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Abstract Weather radar operation generates data at a high rate that requires prompt
processing. The operations performed on data for weather product generation are
repeated in each resolution cell and thus are naturally prone to parallelization. Parallel
processing using graphic cards is an emerging technology that allows for imple-
mentation of high-throughput algorithms at a low cost. In this paper, the parallel
implementation of the main product of a polarimetric weather radar using GPU is
presented, focusing on its optimization. A speedup exceeding 20x is obtained when
compared to the serial implementation. Also processing is found to be memory bound,
which results in a counter-intuitive performance improvement when the number of
threads per job is reduced.
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1 Introduction

Weather radars (WR) have become a fundamental tool in weather forecast and severe
weather warning applications. Accurate, real-time forecast and description of severe
weather are fundamental to reduce and prevent weather disasters. The quality of radar
data is essential to assure the performance of meteorological applications such as
severe weather detection, precipitation estimation, and weather forecasting [2].

Polarimetric radar (PR) has allowed for better and richer weather variables, which
have been thoroughly modeled in the literature [7,17]. The PR raw data processing
is crucial to obtain useful information for the meteorological models used to forecast
weather [10]. This processing involves the range compression of the signal [16], the
ground clutter filtering [7] and the generation of PR variables [17] (box “WR Products”
in Fig. 1). The latter depends also on the polarization scheme used by the radar [1],
which may alternate H and V polarizations, send them together, or other possible
schemes that need to be accounted for in the processing stage.

The high rate signal processing operations applied to raw data, mainly range com-
pression, are implemented in hardware, either in application-specific integrated circuits
(ASICs) or Field Programmable Gate Arrays (FPGAs). A posterior decimation opera-
tion reduces the data rate for the forthcoming data processing stages. Even considering
this data rate reduction, both clutter filtering and the PR variables calculation are not
usually performed in real time unless very powerful processors are used. This fact
delays the forecast process as data is not processed in real time. With the advent of
the Graphical Processing Units (GPU) as computation devices, a great number of
applications prone to parallelization found a technology that allowed their efficient
implementation in real time [13].

The usage of GPU in WR applications is recent and focuses mostly on the imple-
mentation of meteorological models [9] or visualization [18]. The structure of raw
WR data suits the GPU architecture well, since each radar cell maps to a number in
the radar data cube [14], and processing is usually decoupled. In this paper, a num-
ber of PR variables are generated from raw data in order to verify that the standard
algorithms can be parallelized and a real-time implementation achieved using general
purpose computers and a relatively simple graphics card.

Meteorological
Station

/ Range Clutter WR
jl raw data Compression Filtering . Products Weather
Weather (executed on hardware) Forecasting
Radar T 1
Precipitation
measurement ‘
Other ‘

data...

Fig.1 Conceptual model of our work: the box WR Products indicates polarimetric radar products context
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Weather radar operation implies the generation of huge amounts of data. A single
radar turn can generate almost 0.5 GB of data in a matter of seconds (a standard turn
rate is 6 rpm [15]). For almost-real-time operation, this data has to be processed in
tenths of a second, before the data from the next turn arrives. This shows the need of
efficient implementations to reduce total runtime.

In this work, a parallel implementation of the raw data processing for product
generation is presented. The optimizations performed are clearly detailed as this is the
key step for improving the performance of the algorithm. Real weather radar data is
used, and the speedup obtained is higher than 20x.

In Sect. 2, an overview of GPU parallel implementations for WR data is presented.
In Sect. 3, the meteorological products are presented as well as their parallel implemen-
tation. Section 4 devotes to the results of implementing these algorithms for processing
real WR data. Finally, the conclusions are presented.

2 Related work

Data processing for WR can be divided in two levels: raw data processing and weather
variables processing. The former involves processing the echoes from the radar in order
to obtain meaningful variables that convey information about the weather state in the
surveyed space. This involves large amounts of data at a fast rate that require fairly
simple calculations and similar processing steps per resolution cell. The latter involves
processing the weather variables, also called products, using physical models of the
atmosphere dynamics. Measurements from other sensors are usually also incorporated.
This involves a much smaller amount of data but requires complex models in the form
of differential equations that are hard to solve.

