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The order–disorder and order–order phase transition temperatures in the
austenitic phase of Cu-based shape memory alloys were used to obtain a set
of first- and second-neighbour pair interchange energies. To this end, a mean
field model was postulated. Then, the applicability to different alloys of this
simple model was analysed. It was found that a good agreement with the
experimental phase diagram is obtained for Cu–Zn–Al, Cu–Al–Ni and
Cu–Al–Be alloys using composition-independent parameters. It was also
found that for Cu–Al–Mn alloys, composition-dependent pair interchange
energies need to be employed.

Keywords: shape memory alloys; copper alloys; order; simulation

1. Introduction

Long-range atomic ordering occurs to the β phase of Cu-based shape memory alloys.
Hence, the structure increases its stability and reduces the tendency to decompose into
α and γ equilibrium phases at lower temperatures. This β phase presents the martensitic
transformation, responsible for the shape-memory behaviour. It has been observed that
the martensitic transition temperatures are strongly influenced by the degree of atomic
order in Cu–Zn–Al alloys [1]. Therefore, it is important to be aware of the critical tem-
peratures at which ordering is established, because if the ordering temperatures are suf-
ficiently high, the possibility of retaining some degree of disorder through thermal
treatments will be reduced and the martensitic transition will be more reproducible.

The high-temperature β phase in Cu-based alloys has a body-centred cubic structure
(bcc) with atoms randomly located. After ordering, the atom configurations are best
described by taking a cube of 2 × 2 × 2 high temperature bcc cells and defining four
interpenetrating face-centred cubic (fcc) sublattices α, β, γ and δ, as shown in Figure 1.
It can be seen that each fcc sublattice has a cell parameter twice the size of the one of
the bcc structure. Then, each state of order can be defined by assigning the occupation
probabilities Psublattice

i of each element i in each sublattice. The most common configura-
tions in Cu-based alloys are characterized by:
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� Pa
i ¼ Pb

i ¼ Pc
i ¼ Pd

i for the disordered A2 (Im3m) β phase,
� Pa

i ¼ Pb
i 6¼ Pc

i ¼ Pd
i for the nearest- (first-) neighbour ordered B2 (Pm3m) β2

phase,
� Pa

i ¼ Pb
i ¼ Pc

i 6¼ Pd
i for the nearest- and next-nearest-(second-) neighbour ordered

DO3 (Fm3m) β1 phase, and
� Pa

i ¼ Pb
i 6¼ Pc

i 6¼ Pd
i 6¼ Pa

i for the nearest- and next-nearest-(second-) neighbour
ordered L21 (Fm3m) β3 phase.

The conditions that must fulfil these occupation probabilities areX
i

Psublattice
i ¼ 1

and

Pa
i þ Pb

i þ Pc
i þ Pd

i ¼ 4Ci (1)

being Ci the atom concentration of the corresponding element i. These occupation prob-
abilities define the number of atoms of each element in each sublattice. Additionally, it
is assumed that the elements within each sublattice are randomly distributed. The differ-
ent order configurations considered in the current paper and their occupation probabili-
ties are presented in Appendix 1. They constitute alternative atom distributions to the
four previously mentioned cases.

It is desirable to obtain the measured ordering temperatures from the corresponding
atom configurations. With this purpose, several models (analytical or numerical) with
varying degrees of approximation were developed. In most cases, these methods define
pair interchange energies, whose values indicate the tendency of a pair of atoms to
either order or segregate at a specific distance in the lattice. Being V ðiÞ

AB the pairwise
interaction energy between A and B atoms at ith neighbouring distance, their pair inter-

change energy is defined as W ðiÞ
AB ¼ V ðiÞ

AA þ V ðiÞ
BB � 2V ðiÞ

AB. It can be seen that it has a

positive value when ordering is favourable. The W ðiÞ
AB depend on the pair distance, the

Figure 1. (colour online) Eight bcc cells forming a cube in which four fcc sublattices are defined
to describe the ordered structures.
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composition, the atomic volume and the temperature [2]. However, only the distance is

usually taken into account. This can often be seen in the literature when the W ðiÞ
AB esti-

mated from data for the binary alloy are applied to ternary alloys containing A and B
atoms. This assumption is a matter of convenience, since it helps to reduce the set of
unknowns in the equations. It has also been noticed that in order to calculate critical
ordering temperatures, it is enough to consider first- and second-neighbour contributions

only. In this way, the W ðiÞ
AB can be considered as effective values which take into account

the contribution of the interaction with more distant atoms [2].
The aim of the present work is to obtain the pair interchange energies for different

