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P-glycoprotein (P-gp) is involved in the transport of xenobiotic compounds and responsible for the decrease of the drug
accumulation in multi-drug-resistant cells. In this investigation we compare several docking algorithms in order to find the
conditions that are able to discriminate between P-gp binders and nonbinders. We built a comprehensive dataset of binders and
nonbinders based on a careful analysis of the experimental data available in the literature, trying to overcome the discrepancy
noticeable in the experimental results. We found that Autodock Vina flexible docking is the best choice for the tested options. The
results will be useful to filter virtual screening results in the rational design of new drugs that are not expected to be expelled by
P-gp.

1. Introduction

Human P-glycoprotein (P-gp) belongs to a super family of
membrane proteins involved in transport known as ATP
binding cassette (ABC) family [1]. It is expressed in normal
organs that are important for the absorption-elimination-
distribution processes for drugs and xenobiotics [2]. Via P-
gp, endogenous and xenobiotic compounds are transported
across membranes against the concentration gradient. They
flow out of the cell at expenses of the energy associated
with the hydrolysis of the cytosolic ATP domains, attached
to the transmembrane domains of the protein. This export
mechanism allows the P-gp (and other related ABC proteins)
to detoxify cells by preventing exogenous compounds from
entering susceptible organs [2].

In contrast to this beneficial effect, P-gp may affect
negatively the pharmacokinetic profile of new drugs, which
has to be discarded in the preclinical stages of drug discovery.
P-gp has been implicated in cellular resistance to anticancer
drugs, which is believed to be originated in a lowering
of the concentration of many anticancer drugs in tumor

cells, although the level of the diminution due to the P-gp
action itself remains unclear [3–5]. In this context, current
medicinal chemists concentrate their efforts not only in
the optimization of the compound activity but also in the
improvement of ADME/TOX properties.

Our interest in the P-glycoprotein lies on the design of
new anticonvulsant drugs that overcome one of the problems
of the current medications: they fail to control the symptoms
in around one-third of the patients (condition known as drug
resistant epilepsy) [6]. One of the accepted causes of the
refractory epilepsy is the limited bioavailability of the drugs in
the brain thanks to the overexpression or activation of efflux
transporters such as P-glycoprotein [7]. It would be favorable,
then, to design new anticonvulsant with no interaction with
this glycoprotein.

Computational models constitute a fast and low-cost
alternative to detect potential P-gp binders among new enti-
ties at the early stages of the drug design.Duringmore than 20
years of research, several in silico studies have been oriented to
elucidate the structural and physicochemical characteristics
required for a chemical compound to be P-gp substrate. Early
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investigations proposed the existence of planar aromatic
rings, basic nitrogen atoms, and lipophilic centers as common
characteristics shared by inhibitors and substrates of the pro-
tein [8, 17]. Additionally, a pharmacophore model proposed
the importance of functional groups capable of hydrogen
bonding to P-gp [9]. After these first investigations, other
ligand-based approaches were developed to identify new pos-
sible P-gp substrates, based on different approaches such as
pharmacophoric patterns, machine-learning algorithms, and
quantitative structure activity relationship (QSAR) studies
among others [10–22].

In general, the ligand-based methods perform well in
discriminating binders from nonbinders, and they present
the advantage of being faster than target-based methods.
For those reasons they constitute a valuable tool to select
binders/nonbinders in virtual screening campaigns on large
databases.On the other hand, target-basedmethods deal with
the computational cost for virtual screening and need the
3D structure of the target, but they are able to predict the
interactions responsible for binding for each ligand.

Recently, two research groups obtained the X-ray struc-
tures of eukaryotic (mouse) Apo- and ligand-bound P-gp
(PDB codes 3G5U, 3G60, 3G61, 4KSB, 4KSD, and 4LSG)
[23, 24], improving enormously the knowledge of the protein
structure at atomic level.