There is a vast amount of work on WR raw data processing, which has been mostly
developed since the 1990s. There is agreement in that data processing applications have
to deal with large arrays of numbers (2D or 3D grids of cells) and thus processing
requires high computational power and memory, matched with algorithm efficiency,
to perform in a reasonable amount of time. Although the problem is well suited for
GPU implementation, there is scarce evidence about its usage for this problem. On
the other hand, the solution of the weather forecast models using GPU has received
more attention.

In [18], the authors propose a fast weather radar data processing based on a parallel
implementation using CUDA on a GPU. The workflow proposed consists of reading
and formatting the raw data followed by normalization and interpolation. The main
goal of the work is to present a parallel interpolation technique in the raw data domain
to complete the missing pixels, obtaining better radar images. The interpolation step
is the most computational intensive process in the algorithm and thus the optimization
focus was placed there. A bilinear interpolation has been implemented, where each
pixel is calculated in parallel. There are no data dependencies, and pixels are calculated
simultaneously using CUDA C on GPU.

This work restates the well known fact that in order to design a high-performance
application for GPU, three issues should be considered: avoid unnecessary data
transmission between different memory spaces, maximize the use of the available

@ Springer



M. Denham et al.

bandwidth and assign threads appropriately. Following these guidelines, they were
able to accelerate the interpolation step and achieve an acceleration of at least 4x.
This reinforces that correct design of CUDA applications is fundamental for obtain-
ing maximum efficiency.

In [12], the update of Colorado State University’s (CSU) Pawnee Doppler radar
system was presented. Part of the project dealt with the selection of a hardware accel-
erator for the implementation of the Parametric Time Domain Method (PTDM) clutter
mitigation algorithm. The algorithm is based on determinant and inverses of large
matrices. PTDM works in time domain, and no FFTs are used. The report presents
a comparison between FPGA (Field Programmable Gate Array) and GPU as parallel
architectures to accelerate PTDM. When FPGA were analyzed, they concluded that
the main drawback of this approach is the development time along with the high cost
of custom circuit design. The authors conclude that using GPU is the better approach
since a significant amount of development time has already been spent optimizing
matrix calculation, making the development time of the implementation significantly
shorter.

In [11], the Weather Research Forecast (WRF) model was implemented on CUDA
C. The non-optimized algorithm developed reached 17 x acceleration.

A computationally intensive module from the WRF model was selected and adapted
from FORTRAN to run on a NVIDIA GPU. The chosen function is WSM5 (WRF
Single Moment 5 tracer), which accounts for only a 0.4 percent of the WRF source code
but consumes a quarter of total run time on a single processor. This model represents
condensation, fallout of various types of precipitation and related thermodynamic
effects of latent heat release.

An initial validation and benchmark results comparing the original WSM5 code
with the GPU version is presented, using the Storm of the Century Test-case consisting
of a 3D grid with 115.000 cells.

The results show a parallel speedup greater than 17x relative to the host CPU
(including data transfer) even though the application was not optimized. By using
thread and memory optimization steps, a better performance and almost-real-time
operation could be achieved [5,6].

In [2], a spectrum-based processing framework called STEP (Spectrum-Time Esti-
mation and Processing) is presented. It integrates three novel algorithms to perform
clutter identification, clutter filtering and noise reduction. The algorithm has been
extensively tested and shows good performance, improving the quality of polarimet-
ric radar data.

Garrido et al. [8] present a parallel solution for a forecast model which works with
several atmospheric phenomenons named PROMES. The amount of parameters, the
need for spatial resolution, accuracy and reasonable run times make it necessary to
use parallel platforms. They use a distributed memory parallel platform: a cluster of
16 PCs (one processor per PC). The parallelization consists of dividing the domain
in subdomains and distributing them across all processors. Once the domain has been
divided, the processors just exchange the frontier information. Due to communication
penalties, the best results in terms of speedup and efficiency are obtained for just 2
processors. This work shows that distributed memory is not the best parallel platform
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for this problem, concluding that domain division is better when processors share
memory spaces, such as graphic processing units do.