Cu-based shape memory alloys from the experimental data in the literature. The analy-
sis will be done by applying the same thermodynamic model and criterion to two bin-
ary and four ternary alloys. This will allow to detect the conditions under which the
application of the model is valid. It will also be used to observe the behaviour of the

W ðiÞ
AB with the alloy family (which is not usually taken into account).
The comparison between the experimental data and the simulation will be presented

in graphs as a function of either the concentration of a specific element or the electron
concentration e/a. The latter variable is the average number of conduction electrons per
atom. For the calculation, it was assumed that each Cu or Mn atom contributes with
one electron per atom; each Zn or Be with two; each Al with three; and each Ni with
0.6 [3].

2. Theory

The stability of atom distributions in the cubic structure, with and without order, will
be predicted from the calculation of the corresponding Gibbs free energies G. To this
end, the enthalpy H and entropy S expressions need to be obtained. In the following
subsections, the letter A stands for Cu, and letters B and C will be used to indicate gen-
eric elements and should not be confused with boron or carbon.

2.1. Enthalpy expression

The contribution to the enthalpy that depends on the configuration will be expressed as
a sum of the interactions between neighbours. Let N ðiÞ

AB be the number of A and B atom
pairs at an ith neighbouring distance. Then the term

RðiÞ ¼ N ðiÞ
AAV

ðiÞ
AA þ N ðiÞ

ABV
ðiÞ
AB þ N ðiÞ

ACV
ðiÞ
AC þ N ðiÞ

BBV
ðiÞ
BB þ N ðiÞ

BCV
ðiÞ
BC þ N ðiÞ

CCV
ðiÞ
CC (2)

represents the contribution to the enthalpy of a distribution of atoms in ith neighbouring
positions in a ternary alloy. By introducing the concept of pair interchange energies

W ðiÞ
AB ¼ V ðiÞ

AA þ V ðiÞ
BB � 2V ðiÞ

AB, Equation (2) can be rewritten as the sum of two terms. One

of them is called RðiÞ
amount as it depends on the amount of atoms and not on their config-

uration. It is expressed as

RðiÞ
amount ¼ ZðiÞ NAV

ðiÞ
AA þ NBV

ðiÞ
BB þ NCV

ðiÞ
CC

h i
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being ZðiÞ the number of ith neighbours and NA, NB and NC the number of A, B and C
atoms, respectively, in the volume under consideration. The other term is called

RðiÞ
configuration as it depends on the particular configuration that the atoms adopt in the

solid. It is expressed as

RðiÞ
configuration ¼ � N ðiÞ

ABW
ðiÞ
AB þ N ðiÞ

ACW
ðiÞ
AC þ N ðiÞ

BCW
ðiÞ
BC

h i
=2

When analysing atomic ordering, as the number of pairs is altered, the latter term will
reflect the energy change which occurs during the transition. In order to obtain the
enthalpy contribution, it is necessary to divide this expression by the total number of
atoms, N ¼ NA þ NB þ NC . As usually, only first- and second-neighbours will be taken
into account, and the term to be evaluated is, therefore, given by

H=N ¼ � N ð1Þ
AB W

ð1Þ
AB þ N ð1Þ

ACW
ð1Þ
AC þ N ð1Þ

BCW
ð1Þ
BC þ N ð2Þ

AB W
ð2Þ
AB þ N ð2Þ

ACW
ð2Þ
AC þ N ð2Þ

BCW
ð2Þ
BC

h i
=2N

(3)

2.2. Entropy expression

The configurational entropy of each atom distribution was calculated using an irregular
tetrahedron as the basic cluster, following the cluster variation method in the bcc lattice
[4–6]. It is given by

S=ðkBNÞ ¼ � 6
X
ijkl

L Zabcd
ijkl

� �
� 3

X
ijk

L Uabc
ijk

� �
þ L Uabd

ijk

� �
þ L U acd

ijk

� �
þ L Ubcd

ijk

� �h i(

þ3
X
ij

L Rab
ij

� �
þ L Rcd

ij

� �h i
=2þ

X
ij

L Y ac
ij

� �
þ L Y ad

ij

� �
þ L Y bc

ij

� �
þ L Y bd

ij

� �h i

�
X
i

½L X a
i

� �þ L X b
i

� �
þ L X c

ið Þ þ L X d
i

� ��=4
)

