaltrexamine (B-
FNA), k: Nor-Binaltorphimine (Nor-BNI), &: Naltrindole (NALT) and
the non-specific opioid receptor antagonist: Naloxone (NAL), and
the antiprogesterone mifepristone (Mp) (RU-486:173-hydroxy-
113-[4-dimethyl-amino-phenyl]-17a-propinyl-estra-4,9-dien-3-
one); were obtained from Sigma Chemical Co, St Louis, MO, USA.
Tamoxifen citrate (T) was provided by Gador S.A., Buenos Aires,
Argentina. L.-dihydroxyphenylalanine (.-DOPA) was obtained from
Roche, Buenos Aires, Argentina.

Exposure to stress

Rats were placed individually in a jar saturated with ether vapor
for 2 min [24,35]. Blood samples were obtained by decapitation
3 min after ether exposure. The experiments were conducted at
9.00 a.m. except on day 3 of pregnancy when they were also
conducted at 6.00 p.m. (surge prolactin time). Control rats were
always included. Several studies suggest that maximum prolactin
response is reached between 2 and 5 min after ether exposure
[24,25,35,36]. The order of decapitation did not affect circulating
hormone levels of the basal or stressed rats groups.

Blood samples were collected without anticoagulant and
allowed to clot at room temperature. Serum was separated by
centrifugation and stored frozen at —20°C until subsequent
radioimmunoassay.

Experimental procedures

Experiment 1

This experiment was designed to establish the effect of ether
stress on prolactin secretion in NAL-treated rats at late pregnancy.
We also included, in the present experiment, two other groups of
rats on estrous day and day 3 of pregnancy where the stimulatory
effect of the opioid system has been clearly established. Animals on
day 19 of pregnancy (late pregnancy), day 3 of pregnancy or estrus
day received an ip injection of NAL (2 mg/kg) or its vehicle (SAL) at
8.30 a.m. and were sacrificed at 9.00 a.m. Five minutes prior to
decapitation, the rats were exposed to ether vapors as described
above. Another group of rats was sacrificed following the same
schedule at 6.00 p.m. on day 3 of pregnancy when serum prolactin
levels are elevated.

It is known that in most situations, prolactin release is under an
inhibitory dopaminergic tone of hypothalamic origin. Rats on day 19
of pregnancy were treated with saline or the dopamine precursor -
DOPA (25 mg/kg, ip) at 8.15 a.m. to prevent any transient decrease of
dopaminergic tone, 15 min later with NAL or saline, and following
the same stress exposure they were sacrificed at 9.00 a.m. Blood
samples were obtained to determine serum prolactin and proges-
terone concentrations by radioimmunoassay (RIA).

Experiment 2
This experiment was conducted to study the effect of the
fluctuations in progesterone and estrogen action occurring during
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late pregnancy on the modulation of endogenous opioids on stress-
induced prolactin secretion.

Tamoxifen citrate (T, antagonist of estrogen receptor) 500 g/
kg dissolved in 0.14 M NaCl, 0.5% (v/v) Tween 80 or vehicle was
orally administered at 4.00 p.m. on days 14 and 15 of pregnancy,
when estrogen levels begin to increase until reaching their
maximum prior to delivery [37]. On day 18 of pregnancy, rats
were treated with mifepristone (Mp, 2 mg/kg, sc) or vehicle (oil) at
9.00 p.m. On day 19 of pregnancy, all rats received an ip injection of
NAL (2 mg/kg) or vehicle (SAL) at 8.30 a.m., and were sacrificed at
9.00 a.m. Five minutes prior to decapitation, they were exposed to
ether vapors as above described. Blood samples were obtained for
serum prolactin determination by RIA.

Experiment 3

This experiment was conducted to identify opioid receptor
subtypes involved in prolactin release regulation in rats exposed to
ether stress in late pregnancy. The irreversible mu opioid receptor
antagonist B-FNA (5 pg/rat), kappa antagonist Nor-BNI (15 g/
rat), and delta antagonist NALT (5 pg/rat) were dissolved in
distilled water immediately before administration. Drugs or
vehicle were administered intracerebroventricularly (icv) 30 min
before sacrifice. Five minutes prior to decapitation, rats were
exposed to ether vapors as described. Blood samples were obtained
for serum prolactin and progesterone determination by RIA.

