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INTRODUCTION

There is growing recognition of the important roles
played by predators in regulating ecosystems and
sustaining biodiversity (Heithaus et al. 2008, Ritchie
& Johnson 2009, Estes et al. 2011). However, the
functional role of predators cannot be fully appreci-
ated without establishing where the different species
fit in food webs and understanding interspecies
 relationships (e.g. predator−prey, competitive, or
resource-sharing relationships) within a given sys-
tem. As, at its most basic level, the ecological role of

a species is defined by its position in the food web,
the initial step in studying the importance of a pred-
ator on food web and ecosystem dynamics is to iden-
tify its dietary composition. This is generally done
using gut content analysis. When using gut content
analysis, other factors, such as fishing method used,
the use of baits, or a predator’s relationship with fish-
ery species, may affect dietary results (e.g. Ibáñez et
al. 2008), and should be taken into account. How-
ever, the influence of factors such as fishing method
and fisheries influences on trophic studies is often
overlooked.
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The influence of fisheries on marine predators’
trophic ecology can be via competition for available
resources (Lucifora et al. 2009, Okes et al. 2009,
Pichegru et al. 2009), by affecting the spatial scale at
which predators forage (Pichegru et al. 2010) or the
prey that they target (Gonzalez-Zevallos & Yorio
2006, Okes et al. 2009). Predators may also feed from
fisheries by taking prey from fishing gear (Lunneryd
et al. 2003, Varjopuro 2011) or targeting discards
(Hill & Wassenberg 1990, Olaso et al. 1998, Gonza-
lez-Zevallos & Yorio 2006, Okes et al. 2009). The
interactions of fisheries with seabirds and marine
mammals are probably the most commonly studied
examples of predators’ trophic ecology being influ-
enced by fisheries (e.g. Lunneryd et al. 2003, Okes et
al. 2009). However, detailed investigations of the
influence of fisheries on the diet of other marine
predators such as teleosts and elasmobranchs are
lacking. Few studies have considered or at least com-
mented on how fisheries affect shark trophic ecology
(Olaso et al. 1998, Simpfendorfer et al. 2001, Koen
Alonso et al. 2002) or on how catch methods influ-
ence dietary data obtained from stomach samples
(Simpfendorfer et al. 2001, Bethea et al. 2004, Bare-
more et al. 2008). For example, 37.5% of tiger sharks
Galeocerdo cuvier caught on longlines had everted
stomachs, meaning that a high percentage of sam-
ples were lost to the analyses (Simpfendorfer et al.
2001); angel sharks Squatina dumeril have been
shown to feed on prey while they are caught in trawl
nets (Baremore et al. 2008), and sevengill sharks
Notorynchus cepedianus also feed on prey caught by
longlines (Barnett et al. 2010a).

The draughtboard shark Cephaloscyllium laticeps
is endemic to temperate Australia and is the most
common catshark along the southern Australia coast-
line, where it is mainly found inshore or on the conti-
nental shelf, down to at least 60 m (Last & Stevens
2009, Awruch et al. 2012). It grows to a maximum
size of 1500 mm, but is rarely seen over 1000 mm
(Last & Stevens 2009). The high abundance and rela-
tively large size of C. laticeps suggests that this
 species is a key mesopredator in coastal waters, and
may share resources with other abundant small- to
mid-sized shark species, such as the gummy shark
Mustelus antarcticus and the white-spotted dogfish
Squalus acanthias (Barnett & Semmens 2012, Yick et
al. 2012). C. laticeps form a significant bycatch com-
ponent of southeastern Australian fisheries, where
they are taken in rock lobster traps (craypots), dem-
ersal trawls, longlines, and gillnets (Frusher & Gib-
son 1998, Walker et al. 2005, Gardner et al. 2011).
Some fishermen consider C. laticeps a nuisance and

fear that they affect the catch rates of the southern
rock lobster Jasus edwardsii. Apart from the direct
effect of predation, it has been alleged that the pres-
ence of sharks in craypots reduces the catchability of
J. edwardsii, potentially up to 75% (Hansen 2011).
As a result of their unwanted presence, C. laticeps
are routinely killed and discarded rather than being
released alive (Frusher & Gibson 1998, Ford 2001,
Hansen 2011). Given this potential interaction with
J. edwardsii, fisheries may influence the trophic ecol-
ogy of C. laticeps, and fishery-caught specimens may
bias the interpretation of diet data.