(4)

where kB is the Boltzmann’s constant, the sums are over the atomic species, the Greek
supraindices stand for the different sublattices and LðxÞ ¼ x lnðxÞ. The basic variables of
the treatment are the probabilities Zabcd

ijkl that a tetrahedron adopts a configuration of i, j,
k and l atoms on α, β, γ and δ sublattice positions. The subclusters are the triangle, rep-
resented by the Uijk , the second-neighbour pair (Rij), the first-neighbour pair (Yij) and
the point probability (Xi). These latter variables are derived as linear combinations of
the tetrahedron probabilities by the following reduction relations

Uabc
ijk ¼ P

l
Zabcd
ijkl

Rab
ij ¼ P

kl
Zabcd
ijkl

Y ac
ik ¼ P

jl
Zabcd
ijkl

X a
i ¼ P

jkl
Zabcd
ijkl

(5)
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and, correspondingly, for the other sublattice combinations. As an equation for control-
ling the calculation of the tetrahedron probabilities, the equality Psublattice

i ¼ X sublattice
i

ought to be taken into account.

2.3. Strategy for phase stability evaluation

A computer programme was used to create the distributions for the different atomic
orders and to evaluate their enthalpy and entropy differences. To this end, a cube of
120 × 120 × 120 unit bcc cells (A2 order) was defined and the four sublattices α, β, γ
and δ were introduced. This cube, which contains 3.456 × 106 atoms, has proved to be
big enough to avoid the appearance of features due to improper statistics [7]. The differ-
ent atom species were distributed on these sublattice sites in such a way that either the
completely disordered state or the perfect long-range order (as imposed by the occupa-
tion probabilities presented in Appendix 1) was obtained. Within each sublattice the ele-
ments were randomly arranged. The programme then counted the number of first- and
second-neighbour pairs which were used for the calculation of Equation (3). The tetra-
hedron probabilities were also assessed and the variables in Equation (5) were obtained
for the evaluation of Equation (4). Periodic conditions were applied at the borders of
the cube. In this way, the contribution to the free energy due to the atom configuration
(G ¼ H � TS) and the relative stability for each temperature T could be obtained. It is
customary to work with Equations (3) and (4) since this makes the calculation indepen-
dent of the number of atoms. Therefore, Equation (3) is divided by kB and the pair
interchange energies are expressed in Kelvin units.

From the measured ordering temperatures (TM), the pair interchange energies were
guessed. To this end, the critical temperatures (TC) were calculated by matching the free
energies of the corresponding configurations. For instance, if configurations 1 and 2 are
considered, the critical temperature is given by

TC ¼ Hðconfiguration 2Þ � Hðconfiguration 1Þ
Sðconfiguration 2Þ � Sðconfiguration 1Þ

The strategy was to minimize the difference between TM and TC, and control that no other
atom configuration had a lower energy value in the whole temperature range of each phase
field. This is of great importance since there are different sets of pair interchange energies
that are more efficient to predict the critical ordering temperatures, but they favour the
appearance of atom configurations that are in disagreement with those reported in the liter-
ature. Hence, all atom configurations presented in Appendix 1 were considered when com-
paring the free energies to reject specific values of the pair interchange energies. This
strategy was applied not to a single composition/order transition, but to the whole set of
available experimental data. This means that the minimization was conducted on a certain
composition range and took into account one or two ordering transitions, depending on
the alloy system. The pair interchange energies were taken from the fit that better reduced
the differences between TM and TC for all the available data.

It has to be noted that in the present calculations, the possibility of short-range order
and of a continuous character in the long-range order transitions have been excluded.
These simplifications allow an easier implementation of the model. Then, it should be
considered that the model does not reproduce the real distribution of atoms but, as
shown next, will permit a proper prediction of the critical ordering temperatures.
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3. First- and second-neighbour pair interchange energies

3.1. Cu–Zn

This system presents one ordering transition from the high-temperature A2 phase to the
low-temperature B2 phase in near equiatomic concentrations. The experimental critical
temperatures [8–14] are quite insensitive to the composition variations, as shown in
Figure 2. This ordinate axis range will be used throughout the different cases and will
serve for a better comparison of the quality of the calculations.