Prolactin and progesterone determinations

Serum prolactin concentration was measured by double-
antibody radioimmunoassay [8] with materials supplied by Dr.
A. F. Parlow (National Hormone and Pituitary Program, USA).
Prolactin was radioiodinated using the chloramine T method [38]
and purified by passage through Sephadex G-75 and polyacryl-
amide agarose (ACA 54; LKB, Bromma, Sweden) columns. Assay
sensitivity was 1ng/ml serum, and inter- and intra-assay
coefficients of variation were <10%. The prolactin antibody does
not cross-react with placental lactogen [39].

Serum progesterone was measured using a commercial kit
(DSL-3400 double antibody RIA, Diagnostic Systems Laboratories,
Webster, TX, USA). Assay sensitivity was <70 fmol/tube, and inter-
and intra-assay coefficients of variation were <10%.

Statistics

The results from experiments 1 and 2 and the inset of Fig. 4
were analyzed by two-way analysis of variance (ANOVA 2) with
Bonferroni post hoc test. The results from experiments 3 and
Table 1 were analyzed using one-way analysis of variance (ANOVA
1) with Dunnett’s post hoc test.

Results

Experiment 1: serum prolactin and progesterone concentrations in
stressed rats: effect of NAL

Ether stress given to saline-treated rats on day 19 of pregnancy
had no effect on serum prolactin levels. Also, NAL administration to
non-stressed-rats did not modify serum prolactin levels as was
previously described [7,8]. However, NAL treatment to rats
submitted to stress significantly increased serum prolactin
secretion. Two-way ANOVA results of prolactin data shown in
Fig. 1a are as follows: Drug factor (SAL, NAL) F32)=34.4
p <0.0001; Treatment factor (Basal, Stress) F132)=35.8
p < 0.0001; Interaction (Drug x Treatment) F132)=29.5
p < 0.0001. Bonferroni post-test comparisons t=8.1 p < 0.001.
There were no differences in serum progesterone concentrations in
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Fig. 1. Effect of ether stress on (a) serum prolactin or (b) serum progesterone
concentrations in rats on day 19 of pregnancy pretreated with naloxone (NAL, 2 mg/
kg, ip) or saline (SAL). Results are means + SEM of groups of 8-9 animals in each
experimental group. *p < 0.01 compared to Basal (non-stressed) rats. Two-way
(ANOVA 2) followed by Bonferroni post hoc test.

ether stressed-rats after saline or NAL administration (Fig. 1b). As
dopamine precursor .-DOPA administration prevents any transient
decrease in dopamine tone, serum prolactin secretion induced by
NAL treatment in rats (day 19 of pregnancy) submitted to ether
exposure was blocked by L.-DOPA pre-treatment (p < 0.01, Table 1).
Control animals were used (basal or unstressed rats). Prolactin
levels remained unchanged in unstressed animals pretreated with
L-DOPA (data not shown). Serum progesterone concentration was
not modified by L-DOPA administration in basal (data not shown)
or stressed rats treated with saline or NAL (Table 1).

Estrous rats and rats on day 3 of pregnancy were included as
controls to show stress-induced prolactin release in different
reproductive states with fluctuations in ovarian steroids different
to hormonal levels observed during late pregnancy (day 19).
Stressed estrous rats showed a significant increase in serum
prolactin levels measured at 9.00 a.m., and NAL administration
prevented this effect (Fig. 2a). Two-way ANOVA results of data
shown in Fig. 2a were as follows: Treatment factor (Basal, Stress)

Table 1

Effect of .-DOPA (1-dihydroxyphenylalanine) administration on serum prolactin
and progesterone concentration on day 19 of pregnancy in stressed saline (SAL) or
stressed naloxone (NAL) treated rats. Results are means+SEM of groups of 8-9
animals in each experimental group.