The objective of this study was to investigate the
trophic ecology of Cephaloscyllium laticeps and
relate it to fishery interactions. The specific aims
were to (1) describe the overall dietary composition
of C. laticeps, (2) test for dietary differences between
regions of Tasmania, and (3) identify any influence of
fishing method (gillnet and craypot) on C. laticeps
diet.

MATERIALS AND METHODS

Study areas and sampling procedures

Stomach contents of Cephaloscyllium laticeps were
collected from 4 regions around Tasmania, Australia:
the east coast, the northwest, the southwest and cen-
tral regions (Fig. 1). Sharks were caught as bycatch
from craypot and gillnet fisheries between June 2002
and November 2004. Craypots were baited with
either jack mackerel Trachurus declivis and/or bar-
racouta Thyrsites atun. Bait that appeared to be
recently ingested (i.e. with no signs of digestion), or
that had obviously been cut with a knife, was
excluded from the analyses due to the likelihood that
it was scavenged from the pots. Fishing method and
region were recorded for each shark. Stomach sam-
ples were obtained by excising the stomachs
onboard the vessel, recording prey that could be eas-
ily identified, and storing hard-to-identify prey in
70% ethanol until further processing in the labora-
tory. Each prey item was identified to the lowest tax-
onomic level possible and counted.

Data analysis

To describe Cephaloscyllium laticeps diet, the per-
centage frequency of occurrence (%FO) and per-
centage of numerical importance (%N) metrics were
determined for each prey, where %FO and %N are

242



Barnett et al.: Predator−fishery relationships

the proportion of stomachs in which a particular prey
category was found and the proportion of the total
number of items belonging to a given prey category,
respectively (Hyslop 1980, Baker et al. 2013).

To determine whether the number of stomachs col-
lected was adequate to describe the diet of Cephalo -
scyllium laticeps in each of the 4 regions, cumulative
prey curves were generated, where the cumulative
number of prey taxa was plotted against the number
of stomachs examined. The curves presented are the
average of 999 curves, each based on a separate ran-
domization. An asymptotic curve indicates that suffi-
cient samples were collected to represent the diet of
each group. A curve was considered to reach an
asymptote if at least 10 previous values of the total
number of prey were within 0.5 of the final value.
Separate curves were generated for the broad taxo-
nomic group level (groups considered: crustaceans,
fish, cephalopods, other molluscs, worms, and mis-
cellaneous (all other organisms)) and for the species
level.

Univariate generalized linear models (GLMs) were
used to identify the effects of region, fishing method,
and the interaction between these 2 factors on the
abundance of each of the main prey groups (teleosts,
Jasus edwardsii, hermit crabs (mainly Strigopagurus
strigimanus), all other crabs, squid (mainly Lolig-
inidae), octopus (all species grouped), and other mol-
luscs (gastropods and bivalves)) on Cephaloscyllium

laticeps diet (Warton et al. 2012). Each individual
shark stomach was considered a replicate, and empty
stomachs were not considered in this analysis. A
Poisson distribution with a log-link function was
used, as recommended for ecological count data
(Crawley 1993, Zuur et al. 2007, 2010, O’Hara &
Kotze 2010, Warton et al. 2012). Optimal model selec-
tion was carried out based on the backward stepwise
procedure, where the model starts by considering all
factors and sequentially removes redundant factors
(based on Akaike’s information criterion (AIC)) until
only the influencing factors remain (Zuur et al. 2007).
The optimal model therefore contains only the factors
that have an important effect on the dependent vari-
able (prey abundance on the diet). After factor selec-
tion, a second GLM was refit using only the factors
considered as important based on AIC (Zuur et al.
2007). Models were run for each prey category sepa-
rately. Analyses were carried out in Brodgar v2.7.2
(Highland Statistics; www.brodgar.com).