The application of the evaluation strategy shows that several pairs of first- and sec-
ond-neighbour interchange energies provide a good fit of the data. These sets are line-
arly related, as shown in Figure 3, by the equation

W ð2Þ
CuZn ¼ 1:323W ð1Þ

CuZn � 642K (6)

When different energy values are taken, the calculated critical ordering temperatures fall
between the lower black line and the upper red line shown in Figure 2. This small vari-
ation hinders the determination of a single set of interchange energies as the best fit to
the experimental data. The condition W ð1Þ

CuZn\960K is a constrain to avoid the appear-
ance of the DO3 phase in the B2 phase field. Apparently, there is no lower limit to the
first-neighbour interchange energy and even negative values are permitted. This appar-
ent contradiction, that a negative value would tend to disorder the first-neighbour pairs,
is counteracted by an even higher tendency to disorder Cu–Zn pairs at second-neigh-
bour distances.

The pair interchange energies proposed by Inden [15], W ð1Þ
CuZn ¼ 955K and

W ð2Þ
CuZn ¼ 535K, were assumed as reliable values by many authors, independently of the

model applied to perform calculations. In the present scheme, these interchange energies
do not fit the experimental values properly, predicting critical ordering temperatures
overestimated in around 12%. It can be seen in Figure 3 that the energies proposed by
Inden fall out of the linear relation established in the present work.

Figure 2. (colour online) Critical ordering temperatures as a function of composition in Cu–Zn
alloys taken from: [8] squares, [9] circles, [10] up triangle, [11] down triangles, [12] diamonds,
[13] plus signs and [14] asterisks. The full lines join calculated values, see text for details.
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3.2. Cu–Al

This system presents the A2 phase at high temperatures and it becomes ordered by low-
ering the temperature to DO3 or L21 when the Al concentration is below or above 0.25,
respectively. There is a slight variation of the experimental critical temperatures with
composition [14,16–18], as shown in Figure 4.

In the present alloy system, the presence of two ordered structures at low tempera-
tures enables the unique determination of the pair interchange energies

W ð1Þ
CuAl ¼ 1010K W ð2Þ

CuAl ¼ 1070K

Figure 3. Pairs of first- and second-neighbour interchange energies that optimize the fit of the
experimental data (squares). The line shows the linear behaviour of these points. The asterisk cor-
responds to the energies proposed by Inden [15].

Figure 4. (colour online) Critical ordering temperatures as a function of composition in Cu–Al
alloys taken from: [14] square, [16] circles, [17] up triangle and [18] down triangle. The full line
join calculated values.
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The black line in Figure 4 was drawn calculating ordering temperatures with these
energy values. It can be seen that the curve fits the experimental data well.

3.3. Cu–Zn–Al

There is plenty of experimental information on the β phase of this ternary alloy system.
For a constant electron concentration of 1.48, the different ordered phases can be pre-
sented as a function of CZn (see Figure 5). Similarly to the Cu–Al case, this system pre-
sents the A2 phase at high temperature and orders on lowering the temperature to DO3

for compositions with Zn content up to 0.05 [14]. Between 0.05 and 0.11, there seems
to be only one ordering reaction from A2 to L21 (see Figure 5 and [14]). Finally, for
higher Zn concentrations up to 0.28, two ordering transitions occur. The first one varies
from A2 to B2 and, on further cooling, B2 is changed to L21 order. The ordering transi-
tion temperatures departing from the A2 phase do not seem to depend strongly on com-
position. On the other hand, the B2 to L21 transitions vary within a wide range of
temperatures depending on the Zn concentration. For higher concentrations, the B2 to
L21 transition temperature is too low, and reliable measurements are not available.