As other ABC transporters, P-gp has two transmembrane
domains and two cytosolic ATP binding/hydrolysis domains.
The experimental structures of mouse P-gp are nucleotide-
free and have an inward-facing conformation formed from
two sets of six helices (TMs 1–3, 6, 10, 11 and TMs 4, 5, 7–9, 12)
(Figure 1) that generates an internal cavity open to both the
cytoplasm and the inner leaflet. This cavity has a volume of
around 6000 Å3, big enough to accommodate more than one
drug/substrate simultaneously [23]. This presumptive drug
binding pocket comprises mostly hydrophobic and aromatic
residues with no clearly defined subsites of binding [23].
When the P-gp structural information became available,
several docking based methodologies have attempted to
predict the affinity of compounds andmetabolites. Chen et al.
evaluated the prediction capability of molecular docking by
using two drug bound P-gp available structures as receptors
[10]. They concluded that the Glide docking software was
unable to discriminate clearly substrates from nonsubstrates
by using the best score criterion, a fact that was attributed
to the polyspecific nature of substrate binding and to the
use of only one active binding pocket in the same docking
environment [10]. On the other hand,Dolghih and coworkers
applied docking protocols to differentiate between a set of 126
binders and a set of 64 nonbinders of P-gp [25]. They also
employed the mouse P-gp crystal structure deposited in the
Protein Data Bank [23] to model the receptor binding cavity,
which was treated as both rigid and flexible. Rigid docking
was evaluated using both standard precision Glide and extra
precision Glide scores [26]. Flexible receptor docking was
implemented using a multistage induced fit docking protocol
[27], where the final scoring was performed using the extra
precision (XP) Glide scoring function [26] and an MM-
GB/SA rescoring function [28–32]. They concluded that
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Figure 1: Crystal structure of the complex of mouse P-gp colored
in green with its inhibitor in red (pdb code 3G60). Some visible
transmembrane domains are labeled (TM). Dashed horizontal lines
approximate the region of the lipid bilayer.

the flexible receptor model has the ability to differentiate
known binders from nonbinders of P-gp [25]. The authors
associated the importance of considering the flexibility of the
protein for the identification of P-gp binders and nonbinders
by docking with the size and flexibility of the binding cavity.

Bikadi et al. [11] also studied the ability of the models
to analyze substrate-P-gp interactions at an atomic level.
They stripped and docked the P-gp inhibitors that were
cocrystallized in the mouse X-ray Pg-P structures [11]. They
found an acceptable agreement between the experimental
and predicted ligand conformations, corroborating the capa-
bility of the docking calculations to predict P-gp-ligand
complex geometry. They constructed a homology model of
human P-gp (using the mouse P-gp as template) and suc-
cessfully docked the Rhodamine Bmolecule, a P-gp substrate
for which the experimental binding data are available. They
usedAutodockVina docking software for the simulations and
constructed a web server for docking calculations into the
structure of mouse P-gp and the homology model of human
P-gp, which is free for 10 runs by user [11].

The model from Bikadi et al. has not been used to
discriminate binders from nonbinders, as they did not con-
sider docking experiments reliable enough. Nevertheless, this
contradicts the results reported by Dolghih using mouse
P-gp. Moreover, recent investigations from Dolghih and
Jacobson provide an interesting computational approach to
differentiate between molecules with high and low efflux
ratios as well as CNS-positive and CNS-negative structures
based ondocking scores.They considered passive permeation
and active efflux mediated by P-gp in their approach [33].
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Particularly they used the score obtained from docking of
mouse P-gp as ameasure of the apparent affinity for P-gp,𝐾

𝑚
,

parameter included in the equation to estimate the efflux ratio
[33].

Very recently, Klepsch and collaborators used a large set
of 1076 P-gp inhibitors and 532 noninhibitors for docking
[22]. The ChemScore docking model was able to predict
76% of P-gp inhibitors and 73% of noninhibitors. They also
added the log𝑃 value to the docking score, as a measure
of the ability of the compounds to cross the membranes by
diffusion. It caused a slight improvement in the prediction
of true inhibitors, with values of 0.77 for accuracy and 0.81
for sensitivity (that is, 81% of the inhibitors predicted), at
expenses of a decrease in the detection of noninhibitors (0.69
of specificity) [22].