Garrido et al. [9] recognize that vectorial multiprocessors are perhaps the best
parallel platform to solve weather models, as a consequence of how these can handle
the data domain. GPUs are a return to vectorial machines and thus seem to be the
natural choice for solving these kinds of problems.

3 Polarimetric radar variables

In this work, different PR variables, also called products, are presented and their
implementation discussed. These products must be of the highest possible quality
as they are fed to weather forecasting models, where information fusion takes part
with data coming from diverse sensors. The products that are object of the present
study are: reflectivity, doppler frequency/autocorrelation, differential phase shift and
correlation coefficient. These are obtained from direct manipulation of the raw radar
data using estimators that convey information of the atmosphere in each resolution
cell by extracting it from the scattering and transmission matrices [17].

3.1 Polarimetric radar product calculation

There is vast literature on polarimetric variable calculations [1,17]. Raw radar data
consists of samples of the antenna induced voltage, v;[n], which are proportional
to the hydrometeor scattered electromagnetic wave previously emitted by the radar.
The received signal contains information about the hydrometeor state, which is to
be extracted by the processor. In a polarimetric radar, the first step is to generate an
estimate of the scattering matrix S which condenses the relevant information. Here,
the focus is the parallel implementation rather than the radar echo modeling, a brief
description of each follows.

3.1.1 Reflectivity

The reflectivity in each of the polarization channels is proportional to the hydrometeors
cross section, integrated over a resolution volume cell. Calibration of the radar is
important to properly estimate this product, although not knowing the calibration
constant for a radar does not affect its calculation as it only implies a multiplication
by a constant. The theoretical expression for the reflectivity is

4

Z; = 10log <W<|Si,»|2>> [dBz] (1)

where X is the signal wavelength, K is the calibration constant, and S;; is the diagonal
element of the scattering matrix corresponding to polarization i € {h, v} and dBZ is
a relative reflectivity logarithmic dimensionless unit of a radar signal reflected off a
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remote object (in mm® per m?) to the return of a droplet of rain with a diameter of 1
mm (1 mm®/1 m?).

In practice, the reflectivity estimator for polarization i is implemented averaging N
signal samples

1 N
p. — 112
Pi= nE:I vi[n]] @)

3.1.2 Doppler frequency

The Doppler frequency measured by a weather radar represents the projection of the
wind’s speed in the direction of the radar beam. The Doppler frequency estimation is
used to reconstruct the wind field in the radar coverage region. Two radars are needed
to fully estimate the wind field, given that a single radar measures only a projection of
the wind velocity vector. The usual scheme for measuring wind speed is modeling it as
a stochastic process and obtaining an estimator for its correlation R (¢), which contains
information about the average spectra of the process [1]. Atlag Ts, the autocorrelation
is

. Ty /2 )
R(Ty) = el 2 faTy / S(f)eﬂﬂ(f—fd)Ts df (3)
_Ts/2

where f; is the Doppler shift of the power spectral density of the process S(f). To
estimate the autocorrelation, it is considered that the process is ergodic, thus

. T
R(Ty) = -2 % v*Imvlm +1] )

m=1

As the phase of this correlation is dependent on the desired mean Doppler frequency,
obtaining it only requires analyzing its argument

0 = —(A/4n Ty) arg(R(Ty)). )
3.1.3 Differential phase shift

The propagation of the vertical and horizontal polarization signals depends on the
media characteristics. The difference of the phase in the received signals can thus
be used to estimate these characteristics. The differential phase is defined as ¢4, =
dni — Py the difference of the phase in the horizontal and vertical polarization signals.

The rate of change of this phase is known as K, and contains information about
the anisotropy of the propagation medium.