The critical temperatures were fitted using the conventional atom configurations for
Cu–Zn–Al. They are listed in Appendix 1 as: section B for A2, sections D and D1 for
B2 and sections H and H1 for L21. Six interchange energies are involved in this ternary
alloy. It is not possible to make a good fit using the Cu–Al values presented in the pre-
vious section and adjusting the other four parameters, with the condition imposed by
Equation (6). Instead, the minimization procedure has to be performed by varying the
six energy values. The appearance of undesired order configurations at the different
temperatures needs to be carefully monitored. The best fit is obtained with

W ð1Þ
CuZn ¼ 850K W ð2Þ

CuZn ¼ 485K

Figure 5. (colour online) Critical ordering temperatures as a function of Zn concentration in Cu–
Zn–Al alloys at constant electron concentration (e/a = 1.48) taken from: [14] asterisks, squares
and diamonds, [19] up and down triangles, [20] plus signs and circles. The full lines join calcu-
lated values.
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W ð1Þ
CuAl ¼ 1150K W ð2Þ

CuAl ¼ 860K

W ð1Þ
AlZn ¼ �100K W ð2Þ

AlZn ¼ 400K

These energy values allowed to draw the full lines in Figure 5, showing that the simula-
tion agrees quite well with the measured values within experimental scatter. The dotted
line separating the DO3 from the L21 phase fields was drawn for the composition at
which the L21 ordering temperature exceeds that of DO3 by more than 2 K, twice the
scatter of the simulation runs.

The pair interchange energies obtained for Cu–Zn–Al can be compared with those
taken from the literature and presented in Table 1. In the first two cases ([14] and [19]),
the Cu–Zn pair energies were taken from Inden [15], assuming their independence of
composition. The main difference in the Cu–Al nearest-neighbour energy values
between [14] and [19] must be ascribed to the mathematical model used for the fit. In
[14] Monte Carlo simulations were performed within the Blume–Emery–Griffiths
model, whereas in [19] the Bragg–Williams–Gorski approximation (BWGA) was used.
On the other hand, the third case in Table 1 shows what happens when the Al–Zn ener-
gies are neglected, based on the absence of intermetallic phases in the phase diagram.
As the pair interchange energies are effective values which include the contributions of
neighbours that are not specifically taken into account, the imposition of zero to some
of the W ðiÞ

AB has an important effect in the value of the others. Therefore, it is advisable
not to impose these restrictions beforehand, and only expect to obtain small values for
these Al–Zn pair energies. The satisfactory results encourage the analysis of other ter-
nary alloys.

3.4. Cu–Al–Ni

This alloy system presents two ordering transitions: A2–B2 and B2–L21, where A2 is
the disordered high-temperature phase and L21 is the ordered low-temperature phase. It
is not possible to present the data as in Cu–Zn–Al, since the data from the literature do
not correspond to a constant electron concentration. Therefore, the critical temperatures
are shown for fixed concentrations of one of the elements (see Figure 6).

The ordered atom configurations in the present case are assumed to be different
from those for Cu–Zn–Al. Taking into account the high affinity between Ni and Al,
and following the suggestion by [20,21], Ni was always placed as a nearest neighbour
of Al in the ordered structures. The configurations used are listed in Appendix 1 as: B
for A2, D and D3 for B2 and H and H3 for L21. Following a similar fitting procedure,
the best result was obtained with

Table 1. Pair interchange energies in Cu–Zn–Al from the literature.

Reference W ð1Þ
CuAl [K] W ð2Þ

CuAl [K] W ð1Þ
CuZn [K] W ð2Þ

CuZn [K] W ð1Þ
AlZn [K] W ð2Þ

AlZn [K]

[14] 1660 920 955 535 −45 285
[19] 1345 825 955 535 −50 200
[20] 905 130 545 95 0 0
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Figure 6. (colour online) Critical ordering temperatures in Cu–Al–Ni alloys taken from [21]. (a)
Fixed Ni content at 4 wt. %, (b) fixed Al content at 13.7 wt. % and (c) fixed Al content at 13.2
wt. %. The full lines join calculated values.
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W ð1Þ
CuAl ¼ 1080K W ð2Þ

CuAl ¼ 670K

W ð1Þ
CuNi ¼ �40K W ð2Þ

CuNi ¼ 80K

W ð1Þ
AlNi ¼ 1460K W ð2Þ

AlNi ¼ �350K

These energy values allowed to draw the full lines in Figure 6. Again, the simulation
agrees reasonably well with the measured values within experimental scatter. It is inter-
esting to note that, as in the Al–Zn case, the first-neighbour pair interchange energy for
Cu–Ni is negative and has an absolute value smaller than the second-neighbour term.
This similarity can be rationalized by noting that there are no long-range ordered phases
in the corresponding binary diagrams ([22]: page 239 for Al–Zn and page 1442 for
Cu-Ni).