To further compare dietary composition between
sharks caught in the 4 regions, Pianka’s index (O) was
calculated to test for dietary niche overlap among
sharks from the different regions. Before this analysis,
prey were grouped into 10 categories: elasmobranchs,
teleosts, Jasus edwardsii, hermit crabs, all other crabs,
squid, octopus (all species grouped), sea slugs (Pleu-
robranchidae), shelled molluscs (mainly Pleuroploca
australasia), and worms (polychaetes and sipunculids).
Niche overlap calculations were made using %N for
these 10 prey categories, and the significance of the
niche overlap was tested by comparing values with
those obtained by randomization of the original
 matrices (1000 iterations), using the default (RA3)
 procedure of the ECOSIM 7.41 software (Gotelli &
Entsminger 2011). The degree of overlap is presented
on a 0 to 1 scale, where 0 means no overlap and 1
means complete overlap. A 1-way analysis of similari-
ties (ANOSIM) was then computed (based on a simi-
larity matrix based on Bray-Curtis similarity coeffi-
cient (Clarke & Gorley 2001)) to test for differences in
dietary composition between regions. For the east
 region, the only region for which both gillnet and
craypots were used, ANOSIM was also computed to
test for differences in dietary composition between
 individuals caught by gillnet and craypot.

RESULTS

In total, 1059 stomach samples of Cephaloscyllium
laticeps were collected, of which 710 (67%) con-
tained prey: 64 from the central region, 133 from the

243

Fig. 1. Sampling regions for Cephaloscyllium laticeps
around Tasmania: central region (CR), east coast, northwest, 

and southwest
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east coast, 90 from the northwest, 361 from the south-
west, and for 62 the region was not recorded
(Table S1 in the Supplement at www.int-res.com/
articles/ suppl/m494p241_supp.pdf). Of the 710 sam-
ples containing prey, 242 (35%) were captured by
gillnet, 450 (63%) by craypot, and for 18 (2%) the
fishing method was not recorded. For the samples for
which fishing method was recorded, the proportions
of gillnet to craypot were as follows: central, 100%
gillnet; east coast, 63% gillnet, 37% craypot; north-
west, 100% gillnet; southwest, 100% craypot.

At the species level, the cumulative prey curves for
Cephaloscyllium laticeps did not reach asymptotic
stabilization for any of the 4 regions, which suggests
that the number of stomachs collected was not suffi-
cient to describe the complete range of prey species
consumed (Fig. 2). However, curves generated using
broad prey groups reached asymptotic stabilization
for all sites (Fig. 2).

Although the overall diet of Cephaloscyllium lati-
ceps was diverse, crustaceans and fish were the dom-

inant prey, followed by cephalopods (for both %N
and %FO; Table S1 in the Supplement). At the lowest
taxonomic level, the southern rock lobster Jasus ed -
wardsii and the pale octopus Octopus pallidus were
the dominant prey in terms of both %N and %FO
(Table S1). The stridulating hermit crab Strigopagu-
rus strigimanus and the Australian tulip shell Pleuro-
ploca australasia also made im portant contributions
to the overall diet (Table S1). A substantial portion of
the diet contained teleosts, but unfortunately a large
proportion could not be identified to lower taxonomic
levels. Of the teleosts that could be identified, most
were slow-swimming benthic species. However, the
most common tele osts identified to the lowest taxo-
nomic level were 2 pelagic species, Trachurus dec -
livis and Thyrsites atun (Table S1). Although every
effort was made to remove stomach contents recog-
nized as bait from the analyses, caution is needed
when determining the importance of these latter spe-
cies, as it is possible that some of those fish were, in
fact, scavenged from the bait used in craypots.
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Influence of region and fishing method on
Cephaloscyllium laticeps diet