As with the Doppler frequency, the differential phase can be estimated using the
cross-correlation between the vertical and horizontal polarization signals

R 1 &
Rin[0] = 3 " vulnlvjln] (6)

n=1
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the angle estimator is given by

Gar = arg(Ryu[01) (7)
3.1.4 Correlation coefficient

Another product related to the difference between the polarization signals is the cor-
relation coefficient. It considers the magnitude rather than the phase as previously
presented. By definition

(SvvShn)

o (0)] = 2w Rh) @®)
! ISP {[Suo?)

In practice this is estimated from the cross-correlation and the reflectivity
| Rio[0]]

\/ﬁvﬁh

oo (0)] = ©

3.2 RMA data

In this work, we used real data from Radar Meteorol6gico Argentino (RMA-0) located
in San Carlos de Bariloche, Argentina (41°08'23.0”S 71°08'59.3”W). The data, v; [n],
generated by the radar is stored in a N x M x 2 matrix. Columns correspond to the
echoes of the emitted pulses in different angular positions. Rows are the samples, in fast
time domain, of those echoes. The third dimension denotes polarization (horizontal
and vertical). In this paper, data size corresponding to a full turn of the radar which is
2242 x 12960 x 2.

As the radar turns continuously, a number of contiguous pulses are averaged to
provide a measurement in each beam pointing direction. In this implementation, 36
consecutive pulses are launched within the beam direction (radar elevation and azimuth
direction) which results in a one degree beam. Each set of 36 consecutive echoes is
deemed a group and different operations are performed over these groups. Figure 2
shows the input data template.

Next, processing of this data cube is performed in order to obtain the desired

products.
2242 [

; s
. .
; :
' | l
—

36 pulses

Group 1 Group 2 Group 360

Fig. 2 RMA input: groups of 36 pulses are used altogether for each calculus
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3.3 RMA product calculation

For each group, the reflectivity is calculated as:

Ref = diag(A x A™) (10)

where A is the 2242 x 36 matrix formed by the pulses of a group. A" is the conjugate
transpose matrix. This calculus is made for both H and V polarization, and the vector
RAef is stored as a row of an output matrix.

Note that this operation works only with the diagonal of the matrix multiplication
result. In order to accelerate this calculation, only the diagonal values are calculated
rather than a full matrix multiplication.

36—1

Refy = (Aij = Al) (11)
j=0

Here, i is the raw input data group and j corresponds to each pulse samples within
the group.
In a similar way, frequency is calculated as
36—1

Freq; = —angle Z(A,-,j*A}fj+,) /@2nT), (12)
j=0

where angle function is the two-quadrant arctangent function applied on each value.
The autocorrelation is obtained as
36—1

R=(1/p)* ) (A=A, (13)

J=0

where p is the number of pulses in the group.
In a similar fashion, the cross-correlation is obtained as

36—1
Run = (1/p) = Y _ (Aij* Bf)), (14)
j=0

where A denotes data in the H polarization matrix and B in the V polarization matrix.
Then, the differential phase shift function is implemented as

Phi = angle(Ryp), (15)

where R, is the cross-correlation of the polarized signals, calculated in Eq. 14.
In turn, the correlation coefficient is implemented as

N Iévh
=abs | —— ), (16)
Pho («/ Pov. % Poh)
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where Pov.* Poh is the element-wise product of the Hand V Power vector elements.
The results of these calculations are stored in matrices of 360 x 2242 cells (360
groups X 2242 columns).

3.4 Sequential and parallel algorithms

The code development workflow is as follows. A first MATLAB implementation is
done for each product; it serves as a benchmark for the implementation of the sequential
C functions. The rapid prototyping capabilities of this high-level language allows for
much simpler debugging of C function implementations.

The sequential C implementation serves as a baseline to compare against and allows
the identification of computational requirements, parallelization opportunities, bottle-
necks, data dependencies, communication requirements, memory access patterns for
load/store operations. This knowledge is used to properly plan a high-performance
CUDA C implementation.