In [21], the Cu–Al–Ni pair interchange energies were used, taking Cu–Al values
from [19], Al–Ni from [23] and imposing Cu–Ni to zero, based on the absence of long-

range order in the binary phase diagram. The proposed energies were W ð1Þ
CuAl ¼ 1345K,

W ð2Þ
CuAl ¼ 825K, W ð1Þ

CuNi ¼ 0K, W ð2Þ
CuNi ¼ 0K, W ð1Þ

AlNi ¼ 3080K and W ð2Þ
AlNi ¼ 1880K. It

was also necessary to define a net chemical interchange energy at nearest-neighbour
positions to reproduce the observed critical temperatures [21]. A comparison with
Figure 3 in [21] indicates that this feature improves the simulation. However, in the
present work this concept was disregarded, since it was considered an unnecessary com-
plication of the model. It was also found that it is not wise to set to zero the Cu–Ni
energies in Equation (3), because these values stabilize improper atom configurations.

It is expected that the pair interchange energies obtained for a binary alloy should
remain valid for low contents of the third element in a ternary alloy. It can be seen that
for Cu–Al pairs (in alloys with Ni compositions from 0.03 to 0.05) the first-neighbour
interchange energy had to be increased by around 7%, whereas the second-neighbour
term had to be decreased by about 37% with respect to the binary alloy values. This
implies that the apparent low Ni content is, however, sufficiently high and sets a limit
to what can be considered “low contents of the third element”. Therefore, it is advisable
to confine the use of pair interchange energies strictly to compositions within the range
used for their determination.

3.5. Cu–Al–Be

In spite of all the research done in recent years, there are few studies of ordering for
this system [18,24,25]. The available data belong to alloys with 0.2219 ≤CAl ≤ 0.2313,
i.e. a small composition variation and, therefore, Figure 7 shows the data as a function
of Be concentration. The alloys present only one transition from the disordered high-
temperature A2 phase. The ordered low-temperature phase has been proposed as DO3,
based on X-ray diffraction measurements in powdered specimens [24] where the experi-
mental results were compared with theoretical estimations and the ratio of the intensities
of two room temperature superlattice reflections peaks was calculated. As the intensity
of diffraction peaks can be easily perturbed by experimental conditions (for example: a
small amount of texture), some doubts about the determination of the stable ordered
configuration by this method might arise. Another way to address the problem is by

Philosophical Magazine 2715

D
ow

nl
oa

de
d 

by
 [

Jo
rg

e 
L

ui
s 

Pe
le

gr
in

a]
 a

t 0
6:

05
 3

1 
Ju

ly
 2

01
4 



comparison with the Cu–Zn–Al alloys and its binary constituents. The Cu–Zn and Cu-
Be alloys present ordering for equiatomic compositions, whereas Al–Zn and Al–Be are
free of ordered phases in the whole composition range ([22]: pages 1508, 644, 239 and
125, respectively). Then, it is tempting to expect similar ordering reactions for composi-
tion ranges delimited by the number of non-Cu atoms, as a first approximation. Figure 5
shows that a single transition from A2 to L21 happens for 0.052 ≤CZn ≤ 0.100 and e/a
= 1.48. This is equivalent to a non-Cu atoms composition interval of
0.266 ≤CZn þ CAl ≤ 0.290. On the other hand, the experimental data in Figure 7 have
compositions in the interval 0.259 ≤CAl þ CBe ≤ 0.302. Hence, a similar behaviour is
expected and, therefore, if the number of non-Cu atoms exceeds the occupation capacity
of sublattice δ, the L21 type configuration is adopted. The excess non-Cu atoms will
only go to sublattice γ.

The critical temperatures were fitted using similar atom configurations as for
Cu–Zn–Al. They are listed in Appendix 1 as: B for A2 and H and H1 for L21. Follow-
ing a similar fitting procedure, the best result was obtained with

W ð1Þ
CuAl ¼ 1210K W ð2Þ

CuAl ¼ 900K

W ð1Þ
CuBe ¼ 635K W ð2Þ

CuBe ¼ 125K

W ð1Þ
AlBe ¼ �85K W ð2Þ

AlBe ¼ 330K

These energy values allowed to draw the full lines in Figure 7, taking a mean Al con-
centration of 0.227, showing that the simulation agrees reasonably well with the mea-
sured values within experimental scatter. The dotted line separating the DO3 from the
L21 phase fields was drawn for the composition at which the L21 ordering temperature
exceeds that of DO3 by more than 2 K, twice the scatter of the simulation runs. It can
also be seen that the B2 phase is expected for Be concentrations larger than 0.089.