Serum prolactin (ng/ml)

SAL L-DOPA SAL

Serum progesterone (ng/ml)

L-DOPA

SAL  3.60+0.71(9) 4.16+1.16(8) 114.41+2.41(8) 119.11+3.57 (8)
NAL 25.46+3.69 (9) 4.02+1.14% (9) 109.09+3.73 (9) 117.80+2.73 (9)

 p<0.01 vs. SAL plus SAL-stressed rats.
# p<0.01 vs. SAL plus NAL-stressed rats.
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Fig. 2. (a) Effect of ether stress on serum prolactin levels in rats on (a) estrous day
(9.00 a.m.) and day 3 of pregnancy at (b) 9.00 a.m. or (c) 6.00 p.m. - pretreated with
naloxone (NAL, 2 mg/kg, ip) or saline (SAL). Results are means + SEM of groups of 8-
9 animals in each experimental group. *p < 0.01 compared to Basal (non-stressed) rats.
#p < 0.01 compared to SAL stressed rats.

F134y=12.92 p < 0.001, Drug factor F¢; 34y=13.89 p < 0.0007 and
interaction (Drug x Treatment) F(;34)=13.82 p < 0.0007. Bonfer-
roni post hoc test comparisons indicated that the groups SAL or NAL
(Basal) were different (p < 0.001) from SAL (Stress).

On day 3 of pregnancy, the effect of ether stress and NAL
treatment was evaluated in the morning (9.00 a.m.) when serum
prolactin levels are low (intersurge time) and in the afternoon
(6.00 p.m.) at the time when serum prolactin levels are elevated
(surge time). In animals exposed to stress on day 3 of pregnancy at
9.00 a.m., no differences were found in serum prolactin levels and
NAL administration had no effect on control (Basal) or stressed rats
(Fig. 2b). Two-way ANOVA analysis was as follows: Drug factor
(SAL, NAL) F(120y=0.18 p=0.67, Treatment factor (Basal, Stress)
F1,20)=3.54 p=0.07; Interaction (Drug x Treatment) F(; 20y = 0.83
p = 0.83 (Fig. 2b). Stress exposure on day 3 of pregnancy at 6.00
p.m. induced a decrease in serum prolactin levels. NAL pretreat-
ment decreased basal serum prolactin levels and did not modify
the effect induced by stress on this hormone. Two-way ANOVA
analysis was as follows: Drug factor (SAL, NAL) F(2g)=12.02
p < 0.01, Treatment factor (Basal, Stress) F2s)=6.99 p < 0.05;

Interaction (Drug x Treatment) F(;2s)=6.45 p < 0.05. Bonferroni
post-test comparisons t=3.67 p < 0.01 (Fig. 2c).

Experiment 2: effect of progesterone, estrogen and NAL on prolactin
secretion in stressed rats

We previously showed that 5 mg/kg [11,14] or 10 mg/kg [7,8]
Mp treatment 10 or 12 h before NAL administration induced
prolactin secretion, while 2 mg/kg treatment did not. The present
study used a 2 mg/kg Mp dose so no changes in prolactin secretion
after SAL or NAL administration were expected. Thus, allowing us
to perform the study of a prolactin release stimulus such as
suckling [37] or ether stress (present work). Mp administration
induced a significant increase in serum prolactin levels on saline-
treated rats exposed to ether. Tamoxifen (T) administered on days
14 and 15 of pregnancy completely prevented this effect (Fig. 3a).
Two-way ANOVA showed a significant effect of Treatment factor
F(1,42)=42.63 p <0.0001, Drug factor F42)=32.66 p < 0.0001,
and interaction between both factors F(;42)=31.27 p < 0.0001.
Bonferroni post hoc test comparisons indicated significant differ-
ence (p < 0.001) between Mp-SAL (Basal) and Mp-SAL (Stress).
NAL administration to Mp-treated rats significantly increased
stress-induced serum prolactin release to similar levels as in the
Mp-SAL stressed group (Fig. 3a). T administration on days 14 and
15 of pregnancy prevented stress-induced prolactin secretion in
NAL- or Mp-NAL-treated rats on pregnancy day 19 (Fig. 3b). Two-
way ANOVA indicated a significant effect of Treatment factor
F1.42)=29.34 p <0.0001, Drug factor Fp42)=39.80 p < 0.0001,
and interaction between both factors F(;42)=22.79 p < 0.0001.
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Fig. 3. Effect of tamoxifen (T) (500 wg/kg per os) pre-treatment on serum prolactin
concentrations on day 19 of pregnancy (9.00 a.m.) in stressed rats, treated with (a)
mifepristone (Mp, 2 mg/kg, sc) or (b) mifepristone (Mp)-naloxone (NAL, 2 mg/kg ip).
Results are means + SEM of groups of 8-9 animals in each experimental group.
*p < 0.01 compared to Basal (non-stressed) rats. #p < 0.01 compared with Mp-SAL or
Mp-NAL stressed rats.
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Bonferroni post hoc test comparisons indicated that Mp-NAL
(Basal) and Mp-NAL (Stress) groups, were significantly different
(p < 0.001).