Neither region nor fishing method was an impor-
tant factor explaining the abundance of teleosts in
Cephaloscyllium laticeps diets. For squid, the opti-
mal model, as selected based on AIC, contained
only region as an important factor, while for the
remaining prey categories (Jasus edwardsii, octo-
pus, other molluscs, hermit crabs, and other crabs)
the AIC factor selection suggested that the models
should contain both region and fishing method as
explanatory variables. However, for J. edwardsii
and hermit crabs, the subsequent GLMs indicated
that fishing method was not significant at the 5%
level (Table S2 in the Supplement at www.int-
res.com/ articles/ suppl/ m494p241_ supp.pdf), mean-
ing that this factor could be removed from the
 optimal models. The inter action between the 2 fac-
tors was not identified as significant by any model
(Table S2).

Jasus edwardsii were more abundant in the
stomachs of sharks captured in the southwest than
in sharks captured in the remaining regions, and
were less abundant in samples from the northwest
than they were in the eastern region (Tables S1
& S2 in the Supplement). The abundance of J.
edwardsii in Cephaloscyllium laticeps diets was
also higher in the east coast than in the central
region (Tables S1 & S2). The abundance of octopus
was higher in the southwest than in the central
region and east coast, and there was also an effect
of fishing method on the abundance of octopus in
C. laticeps diet, as more octopus were found in the
diets of sharks captured in nets than in pots
(Table S2). Squid were more abundant in diets from
sharks from the northwest. Other molluscs (bivalves
and gastropods) were less abundant in the diets
from the northwest than in the central region and
east coast, and there was also an effect of fishing
method on the abundance of these molluscs in C.
laticeps diet, as more of these organisms were
found in the stomachs of sharks captured in nets
than in sharks captured in pots. Hermit crabs were
more abundant in the samples from the east coast
than in samples from the remaining regions
(Table S2), while other crabs were more abundant
in samples from pots than in samples from nets
(Table S2). As region was the only, or the most
important, factor influencing C. laticeps diet for
the majority of prey categories, further analyses
were run to investigate differences in prey compo-
sition between regions.

Dietary overlap

Spatial dietary overlap 

Overall, there was a significant effect of region on
the diet composition of Cephaloscyllium laticeps
(ANOSIM: R = 0.071, p = 0.001) (Table 1). Out of the
6 comparisons, 5 displayed moderate to moderate-
high dietary overlap (O between 0.66 and 0.77),
although these values were not higher than expected
by chance (Table 1). The only exception was be -
tween the central and east coast sharks, which had
high dietary overlap (O = 0.925), significantly higher
than expected by chance (p = 0.003; Table 1). This
high degree of spatial overlap also coincides with no
significant difference in dietary composition between
sharks from these 2 regions (ANOSIM: R = 0.011, p =
0.214). These relatively high dietary overlap values
most likely resulted from the high occurrence and
abundance of teleosts in shark diets from all regions
and the occurrence of most prey groups in all
regions, combined with the low occurrence of some
prey in all regions (e.g. elasmobranchs and worms;
Table S1). The high occurrence of teleosts and mol-
luscs, in particular Pleuroploca australasia, is the
main driver for the high overlap between central and
east coast sharks (Table S1).

Despite the relatively high overlap driven by simi-
lar teleost consumption, significant differences in
diet were evident among most regions (Table 1).
Sharks from the central and southwest regions
showed the lowest dietary overlap (O = 0.660), which
was driven by sharks from the southwest consuming
much higher proportions of crustaceans, in particular
Jasus edwardsii, and very few shelled molluscs
 compared with central region sharks (Table S1).
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Regions ANOSIM Pianka’s index
R p-value O p-value

Central vs. east coast 0.011 0.214 0.925 0.003
Central vs. northwest 0.047 0.008 0.726 0.076
Central vs. southwest 0.086 0.001 0.660 0.115
East coast vs. northwest 0.044 0.001 0.749 0.082
East coast vs. southwest 0.077 0.001 0.774 0.053
Northwest vs. southwest 0.076 0.001 0.743 0.094

Table 1. Analysis of similarities (ANOSIM) and Pianka’s
index (O) results for regional dietary comparisons of
Cephaloscyllium laticeps based on 10 prey categories. p-
values for Pianka’s index are the proportion of the random-
izations that resulted in an overlap equal to or greater than 

the empirical (observed) overlap value
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 Similarly, the importance of shelled molluscs and
hermit crabs Strigopagurus strigimanus to east coast
sharks, and southwest sharks consuming J. edward-
sii in larger proportions, contributed to differences
between these 2 regions (Tables 1 & S1).