Algorithm 1 implements Eq. 11. For each group, each row is used in order to
calculate one element of the resulting matrix. The sequential C application consists
of a loop that processes the 360 groups of 36 pulses (Algorithm 1 line 2). During
the group processing, the resulting products are vectors of 2242 elements, which are
stored as a row in the corresponding output matrices (Algorithm 1 line 11, where out
is a matrix of 360 x 2242 and row_out is a vector of size 2242).

The complexity of this product is O (N M), where N is the number of columns and
M the number of rows.

The analysis of Eqs. 11-16 shows that the remaining products can be implemented
in a similar way. The same ideas are applied to sequential as well as parallel solutions.

Algorithm 1 Sequential Reflectivity
1: procedure REFLECTIVITY(in, out)

2: for<g in 1 .. number of groups>do > 360 groups
3 for<r in 1 .. number of rows>do > For each row of the group
4 total < 0,01

S: offset «<— row r (of matrix in) + first column of group g

6 for <k in 1 .. number of pulses per group>do

7 total < total + in[offset + k] * in[offset + k]

8 end for

9: row_out[r] <« total > Element r of the resultant vector
10: end for

11: out[g] < row_out > Copy of row g to the output
12:  end for

13: end procedure

In a parallel implementation, the processing of each input group is independent of
the computation of the other groups. Different products can be processed simultane-
ously.
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Grids of 360 x 2242 threads are launched to obtain different products. This threads
layout matches the output data matrices. All products share this thread arrangement.
Algorithm 2 shows the operations in each thread.

The comparison of Algorithms 1 and 2 reflects a very important CUDA capacity:
for loops in lines 1 and 2 of sequential algorithm (Algorithm 1) that iterates over
groups and rows are replaced by the matrix of threads (parallel algorithm). Then, the
code of these loops is executed “simultaneously” by kernel threads.

This fact reduces the computational complexity to O(s) where s is the number
of pulses of each group: 36 pulses in this application. Note that this considers an
infinite number of possible concurrent threads. A more realistic analysis is to consider
O (N M/ p) where p is the number of available cores.

Algorithm 2 Parallel Reflectivity

1: procedure KERNEL PARALLEL REFLECTIVITY(in, out) > thread i,j
2:  output_row <« thread’s row index (j) > index of out matrix access (output write)
3:  output_col < thread’s column index (i) > index of or matrix access (output write)
4:  group < output_row (j) > The group is the row of the thread (output_row)
5:  input_row < output_col * N > in matrix access (input read)
6:  input_col < pulses per group * group > in matrix access (input read)
7: total < 0,01

8: for<k in 1 .. pulses per group>do

9: total < total + in[input_row + input_col + k] * E[input_row + input_col + k]

10:  end for

11: out[output_row + output_col] <« total
12: end procedure

Input data consists of complex matrices. For this data types addition, multiplication
and division operators need to be implemented as they are not implemented in CUDA.

To check the correctness of the parallel implementation, the difference of the same
products in different implementations (parallel or serial) is analyzed. Differences found
are in the order of numerical accuracy, confirming that there are no inconsistencies
in the different implementations. Figure 3 shows MATLAB and C outputs for the
frequency product.

4 Results and discussion

In this section, the runtimes of the sequential and initial parallel implementations are
compared. Parallel execution time includes data transfer between CPU main memory
and GPU global memory.

Tests shown in this section (Table 1) were executed in a CPU Intel Core i5-2500K
@ 3.30 GHz, Ubuntu 12.04LTS/LINUX. The graphic card is a GPU NVIDIA GeForce
GTX 570, with 480 CUDA Cores, 1280MB of memory, and a processing power of
1504.4 GFLOPS in single precision. CUDA version 5.5, and CUDA compiler V5.5.0.
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400 . . . . .
400 ‘prodih_mat.txt' matrix "prodih_c.out’ matrix 05
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Fig. 3 MATLAB and sequential C results for the normalized Doppler frequency (7" = 1) product
Table 1 RMA run times (in ms) . .
1 Parallel Accel
using a Geforce GTX 570 Sequentia aralle cceleration
Reflectivity 1111.63 50.45 22x
Frequency 1169.92 70.49 16x
Autocorrelation 547.2 51.35 10x
Phase shift 34.21 0.16 213x
Coef. of correlation 32.45 0.27 120x
Data communication - 81.6 -

Table 1 shows run times for sequential and non-optimized parallel functions for
each of the weather radar products. These results are the average of 5 RMA iterations.
In all executions, runtimes are very similar and thus no standard deviation is presented.