Figure 7. (colour online) Critical ordering temperatures as a function of Be concentration in
Cu–Al–Be alloys taken from: [18] squares, [24] circles, [25] triangle. The full line join calculated
values for fixed 22.7 at. % Al.
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In [24], the Cu–Al–Be pair interchange energies were fitted using a mean field model,

which is essentially based on the BWGA. The result was W ð1Þ
CuAl ¼ 1149K, W ð2Þ

CuAl ¼ 766K,

W ð1Þ
CuBe ¼ 2747K, W ð2Þ

CuBe ¼ 1831K, W ð1Þ
AlBe ¼ 3347K and W ð2Þ

AlBe ¼ 2231K. The authors
claim that the narrow range of the measured critical temperatures only makes the Cu–Al
values trustworthy. They recognize that the positive Al–Be energies imply an ordering
tendency which is opposite to the segregation that is known to occur. Notwithstanding, they
use these values within the concept of effective coefficients, allowing to reproduce the
observed ordering transitions.

As in the Al–Zn and Cu–Ni cases, the first-neighbour pair interchange energy for
Al–Be is negative and has an absolute value smaller than the second-neighbour term.
Again, this can be related to the fact that there are no long-range ordered phases in the
binary Al–Be diagram ([22]: page 125). Instead, when the first-neighbour pair inter-
change energy obtained in the ternary alloys is positive and has a value higher than the
second-neighbour term, order is expected in the binary phase diagram. This holds for
Cu–Al, Cu–Zn, Al–Ni and Cu–Be. It could be further argued that the negative second-
neighbour term in Al–Ni emphasizes the B2 ordering tendency, being responsible for
the absence of an A2 structure in this binary alloy.

3.6. Cu–Al–Mn

As in Cu–Al–Ni, the two ordering transitions change the disordered A2 phase to B2 at
high temperatures, and then B2 to L21. There is a wide composition range for which
the ordering temperatures were reported for this family of alloys [17,26–28]. The ranges
are 0.18 ≤CAl ≤ 0.30, 0.01 ≤CMn ≤ 0.25, maintaining the electron concentration within
1.375 ≤ e/a ≤ 1.750. The critical temperatures have to be presented for fixed concentra-
tions of one of the elements. Otherwise, a cloud of experimental points in the graphs is
obtained. Some examples are shown in Figure 8 for fixed Mn (a, b and c) or Al (d)
concentrations.

The critical temperatures were fitted using similar atom configurations as for
Cu–Zn–Al. They are listed in Appendix 1 as: B for A2, D and D1 for B2, and H and
H1 for L21. Calculations reveal that it is not feasible to maintain the hypothesis of com-
position-independent W ðiÞ

AB. Even for 20 at. % Mn, it is not possible to obtain energies
that allow the proper simulation of the whole Al range, as shown in Figure 8(a).
Instead, a good fit is achieved only after limiting the Al concentration below 0.26. The
pair interchange energies obtained are listed in Table 2. Following a similar fitting pro-
cedure for 15 at. % Mn, limiting the Al concentration below 0.26, a reasonable agree-
ment can be found between experiments and simulations. This is shown in Figure 8(b),
with the corresponding parameters listed in Table 2.

The observed variation of the pair interchange energies with Mn concentration
induces to examine the possibility of a linear relationship between the W ðiÞ

AB and CMn.
To this end, the pair interchange energies for 15 at. % Mn and 20 at. % Mn were line-
arly extrapolated to 10 at. % Mn, as presented in Table 2. Figure 8(c) shows the
experimental results and the simulated lines for both transitions: A2 to B2 (dotted line)
and B2 to L21 (dashed line). It can be seen that the latter transition is properly pre-
dicted whereas the former is far from being adequate. The good set of fitted parameters
stands also in Table 2, from which the full lines in Figure 8(c) were obtained. It shows
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that the linear extrapolation underestimated the value of W ð1Þ
AlCu. This leads to conclude

that the pair interchange energies do not have a simple and predictable composition
dependence in the case of Cu–Al–Mn.