Sharks from the northwest showed moderate to
moderate-high dietary overlap with sharks from all
other regions (Table 1). The high consumption of
squid in the northwest was the distinguishing feature
of the diets of sharks in this region (Table S1). The
higher consumption of Pleuroploca australasia in the
central and east coast region, Strigopagurus strigi-
manus from the east coast, and Jasus edwardsii from
the southwest also contributed to differences in diets
between sharks from these areas and sharks from the
northwest (Tables S1 & S2).

Gillnet vs. craypot (east coast)

There was a high and significant amount of dietary
overlap (O = 0.918, p = 0.006 (i.e. only 0.6% of the
randomizations resulted in overlap equal or greater
than observed value)) between net- and pot-caught
sharks from the east coast. Interestingly, there were
also significant differences in diet between these 2
groups (ANOSIM: R = 0.054, p = 0.002). However,
these differences were not driven by a higher propor-
tion (based on %N) of pot-related species (Jasus
edwardsii and octopus) in pot-caught Cephaloscyl-
lium laticeps. Indeed, J. edwardsii made up similar
proportions of the diets in nets (11%) and pots (8%),
while the proportion of octopus was slightly higher in
net-caught than in pot-caught sharks (13% and 8%,
respectively). In contrast, squid were more prevalent
in pot-caught (7%) than in net-caught (2%) sharks.

DISCUSSION

Trophic studies are fundamental components for
investigating species ecology and understanding
broader ecosystem questions such as food web
dynamics, interspecies relationships, and ecosystem
function. However, the influence of fisheries on the
trophic ecology of fishery-related species is often
overlooked. This study showed that fisheries can
have an effect on a species’ diet (or interpretation of
diet data) and foraging behaviour. Indeed, although
differences in Cephaloscyllium laticeps diet were
mostly driven by region, fishing method also played
an important part in driving these differences. Most
of the main prey types were present in stomachs of

sharks caught in all regions and by both fishing
methods, suggesting that fisheries do not influence
the prey C. laticeps targets at a broad taxonomic
level, but do influence the prominence of some prey
in their diets. For example, dietary differences re -
lated to the fishing method used could be a result of
the sharks opportunistically foraging on prey that are
easier to catch once inside the craypots, e.g. crabs
were found in greater abundance in the diet of pot-
caught sharks, coinciding with crabs being a signi -
ficant component of craypot bycatch (Frusher &
 Gibson 1998). Also, the fact that C. laticeps are com-
monly caught in craypots suggests that the southern
rock lobster fishery influences their foraging behav-
iour, by providing food to scavenge (bait) and trap-
ping prey (crabs, lobsters), therefore promoting trap
raiding. It is thus important to keep in mind that the
fishing method used can have an effect on both pred-
ator behaviour and interpretation of dietary data, and
should be taken into account when extrapolating
results to the overall population level.

The greater abundance of octopus in the diet of
Cephaloscyllium laticeps caught with gillnets was
surprising, as octopus are associated with craypots,
both as a common bycatch and because some species
are predators of the lobsters captured in craypots
(Frusher & Gibson 1998, Brock et al. 2003, Hunter et
al. 2005, Harrington et al. 2006, Hansen 2011). The
slightly greater occurrence of octopus in gillnet-
caught C. laticeps suggests that in-pot predation on
octopus is not common.