Experiment 3: effect of icv administration of different opioid receptor
antagonists on prolactin and progesterone secretion in stressed rats

Intracerebroventricular administration of the . antagonist B-
FNA, significantly increased serum prolactin concentration in
stressed rats measured at 9.00 a.m. (p < 0.01). No differential effect
in PRL release by stress was observed after administration of the k
and o opioid receptor antagonists Nor-BNI and NALT, respectively,
compared with saline (Fig. 4a). In basal conditions, icv administra-
tion of B-FNA, Nor-BNI or NALT did not modify serum prolactin
concentration (data not shown). As the inset of Fig. 4a curiously
shows, a significant increase in serum prolactin levels was
observed in cannulated control rats exposed to ether vapors.
Administration of opioid receptor antagonists did not modify
serum progesterone levels before or after stress exposure (Fig. 4b).
Although the statistical analysis was made with the data expressed
as ng/ml, we preferred to show the results of Fig. 4a and b as % of
stressed saline-treated rats with the aim to show them in a clearer
way.
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Fig. 4. Effect of the administration of different opioid receptor antagonists on
prolactin and progesterone secretion in stressed rats on day 19 of pregnancy: (a)
serum prolactin, (b) serum progesterone levels (as % of stressed saline-treated rats).
Animals were injected icv with either vehicle or B-FNA or Nor-BNI or NALT 30 min
before decapitation. Results are means -+ SEM of groups of 9-11 animals in each
experimental group. *p < 0.01 compared to stressed-SAL treated rats. Inset: showing
the data as ng/ml; *p < 0.01 compared to Basal (non-stressed) rats. #p < 0.01 compared
to stressed vehicle treated rats.

Control

Discussion

Progesterone seems to be a key regulator of prolactin secretion
during late pregnancy [35,40] by maintaining hypothalamic
dopaminergic neuron activity [11]. Moreover, the fall of proges-
terone action facilitated prolactin secretion and NAL administra-
tion potentiated this effect demonstrating that progesterone and
endogenous opioids interact to modulate prolactin secretion
during late pregnancy [7,8].

Data in this study show that prolactin response to ether stress in
non-pregnant rats was abolished during late pregnancy, probably
as a consequence of the inhibitory effect of progesterone at this
time, without discarding the activation of dopaminergic neurons
by placental lactogen [41]. Interestingly, this inhibitory effect was
partially reversed when progesterone action was blocked by Mp
administration. Reports have shown that progesterone may
prevent stress-induced prolactin secretion in male, female
[24,42], androgenized [23] and pregnant rats [27]. In addition,
opioid tone blockade by NAL significantly increased prolactin
secretion in response to ether stress despite elevated serum
progesterone levels. Importantly, the response to either Mp or NAL
treatment fails to completely reverse the effect in late pregnancy,
and prolactin stress-response after these treatments is still much
less than the response obtained in non-pregnant animals. Previous
studies show that prolactin secretion increases after NAL
administration when dopaminergic tone is removed by Mp [11],
probably through mechanisms involving the release of a PRF [14].