Total sequential runtime is 3268 ms, while parallel CUDA C application takes
264 ms. Parallel runtime includes CPU-GPU data transfer. This fact shows that
although data movement consumes a big portion of total parallel runtime (near 29%),
the simplest parallel implementation of the algorithm obtains a useful runtime reduc-
tion. In practical implementations where more meteorological radar products are to
be calculated, the data movement should become less significant for the overall appli-
cation runtime.

Both phase shift product and correlation coefficient products are fast, and hence
they do not dominate the total runtime. Acceleration with CUDA is significant for
these (213x and 120x approximately). Both kernels are simple, and they are based
on arithmetic operators over input data (stored on GPU global memory).

For the other three products, CUDA acceleration is less than expected. These are
based on a for loop over all samples of a group of pulses (Algorithm 2). Each product
is based on performing the same operation with different portions of raw data in a
SIMD (Single Instruction Multiple Data) fashion. These products dominate the total
runtime of the application.

Since kernel operations are based on arithmetic operations between matrices, the
expected acceleration for this kernels was higher, theoretically in the order of the
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Table 2 Nvprof profiling results Geforce GTX 570

Time (%) Time Calls Name

29.62 74.61 ms 2 CUDA memcpy H2D

26.94 70.21 ms 2 kernel_frequency()

19.67 51.28 ms 1 kernel_autocorrelation

19.29 50.28 ms 2 kernel_reflectivity()

5.35 13.94 ms 7 CUDA memcpy D2H

0.08 205.65 s 1 kernel_correlation_coefficient
0.05 117.3 ps 1 kernel_phase_shift

number of cores. Based on this, an extended study of the performance of these kernels
follows.

Section 4.1 shows the performance analysis of the code, with emphasis on the mem-
ory access. In Sect. 4.2, the kernel performance study using NVIDIA profiling tools
is presented. Section 4.3 shows the use of pinned memory for improving application
performance. Finally, a scalability analysis comparing different GPU architectures is
presented in Sect. 4.4.

4.1 Parallel application and kernels performance

Performance analysis is crucial in GPU applications, and direct implementations of
sequential algorithms have bottlenecks that require optimization. Two fundamental
performance measures are considered [3]: application performance (overall GPU uti-
lization and efficiency, and memory copy efficiency) and kernel performance (looking
for instruction and memory latency reduction, efficient use of memory bandwidth,
efficient use of computer resources, etc).

The NVIDIA profiling tools Nsight Eclipse Edition, NVIDIA visual profiler (nvvp)
and nvprof command line profiler [3] are used for this purpose.

Table 2 shows the application timing using nvprof profiler. For each kernel and
GPU activity, total execution time and percentage of time for each function are listed.
These results are consistent with the results shown in Table 1.

To obtain more insight on the application performance, the memory efficiency is
analyzed using different metrics. In CUDA profiling, an event is a countable activity
that corresponds to a hardware counter collected during kernel execution. A metric is
a characteristic of a kernel calculated from one or more events [3].

As mentioned earlier, the data matrix used for the calculations is large. Neither tex-
ture memory nor constant memory are big enough to allocate it. Because of this, global
memory was used in this application. The drawback is that global memory has the
highest latency and lowest bandwidth in the GPU memory hierarchy. Shared memory
is limited too but one test—presented later—was performed using this memory.