Following the line of these investigations, we present here
a study of the ability of the docking software to predict the
binding of compounds to human P-gp. As stated before, the
final purpose is to have a filter to eliminate compounds that
interact with human P-gp for the design of new anticon-
vulsant compounds to treat refractory epilepsy. To this end,
we have built a new dataset of compounds that includes
both inhibitors and substrates (binders) and nonbinders
carefully selected from the biological results available in the
literature. Special attention was given to the classification of
the compounds due to the controversy found in the literature
(see Section 2).

We used different docking software and conditions
and the scores of dockings as the variable to classify the
compounds, analyzing the receiver operating characteristic
(ROC) [34] curves for each docking model to decide the best
docking conditions and choose the limiting score that can be
used to discern between substrate and nonsubstrate classes.
This information will be useful to decide the conditions
for future virtual screening campaigns oriented to identify
substrates/inhibitors (and nonsubstrates) of P-gp.

2. Methods

2.1. P-gp Homology Model. The P-gp sequence was taken
from UniProt database (accession code P08183), and the
conformation of the human P-gp protein was built using
I-TASSER [39, 40] which aligns the query sequence with
several templates (known structures) from the protein data
bank library. From the homology models generated, the one
with highest C-score was selected for further refinement.This
alignment was mainly based on 3G61, which provides the
highest coverage (0.92). Additionally, we evaluate the ability
of I-TASSER to predict the crystal structure of the mouse P-
gp (code 3G61) with positive results (see Section 3).

The human homologue was refined by relaxing the
predicted structure. The protein atoms were surrounded by a
periodic box of TIP3P32 water molecules that extended 10 Å
from the P-gp structure with the Tleap module of AMBER11
software [41], and the initial geometry was minimized (1000
cycles for the water molecules followed by 2500 cycles for
the entire systems) using the ff03.r1 version of the all-atom
AMBER force field [42]. The membrane was not modeled as

it will not impact the results of the minimization. We used
the Ramachandran plots obtained from the protein structure
validation software suite (PSVS) to test the final model [43].

2.2. Docking. The dataset of binders and nonbinders was
docked in the human P-gp homology model using Glide
(version 5.7, Schrodinger Suite 2011), Autodock4.2 [44],
and Autodock Vina [45] docking software. In Autodock4.2
the structures were docked using the Lamarckian genetic
algorithm in the “docking active site,” defined through a
24 × 24 × 24 Å3 grid, centered on the relative position of the
ligand in the crystallographic structure (pdb code 3G61).This
docking region comprises the entire transmembrane region
since the binding subsites reported up to date for substrates
and inhibitors reside in the cell membrane, involving residues
located in the transmembrane helices [23].

We employed the default grid spacing (0.375 Å) and
performed 100 docking runs for each compound, treating
the docking active site as a rigid molecule and the ligands as
flexible; that is, all nonring torsions were considered active.
We also used the default Autodock parameters for all the vari-
ables such as Marsilli-Gasteiger partial charges. Additionally,
flexible dockings were performed with autodock4.2, using
the same parameters and conditions but defining the mobile
residues.

Two different sets of amino acids were allowed tomove in
the flexible docking simulation. In one system we considered
the active site residues Phe-335, Phe-343, Phe-728, Phe-732,
and Phe-978 as flexible (model A), whereas in the other
simulation we considered as flexible Tyr-307, Tyr-953, Phe-
343, and Phe-978 (model B). The criterion of selection of
the mobile residues in model A was based on the analysis of
the amino acids that interact with the experimental ligands
in the mouse complexes (codes 3G60 and 3G61). For model
B, we examined the conformation of the flexible residues in
Model A after the docking simulations. We found that Phe-
343 and Phe-978 showed different conformations depending
on the ligand, whereas Phe335, Phe732, and Phe728 adopted
practically the same conformation in all the tested com-
pounds. Therefore we choose another set of flexible residues
that includes Phe-343, Phe-978, and other amino acids that
interact with the ligands according to the docking results with
model A.

The same protocol was implemented for Autodock Vina.
This docking software differs from Autodock in the scoring
function, and on average it performs better, both in speed and
accuracy [45]. However, we compared both methods as the
accuracy is usually dependent on the system (ligand-target),
keeping a similar grid size, center, and standard grid spacing
as for the case ofAutodock.We computed 20 docking runs for
each compound using the default parameters for the rest of
the variables, comparing also rigid and flexible dockings for
the same mobile amino acids defined for the latter. Another
docking run was performed with Autodock Vina (for model
B) for which we included some additional nonsubstrates in
the set (see Section 3).