Moreover, suckling stimulus applied at the end of pregnancy in
rats with induced maternal behavior is also subject to inhibitory
modulation. [37]. Probably, a decrease of dopaminergic tone
induced by suckling facilitates NAL action on prolactin secretion
[37]. In fact, the suckling-induced increase in prolactin occurs
through a rapid transient decrease in tuberoinfundibular dopa-
minergic (TIDA) activity [1,43] sensitizing the lactotropes to PRFs
[44]. Both Mp administration and suckling stimulus may therefore
modify dopaminergic tone and facilitate NAL action. Stressful
stimuli induce a decrease in dopaminergic tone, which in turn
leads to the release of prolactin by NAL. TIDA neurons are inhibited
by afferent neuronal circuits activated by suckling and restraint
stress [43,45], supporting the suggestion that TIDA activity
suppression is critical for the prolactin stress response [46,47].
The fact that .-DOPA administration blocked NAL-plus stress effect
on prolactin release may indicate that an increased and sustained
dopaminergic inhibition may prevent any transient decrease of the
dopaminergic tone, surpassing any mechanism that may lead to
prolactin secretion.

Several hormones and neurotransmitters are involved in the
complex response to stress [48,49]. There is firm evidence for
adrenergic neuron involvement in afferent regulation of TIDA
neurons, suggesting a putative pathway for central adrenergic
effects upon prolactin secretion [50]. Similarly, our laboratory has
shown that the adrenergic system participates, through oy and 34
receptors, in prolactin release induced by decreased progesterone
levels during late pregnancy [51]. A noradrenergic mechanism is
activated in response to ether stress, inducing a slight inhibition of
dopaminergic tone despite high progesterone levels and facilitat-
ing NAL action, probably through a mechanism involving
participation of a PRF. However, a direct effect of other
neurotransmitters, such as 5-HT [26] or histamine [52], cannot
be discarded. Preliminary studies show that oxytocin may
participate in the stimulatory action of Mp and NAL on prolactin
secretion during late pregnancy [53] suggesting that this hormone
may also be involved in prolactin response to stress.

It is interesting to note in this study that prolactin response to
ether stress during late pregnancy is quite different from the
response observed in early pregnancy or during the estrus day. The
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significant increase in serum prolactin response to stress observed
in the estrus morning may result from the facilitating effect of
estrogen on the response to stress [25]. Estrogen is known to act at
pituitary and central nervous system level, stimulating prolactin
secretion, and some of these effects are mediated through a
modulation of dopaminergic neuronal activity [54]. Moreover, NAL
administration prevented increased serum prolactin in stressed
rats at estrous day probably mediated by increasing neuronal
dopaminergic activity. Interestingly, a differential effect of ether
stress was observed on serum prolactin levels during day 3 of
pregnancy. Neither stress stimulus nor NAL treatment modified
serum prolactin levels in the morning, but either of these
prevented serum prolactin in the afternoon [7]. A semicircadian
rhythm of hypothalamic dopaminergic neuronal activity has been
described which, acting together with PRF action, is responsible for
serum prolactin surge in pseudopregnancy [55] or during early
pregnancy [56]. So the different prolactin responses to stress and
NAL treatment in the morning and in the afternoon of day 3 of
pregnancy may result from changes in hypothalamic dopaminergic
tone characteristic of the first days of pregnancy. In fact, NAL may
inhibit prolactin secretion during the first days of pregnancy [7,10]
and this contrasts with the stimulatory effect of a single dose of
NAL after Mp treatment, suckling stimulus [37] or stress response
(present study) in late pregnancy.