In Figure 8(d), the transition temperatures for fixed 25 at. % Al, together with the
delimiting lines obtained from the simulation (using the parameters shown in Table 2)

Figure 8. (colour online) Critical ordering temperatures in Cu–Al–Mn alloys taken from: [27]
squares and circles, [17] up and down triangles, [28] asterisk. (a) Fixed Mn content at 20 at. %,
(b) fixed Mn content at 15 at. %, (c) fixed Mn content at 10 at. % and (d) fixed Al content at 25
at. % Al. The full lines join calculated values with the best fitting parameters. The dotted and
dashed lines in (c) correspond to the simulation with the extrapolated values presented in Table 2.

Table 2. Pair interchange energies for Cu–Al–Mn when one of the elements is at a fixed concen-
tration. See text for details.

Element fixed
W ð1Þ

CuAl
[K]

W ð2Þ
CuAl

[K]
W ð1Þ

CuMn
[K]

W ð2Þ
CuMn

[K]
W ð1Þ

AlMn
[K]

W ð2Þ
AlMn

[K]

20 at. % Mn 1600 900 −30 200 −360 830
15 at. % Mn 1450 890 30 250 −330 770
10 at. % Mn extrapolated

values
1300 880 90 300 −300 710

10 at. % Mn adjusted values 1400 860 90 240 −300 690
25 at. % Al 1350 720 1040 −50 1570 830
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are presented. The prediction is accurate, despite the bad looking points for the A2 to
B2 transition at high Mn content (because the spread is not higher than 40 K, well
within the scatter of the experiments). The most surprising feature arises from the com-
parison of the pair interchange energies in Table 2. Again, it seems not possible to fit
the data for fixed Al content with values next to those for fixed Mn content. In particu-
lar, W ð1Þ

CuMn and W ð1Þ
AlMn need to take positive values above 1000 K for the dual purpose

of obtaining a good fit and avoiding undesired order configurations (when the Al com-
position is not changed).

In [26], the Cu–Al–Mn pair interchange energies were fitted as W ð1Þ
CuAl ¼ 1605K,

W ð2Þ
CuAl ¼ 856K, W ð1Þ

CuMn ¼ 1266K, W ð2Þ
CuMn ¼ 353K, W ð1Þ

AlMn ¼ 2144K and

W ð2Þ
AlMn ¼ 1168K using the BWGA, and adjusting own experimental values and those

extracted from [17]. The latter data belong all to 25 at. % Al, while the former fall in
the range from 18.7 to 24.4 at. % Al. The increased values of the fitted pair interchange
energies could be ascribed to the mix of compositions. However, this hypothesis
deserves more analysis.

Finally, it can be said that the critical ordering temperatures can be predicted in lim-
ited composition ranges in Cu–Al–Mn. Notwithstanding, this family of alloys presents a
behaviour with regard to the pair interchange energies that differs from the other ternary
alloys studied in the present work. Therefore, the model should be modified when Mn
atoms are considered in the alloy.

4. Conclusions

Long-range order in Cu-based shape memory alloys has been analysed in terms of a
Gibbs free energy model. The best set of pair interchange energies was deduced for
each alloy using an energy expression which solely takes into account the nearest- and
next-nearest-neighbours, and an entropy treatment coming from the cluster variation
method. It is concluded that:

� The energies can be determined from the experimental ordering temperatures. To
this end, it is important to simultaneously control that, during the fit, the energy
values do not favour the appearance of other ordered phases in the known phase
fields.

� The pair interchange energies are specific for each alloy. These energies depend
on the particular expression used for the energy and the entropy. Therefore, data
need to be carefully handled when using pair interchange energies from different
sources in the literature.

� The pair interchange energies suitable for ternary alloys differ from those appro-
priate for binary alloys. For instance, in ternary systems, the pair energies belong-
ing to a binary system (which does not exhibit long-range ordering) should not
be set to zero beforehand.

� For the ternary alloys Cu–Zn–Al, Cu–Al–Ni and Cu–Al–Be, the pair interchange
energies are independent of composition.

� For Cu–Al–Mn alloys, the pair interchange energies are valid within very limited
composition ranges. They also present a complex variation as regards
composition.
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Appendix 1
In the present section the occupation probabilities for the different atom configurations will be
given, with the exception of those for Cu, that can be obtained from Equation (1). All the
Cu-based alloys considered in the present work are of the form Cu-A in the binary case or
Cu-Al-A for the ternary.
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