A standard procedure was used for the Glide docking.
The compounds of the set were prepared using the ligprep
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Table 1: Conditions and characteristics of the docking simulations
performed.

Software Flexible
residues

Protonation
state of the
ligands

Name of the
simulation AUC

Autodock4.2 Model A Neutral Simulation 1 0.737
Autodock4.2 Model B Neutral Simulation 2 0.747
Autodock Vina Model A Neutral Simulation 3 0.790
Autodock Vina Model B Neutral Simulation 4 0.833
Autodock Vina Model B pH 7.4 Simulation 5 0.833
Glide Rigid All possible Simulation 6 0.737

tool of the Schrodinger 11 suite, in order to generate possible
protonation states at different pH and potential low energy
conformations. The structure of the protein was processed
using the Protein Preparation Wizard tool, performing an
exhaustive sampling of the orientations of groups.Theprotein
structure was then refined to relieve steric clashes by means
of a restrained minimization with the OPLS2001 force field
until a final rmsd of 0.030 Å relative to the input protein
coordinates. The prepared structure was used to build the
grid, centered as described for Autodock.The single precision
(SP) and extra precision (XP) protocols were used in the
docking, saving three poses in the SP run to build the
library used in the XP run. No constrains were used in the
docking, the sampling of ring conformations was included,
and nonplanar amide conformations were penalized.

Two different docking runs have been performed, for the
compounds in their protonation state at physiological pH and
for their neutral form. The latter was modeled taking into
account that the binders have been proposed to move from
the extra cellular space to the P-gp active site through the
membrane, without entering the cell and would be neutral
in the lipophilic environment of the membrane [23]. For
chiralmolecules, all the possible stereoisomerswere included.
Table 1 summarizes the different docking conditions.

We also docked the dataset on the X-ray determined
mouse structure of P-gpin order to compare and validate the
results.

2.3. Dataset Preparation: Biological Data Collection. Several
biological assays have been developed to test the ability of
compounds to interact with P-gp [35, 37]. Among them,
in vitro transport experiments were recommended by the
US Food and Drug Administration as the initial data to
decide if a drug is a P-gp substrate/inhibitor. Particularly,
they suggested a bidirectional transport assay using cultured
cells as the initial test, followed by the validation that the
efflux is inhibited by the presence of one or more inhibitors
[35]. A recent summary of the in vitro methods showed
that Caco-2 cells were the most frequently used, followed
by the MDCKII-MDR1 cells (multidrug resistance protein 1
transfected–Madin Darby Canine Kidney cells) [36].

The preparation of the datasets with high quality and
enough quantity is one of the most important steps for

constructing models with high confidence. Special atten-
tion was given to the selection and categorization of the
compounds, since there is some controversy in the litera-
ture regarding the classification of substrates/inhibitors and
nonsubstrates/noninhibitors; for example, Polli et al. classify
Verapamil as nonsubstrate according to the monolayer efflux
experiment in MDCK cells [38], whereas Feng and collabo-
rators consider it as substrate in the same assay [46]. Doan
et al. [47] report Fluoxetin as a nonsubstrate (monolayer
efflux experiment inMDCKII-MDR1 cells) but in the assay of
Calcein-AM (CAM) inhibition (same cellular line) it behaves
as an inhibitor [48]. Similar disagreement was found by Feng
and collaborators [46]. They found Fluoxetin inactive in the
efflux assay and ATPase experiment but showing inhibitory
action in the CAM protocol.

In order to prepare a representative and diverse set, the
biological results frommultiple publications were considered
and priority was given to in vitro assays over in vivo tests.
In vivo studies deal with complex systems (patients/animals),
making it more difficult to evaluate if a new entity is substrate
for P-gp or not. Additionally, there is more information
available derived from in vitro tests, as they better allow the
screening of numerous compounds than in vivo assays.