Although there is evidence that ovarian steroids modulate stress
response [25], the influence of serum progesterone and estradiol
levels on prolactin response to stress remains unclear. In this study,
ovarian steroid blockade by Mp or tamoxifen modified prolactin
secretion, suggesting an important role of both progesterone and
estradiol in prolactin response to stress. Mp administration induced
anincrease in serum prolactin levels only in stressed rats, suggesting
that blocking progesterone alone is not sufficient to induce prolactin
secretion, but may facilitate the effect of a stressful stimulus. Similar
observations have been reported for suckling stimulus [37] and
other prolactin releasers [8]. As Mp can also specifically bind to
glucocorticoid receptors [57], a non-selective effect mediated by the
lack of glucorticoid action cannot be discarded. Evidence suggests,
however, that dexamethasone implantation near the arcuate nuclei
does not affect PRL secretion induced by the dopaminergic
antagonist, haloperidol [58]. Interestingly, Mp’s effect on prolactin
release was not modified by NAL, suggesting that the hypophysis can
release a moderate amount of prolactin (around 30 ng/ml) after a
mild stress, such as exposure to ether. Possibly, the hypophysis is
less responsive to stimulation during late pregnancy than in other
reproductive states, such as lactation [37] or during estrus. In fact,
prolactin secretion in response to ether stress is higher in estrous
rats than during late pregnancy ([27] and present study). It is
therefore possible that the capacity of the rat’s pituitary to release
prolactin in response to the same stimulus varies according to the
reproductive state.

A noteworthy result of this study is the lack of responsiveness to
ether-stress when estrogen action is blocked. Tamoxifen pre-
treatment abolished prolactin release induced by ether-stress in
rats injected with NAL, Mp, or Mp plus NAL. Based on our previous
|7,37] and present results, it can thus be assumed that estrogen
action on days 15 and 16 of pregnancy is crucial for opioid system
activation, although the involvement of other neurotransmitter
systems cannot be excluded. This is supported by the observation
that blocking estrogen action at this specific moment of pregnancy
induced an increase in TH expression in the medial basal
hypothalamus on day 19 [59], preventing any later increase of
prolactin. Further experiments are needed to elucidate how
estrogen modulates prolactin secretion at this stage of pregnancy.

Opioid receptor subtypes p and k are involved in the
stimulation of prolactin release [8,19,60,61]. Activation of the w
opioid receptor plays an important role in stress response in adult
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Fig. 5. Scheme depicting a hypothetical mechanism of opioid modulation of PRL
secretion on day 19 of pregnancy. In basal conditions P, is involved in the
stimulation of the TIDA neurons that tonically inhibit PRL release. In addition, the
opioid system has an inhibitory action on PRL release (previous and present
findings). Under stress or P, withdrawal conditions, estrogen action is facilitated
and, probably by decreasing TIDA neuron activity, an opioid inhibitory action
emerges which is evident when the pw-opioid receptor is blocked. TIDA:
tuberoinfundibular dopaminergic neurons; Mp: mifepristone, antiprogesterone;
NAL: naloxone, opioid antagonist; PRF: prolactin-releasing factor; E: estradiol. P4:
progesterone. PRL: prolactin.

male rats [21,62]. Icv administration of the specific p, k and 8
opioid antagonists indicated that the . opioid receptor subtype is
involved in the induction of prolactin response to stress in
pregnant rats. Interestingly, implanted control rats showed a
significant increase in serum prolactin in response to stress
compared to non-operated rats, suggesting that the former may be
more sensitive to prolactin stress response than intact rats.
Possibly, endogenous opioid release during surgery induced a
down regulation of | opioid receptors at hypothalamic level
[63,64] and, consequently, a decrease in the inhibitory opioid tone
that modulates stress response during late pregnancy. Despite high
progesterone levels attenuating HPA axis reactivity to stress [23],
the reduced inhibitory opioid tone may thus be facilitating stress-
induced prolactin release. However, it is also possible that the
protective effect of progesterone may be overridden when animals
are subjected to more intense stimuli, such as immobilization or
multiple mild stressors.

In conclusion, the present findings extend earlier results by
confirming the inhibitory action of progesterone and the opioid
system on prolactin release during late pregnancy (Fig. 5). This
supports the hypothesis that during late pregnancy, progesterone
inhibits prolactin release in response to stress through a
mechanism involving the opioid system, specifically through
activation of a . opioid receptor. The opioid system seems to play a
role in the regulation of stress-induced prolactin release only in
presence of estradiol. Its action may be mediated by indirect
inhibition of dopaminergic tone and, perhaps, concomitant
participation of a putative PRF.
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