Global memory efficiency was analyzed using the metrics: gld_efficiency
and gst_efficiency, which are the ratio of requested global memory access and
true required global memory accesses (which includes replay of transactions when
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Group1l Group 2 Group 360
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Fig. 4 Global memory access pattern for reading input data

not all bandwidth is used with useful data due to misaligned or not coalesced memory
access). It could be seen that a very low percentage of bandwidth use was achieved,
approximately 6.25%. That is, that most of the memory transactions had to be replayed
and each access is handled by more than one memory transaction. The reason is that
all the kernels have the same access pattern. Contiguous threads access contiguous
data rows. That means that contiguous threads in a warp access data with an offset
equal to the amount of input columns (Fig. 4).

Global memory access is efficient if aligned and coalesced. Memory accesses are
aligned if the first address of a memory access is a multiple of block size (that depends
on whether the access is cached or not cached in each architecture). Memory access
is coalesced if a warp of threads accesses a contiguous chunk of data [3,4].

As a consequence, this initial implementation is memory bounded, and thus global
memory access penalizes the application runtime in a very significant manner.

In order to improve memory access efficiency, some modifications were proposed
and tested.

The first modification was changing the thread template for launching kernels. After
several tries and evaluations, no improvement was found. It is not possible to improve
access pattern due to input data format and “per group” operation mode. Load and
store accesses have important and unavoidable offsets (groups, rows) that affect this
behavior.

In order to check if a more efficient memory usage could be attained, a dummy
kernel was implemented that reads contiguous data in global memory (Fig. 5). This
test kernel exploits the access pattern of a single chunk of memory but has no use in
the current application, and it is meant just for verification purposes. In this case, the
global memory efficiency improved, from 6% to near 53% for load transactions. This
result shows that the access pattern is fundamental for memory efficiency and that the
access pattern of this application is not favorable for global memory usage.

Based on this result, a further modification of this dummy kernel was done. It con-
sists of using float data instead of complex data. Using the proposed gld and gst
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Group1l Group 2 Group 360
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Fig. 5 Dummy kernel: coalesced access to global memory

metrics, this kernel achieved an efficiency of 73%. This improved memory efficiency
can be properly explained using the analysis presented in [3], where the difference
of memory pattern accesses using an array of structures vs a structure of arrays (for
storing complex data, that means real and imaginary fields) is shown. Storing arrays
of structures, the same field of data is not contiguous in memory. In CUDA C pro-
gramming, the use of a structure of arrays is typically preferred because data elements
are pre-arranged for efficient coalesced access to global memory. (Data elements of
the same field are stored adjacent in memory.)

Then, for an efficient usage of the available memory bandwidth, the accesses must
be aligned and coalesced. In this application, the global memory access patterns are
not coalesced nor aligned due to the layout of the raw data format.

Another test performed consisted in using shared memory to perform the internal
thread loops. In this case, data is loaded from global memory to shared memory. Given
that this data is not reused by kernel threads, the overall result is not a noticeable per-
formance improvement. The fastest access time (reading shared memory) is somehow
canceled by the memory copy operation from global memory. For this reason, shared
memory is not used in any implementation.

4.2 Kernels block size

The initial implementation for the parallel version of the code defined a block size of
16 x 16 for every application kernel. Even though the theory states that there should
be as many threads running as possible in a block, in this application the increase in
block size (and therefore the amount of threads) resulted in a runtime impairment, as
Table 3 shows. It can be seen that using smaller blocks yielded faster times, up to a
point where the block size was too small to achieve a better runtime.

To understand this counter-intuitive behavior, the memory access efficiency by
kernel was thoroughly analyzed, taking into consideration the uncoalesced access
pattern of this application. Using 12_11_read_hit_rate metric, it was found
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Table 3 Runtime for different block sizes (ms)

Product 32 x 32 16 x 16 8§ x 8 4 x4 2x2 Sequential
Reflectivity 49.7 50.6 40.1 20.5 31.8 1111.6
Frequency 51.6 70.3 46.7 29.2 333 1169.9
Autocorr. 51.6 51.3 50.3 26.6 18.8 547.2
Corr. coeff. 0.23 0.27 0.3 0.66 2.13 32.45
Phase shift 0.64 0.16 0.15 0.51 1.73 34.21
Total* 247.54 252.83 217.9 158.03 168.33 3268.89

*Using pinned memory (see Sect. 4.3)

that there is an increase of L1 to L2 cache misses as the block size increases, generating
more requests to global memory, which are costly. Given this situation, a test kernel was
created to maximize memory access efficiency (favoring coalescence). The contrast
between the test kernel’s efficiency and the one of the weather product’s indicates
there is additional data being brought to L2 memory in the latter case which is not
required afterward by the L1 cache. Reducing the block size implicitly allows more
granular memory reads, improving the overall latency by increasing hits in L2 cache
and therefore reducing the amount of reads from global memory.