After a thorough analysis, we decided to define as
“binders” those substrates/inhibitors that were detected in
two or more publications in different assays (if possible,
more than 3). Conversely, we considered nonbinders those
compounds found as nonsubstrates preferably in two ormore
different assays and not reported as substrate/inhibitors (or
reported in only one test). The compounds reported with
some controversy in the results (e.g., one test where the
compound was considered substrate/inhibitor and another
where it behaves as nonsubstrate) were discarded. From this
selection 26 compounds were defined as binders and 13 as
nonbinders. Table 2 shows the compounds selected and the
classification obtained. The full dataset analyzed is given as
supporting information (Table A1 in SupplementaryMaterial
available online at http://dx.doi.org/10.1155/2014/358425).

3. Results and Discussion

The structure of Human P-gp predicted by I-TASSER and
refined by geometry minimization (AMBER) was tested
by the protein structure validation software suite (PSVS).
Ramachandran plots obtained from the model (Figures A1
and A2 in supporting information) show that the backbone
dihedral angles are mainly distributed in allowed regions,
and they are similar to the one obtained from the protein
data bank for the experimental mouse structure. We also
predicted the crystal structure of mouse P-gp (code 3G61)
by I-TASSER. The best C-score model fits well with the
experimental structure, with a RMSD of 0,65 from the
structure alignment (Figure B1). This result increases our
confidence of the capacity of I-TASSER to predict the P-GP
human structure.

With the human protein constructed and the set of
compounds defined, we performed the Docking simulations
detailed in Table 1. Figure 2 shows the “receiver operating
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Table 2: Structures that comprise the dataset. The references of the biological data are indicated in square bracket for each compound. N
means that the selected compound is negative against the biological assay whereas P means that it results positive in the test.

Compound Biological assays
Monolayer efflux ATPase Calcein-AM Rhodamine-123 In vivo

Amantadine N [35, 36] N [35] N [35, 36]
Carbamazepine N [6, 36, 37] N [37] N [36, 37] N [6] N [6]
Chlorpheniramine N [35, 36] N [35] N [35, 36]
Ethosuximide N [6, 37] N [37] N [37]
Felbamate N [6]
Fluvoxamine N [36, 37] N [37] N [37] P [36]
Lidocaine N [35, 36] N [35] N [35, 36]
Mannitol N [35, 36] N [35] N [35, 36]
Propanolol N [35, 36] N [35] N [35, 36]
Ranitidine N [35] N [35, 38] N [35, 38] N [38]
Sumatriptan N [35, 36] N [35] N [35, 36]
Trazodone N [36, 37] N [37] N [37]P [36]
Vigabatrin N [6] N [6]
Amprenavir P [35, 36] P [35] P [35, 36]
Astemizole P [36] P [38] P [36, 38] P [38]
Cyclosporine P [35] N [35] P [38] P [35, 38] P [38]
Dexamethasone P [35, 38] N [35] P [38] N [35, 38] N [38]
Diltiazem P [35, 36] P [35] P [35, 36]
Indinavir P [35, 36] P [35] N [35, 36]
Ketoconazole N [35] P [35, 36] P [35, 36] P [32]
Lamotrigine N [6, 37] P [6] N [37] N [37] P [6] P [6]
Levetiracetam N [6]P [6] P [6] P [6]
Loperamide P [35–37] P [35, 37] P [35–37]
Loratadine P [35] N [37] P [35, 37] P [35, 37]
Nelfinavir P [35] P [35, 38] P [35, 38] P [38]
Neostigmine P [35, 36] N [35] N [35, 36]
Nicardipine N [35] P [35, 38] P [35, 38] P [38]
Oxcarbazepine P [6] P [6] N [6]
Phenobarbital P [6] N [6] P [6] P [6] P [6]
Phenytoin P [6, 37] N [6] N [37] N [37] N [6] P [6]
Prazosin P [35, 37] P [35, 37] N [35, 37]
Quinidine P [35, 37] P [35, 37] P [35, 37]
Risperidone P [36, 37] P [37] P [36] N [37]
Ritonavir P [35, 37] P [35, 37, 38] P [35, 38] N [37, 38] P [38]
Saquinavir P [35, 38] P [35, 38] P [35, 38] N [38] P [38]
Terfenadine P [35] P [35] N [38] P [35, 38] N [38]
Trimethoprim P [35, 36] P [35] N [35, 36]
Verapamil P [37, 38] N [35, 37] P [35, 37, 38] P [35, 37, 38] P [38]
Vinblastine P [35] P [35, 38] P [35, 38] N [38] P [38]