Given the common occurrence of Cephaloscyllium
laticeps in craypots, another surprising result was
that there was no effect of fishing method on the
prevalence of Jasus edwardsii in C. laticeps diet, as
J. edwardsii was found in the diets of C. laticeps
caught in both nets and pots. However, the consump-
tion of J. edwardsii was much higher in the south-
west, where only pots were used. As region was
identified by the GLM as the main factor affecting
J. edwardsii abundance in C. laticeps diet, we have
to assume that some factors in the southwest favour
predation of J. edwardsii, e.g. higher abundance of
this prey. Note, however, that although not signifi-
cant at the 5% level, the secondary GLM model
 suggested that the abundance of J. edwardsii was
higher in the diet of pot-caught sharks (Table S2),
meaning that fishing method could have some influ-
ence on J. edwardsii importance to C laticeps diet, e.g.
J. edwardsii trapped in craypots become easy prey.

Although care was taken to remove the 2 species
used as bait (Trachurus declivis and Thyrsites atun)
from the analyses, potting could have some influence
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on the diet of Cephaloscyllium laticeps by increasing
the importance of bait species. However, even for the
pot-caught sharks, the importance of these prey was
low (Table S1), and T. declivis is still a prominent
prey in the diet of C. laticeps off Tasmania (e.g. in
net-caught sharks in this study), Victoria, and New
South Wales (Australia) (Bulman et al. 2001). The
introduction of bait and discards by fisheries into the
environment has been shown to influence the trophic
ecology of other species (e.g. Olaso et al. 1998,
Waddington et al. 2008), with the potential for further
consequences to ecosystem function (Waddington et
al. 2008). For example, bait is an important compo-
nent of lobster diets in numerous regions of the world
(see Waddington et al. 2008); and the occurrence of
large amounts of discarded bait from the western
rock lobster Panulirus cygnus fishery (Western Aus-
tralia) in the diet of tiger sharks Galeocerdo cuvier
suggests that the seasonal abundance of this food
source may influence the foraging behaviour of this
shark species (Simpfendorfer et al. 2001). In Tasma-
nia, the introduction of bait through the craypot fish-
ery could have a similar influence over the local
trophic ecology.

The relationship between the key species associated
with the craypot fishery, Jasus edwardsii, Cephalo -
scyllium laticeps, octopus and humans, is interesting.
Octopus, mainly Octopus maorum, are within-craypot
predators of J. edwardsii (Brock et al. 2003, Hunter et
al. 2005, Harrington et al. 2006, Hansen 2011), and
may have a greater negative impact on the fishery
than C. laticeps (Hansen 2011). These relationships
are further entwined in Tasmania because a number
of octopus species, in particular O. maorum and O.
pallidus, are also targeted fishery species.

Overall, detailed investigations on how fishing
method influences interpretation of stomach content
data are lacking. For example, regurgitation during
the fishing process can lead to information loss and to
the underestimation of prey importance (e.g. Sutton
et al. 2004, Vignon & Dierking 2011). This can be par-
ticularly important in dietary analysis of elasmo-
branchs, as many species are able to evert their stom-
achs with no apparent ill effects (Simpfendorfer et al.
2001, Barnett et al. 2010b). Despite a few studies sug-
gesting that fish species can feed while caught in
fishing gear, or feed from the fishing gear before
being caught (Baremore et al. 2008, Barnett et al.
2010a), we could only find 1 publication addressing
this issue in detail. In that study, Ibáñez et al. (2008)
showed that in-net feeding by the jumbo squid
Dosidicus gigas artificially inflated the importance of
some prey and the prevalence of cannibalism. Thus,

not considering the fishing method in dietary analy-
ses can lead to under- or overestimation of certain
prey, and to misleading results regarding the trophic
ecology of the study species.

In conclusion, Cephaloscyllium laticeps consumed
the same broad prey types in all 4 regions, but the
relative amounts of some of the prey varied among
regions. Fishing method also influenced the abun-
dance of certain prey in C. laticeps diet. Yet, the
influence of craypots on pot-related species such as
Jasus edwardsii and octopus was not as prevalent as
expected. The common occurrence of C. laticeps as a
prominent bycatch species and its high consumption
of targeted fishery species, in particular J. edwardsii
and octopus, but also squid and Trachurus declivis,
indicates that C. laticeps has a strong association
with fisheries.
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