characteristic” (ROC) curves for each model. The ROC
curves graph the true positive rate (sensitivity) as a func-
tion of the false positive rate (1−specificity) for all possible
threshold levels. Accordingly, the ideal classification would
be represented by a line that starts from the origin, reaches
vertically the upper left corner, and then goes to the upper
right corner. By visual inspection of the curves we found
that they are similar, but Autodock Vina scoring function
(simulations 4 and 5) looks somewhat better than the others.

However, after the comparison of the curves with MedCalc
(MedCalc Software, Mariakerke, Belgium) we found that
there is not a statistically significant difference between the
simulations (95% confidence interval). This prompted us to
use the best area under the curve value (AUC) to measure
the absolute quality of the simulations (Figure 2).

Autodock Vina simulations 4 and 5 were able to better
discriminate between binders and nonbinders. As expected,
the best results were obtained using flexible docking (with
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Figure 2: ROC-type curves obtained for the simulations.
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Figure 3: Binding geometry of compound Saquinavir into the P-
gp binding pocket predicted by the Autodock docking algorithms
(simulation 5). Residues of the binding pocket are highlighted in
green. Only the N-bound and O-bound H atoms of the ligand
are shown. Carbon atoms of Saquinavir are highlighted in orange.
Values of the relevant distances are given in Å.

Tyr-307, Tyr-953, Phe-343, and Phe-978 residues defined
as mobile). It becomes interesting that these two docking
protocols differ only in the protonation state of the ligands.
The observation that the ionization states of the binders are
not important for the docking process is consistent with the
lipophilic nature of the active site. According to the experi-
mental data, the P-gp drug binding pocket comprises mostly
hydrophobic and aromatic residues [23]. Figure 3 shows

Phe343

Phe978

Tyr307

Tyr 953

Figure 4: Superimposition of the docking of compound QZ59
(conditions of simulation 5) in the homology model and the mouse
X-ray structure of the complex 3G60. Atom carbons of the flexible
residues are highlighted in violet. The X-ray structure of QZ59 in
3G60 is shown in orange for comparison.

the docking solution for the binding of Saquinavir to the P-gp
active site (one of best scores of the set in simulation 5), as an
example of the characteristic interactions found for binders.
Saquinavir shows a weak H-bond interaction with Val982
peptide bond, but its binding is mainly stabilized through
lipophilic and stacking interactions with the aliphatic and
aromatic residues that surround the molecule.

Our findings support the fact that the ionization states
of the molecules of the set do not modify substantially their
interactions with the binding site (and the capacity to dis-
criminate binders from nonbinders). It may affect the ability
of the binders to reach the active site, but this phenomenon
cannot be measured during the docking process.

We also docked the dataset into the mouse P-gp structure
using Autodock Vina (condition of simulation 5). The AUC
obtained (0.821) was similar but lower than the one of the
human model. These results provide an additional test to
validate our human model.

Additionally, the inhibitor cocrystallized in the mouse
experimental structure (ligand namedQZ59, pdb code 3G60)
was redocked into the homology model (simulation 5) to
evaluate the capacity of the model to reproduce the mouse
experimental conformation. Figure 4 shows the accuracy of
the model through superimposition of the best conformation
obtained from the docking and the experimental structure.
On the other hand, docking with the same P-gp model and
in the same conditions was performed with the structures
from the subset of Zinc database that includes commercially
available approved drugs (Zdd) [49]. The best score was
found for the drug Telmisartan, a member of a family of
drugs called angiotensin receptor blockers [50].The literature
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Figure 5: ROC-type curve and score distribution using the conditions of simulation 5 for the compounds of the extended set that includes
metabolites. Binders are represented in blue whereas nonbinders in green.

confirmed the positive interaction of this compound with P-
gp by means of in vitro permeation study inMDR1-MDCK II
cell monolayers [50].

The docking simulations mentioned before reveal the
capacity of the model to predict P-gp substrates as well to
reproduce experimental interactions. However, these results
(Figure 2) were obtained using a dataset where the number
of nonbinders molecules is less than the number of binders
(13 versus 26). As a test of accuracy, we repeated the docking
in the conditions of simulation 5 but included in the set
13 endogenous molecules from the KEGG database [51], in
order to have the same number of molecules in both subsets
used for a ROC curve analysis [34]. The new structures were

considered as nonbinders based on the concept that their
expulsion from the cell would be inefficient to its function.
This database was used with the same criterion by other
authors to increase the number of nonbinders [24]. As we
need only 13 structures to equilibrate the dataset, we selected
from the database the structures with similar molecular
weight compared with the values of the other compounds
of the dataset. Small molecules tend to be scored worse by
scoring functions, causing a favorable error in the value of
AUC.

The ROC curve of the resulting simulation is shown
in Figure 5, with an AUC of 0.916 (best threshold of −7.4),
which is better than the previous one reported in Table 1.
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whiskers represent the standard deviation above and below themean
of the data. Median value is represented by a line and mean value as
a square.

Figure 5 also shows the distribution of scores for binders and
nonbinders. This model is able to predict the 85% of the
binders (sensitivity value of 0.85) and the 77% of nonbinders
(specificity value of 0.77) with a global accuracy value of
0.81. Although it is not expected to find a linear relationship
between the value of the scores and the experimental data
of P-gp efflux, we found that the last model assigns a more
favorable value (more negative) to binders than to nonbinders
(Figure 5).

For future virtual screening campaigns, we adopted the
median value of each set to define a threshold value for
binders and nonbinders.Themedian is defined as the central
datumof each subsetwhen the data are arranged in numerical
order. Figure 6 shows the box and whiskerplots obtained for
binders and nonbinders, showing a clear separation between
both subsets.The boxes represent the interquartile range Q3–
Q1 and the band inside the box is the median value.The ends
of the whiskers represent the standard deviation above and
below themean of the data, which is shown as a square inside
the box.Therefore, a docking score of −9.7 or lower would be
indicative of an effective interaction with Pg-p. Conversely, a
score of −6.1 or higher would predict nonaffinity to the P-gp
active site.

In relation to the performance of the model, it presents
a better predictive capacity than other docking protocols
recently reported by Klepsch and coworkers (see Section 1),
but they are less efficient than ligand-based methods pro-
posed by the same authors (with values around 0.9 for
sensitivity and 0.86 for the overall accuracy for the best
model) [22]. Since the docking force fields involve “pure”
ligand-based terms to calculate the binding energy for each
ligand, we analyzed the contribution of the ligand internal

energy to the final score for Autodock simulations. We found
that the internal energy of the ligands varies from 0 to 36.5%
of the final score (Table B1). As expected, the contribution
of the ligand-based terms is more important when the
structures have rotatable bonds. We did not find a clear
correlation between the internal energy of the ligands and
the final classification of binders and nonbinders, showing
the importance of ligand-receptor interaction based terms for
the prediction of P-gp binding. We believe that the docking
protocol presented here could be useful for designing new
anticonvulsant drugs (or other active compounds) with no
interaction with P-gp. It is able to discriminate reasonably
well between binders and nonbinders and provide additional
information related to the ligand-Pgp interactions respon-
sible for binding. This last information would be useful for
designing new related structures that preserve the therapeutic
action but avoid the interactions with the glycoprotein.

4. Summary

The in silico prediction of positive interactions of structures
with the human P-gp active site constitutes a valuable tool
for the design of new P-gp inhibitors. In the same line, the
early recognition of structures with low interaction with the
glycoprotein and high affinity for other specific targets is
important for the design of new drugs and/or the discovery
of new leaders. In this investigation we present a flexible
docking protocol with the capacity to distinguish binders
from nonbinders from a representative set of compounds.

Our future investigations are directed to apply this proce-
dure as a filter at the beginning of the virtual screening path
when searching for new anticonvulsant drugs. As epilepsy is
a disorder with high prevalence of drug resistance, the early
recognition of substrates of P-gp will allow us to avoid the
selection of candidates with poor bioavailability in the brain.
Some of the results obtained from the use of this in silico P-
gp filter are already published [52] since they were acquired
during the writing of this paper.
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