When thread block size was reduced, better kernel performance was attained
(mainly due to L1 and L2 hit ratio). Considering the best kernel configuration, when
4 x 4 thread blocks are used, the reflectivity kernel accelerates 35x (vs 22x for 16 x 16
blocks), frequency 35x (vs 16x), autocorrelation to 29x (vs 10x). Using this thread
configuration, the total application acceleration, accounting for communication time,
is about 20x.

4.3 Pinned memory

Host allocated memory is by default pageable, that is, the operating system can move
memory pages to different physical locations (virtual memory). The GPU cannot
safely access data in pageable memory because it has no control over when the host
operating system moves it. When transferring data from pageable host memory to
device memory, the CUDA driver first allocates temporary pinned host memory (page-
locked), copies the source host data to pinned memory, and then transfers the data from
pinned memory to device memory.

CUDA allow to directly allocate pinned host memory, avoiding the default transfer
from pageable to pinned memory. Since pinned memory can be accessed directly by
the device, it can be read and written with much higher bandwidth than pageable
memory [3].

When pageable memory was used, CPU-GPU communication lasts near 88.55 ms,
representing near the 35% of total time of GPU activity. When pinned memory is
used, data communication consumes 81.61 ms which accounts for about 31% of the
total GPU activity. It is worth noting that using pinned memory has its drawback.
Allocating excessive amounts of it might degrade the host system performance since
it reduces the amount of pageable memory used for implementing virtual memory [3].
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Table 4 Additional tests hardware architecture

Name CUDA Processing Cache L2 Memory Runtime Runtime 16 x
cores power? (KB) (GB/S)b 4 x 4 (ms) 16 (ms)

GTX 570 480 1405 640 152 158.03 252.83

Tesla K40c 2880 4291 1536 288 147.87 193.79

GTX 780 2304 3977 1536 288 136.46 144.57

GTX 780Ti 2880 5046 1535 336 128.16 137.47

GTX 970 1664 3494 1792 224 93.87 160.02

4Single precision GFLOPS peak
bMemory bandwidth

In the final implementation, pinned memory was used. Host data (radar raw data
and products results) was allocated in pinned memory. Results using this memory are
presented in Sect. 4. In particular, total times are shown in Table 3.

4.4 Scalability study

Applications with high computational requirements are usually designed and pro-
grammed taking into account hardware features to achieve the most efficient use of the
architecture resources. Constant advances in technology force the software to remain
useful and efficient when computer capabilities increase, which enters in contradiction
with the previous point.

CUDA model and GPU hardware are meant to be a highly scalable platform. That
is, CUDA applications should remain efficient when run in different cards. One of
the reasons for this is that GPU schedulers deliver workload through Streaming Mul-
tiprocessors, and within a multiprocessor, the best occupancy of cores and different
processing units is obtained.

To test the scalability of the developed implementation, the program was tested and
executed in different GPU platforms. Table 4 shows the runtimes of the application
when tested in different graphic cards.

Four different GPUs were used in order to evaluate application scalability. For each
graphic card name, processing power (just single precision because our application
uses single precision numbers) is shown. Furthermore, memory bandwidth is listed
(in GB per second, fourth column). The last two columns show the application total
runtime (including CPU-GPU data transfers). Previous results, using the GeForce
GTX 570 architecture, are included in order to make comparison easier.

Runtimes show that the application is scalable. When better graphic cards are used,
the total runtime decreases. Since the application is memory bounded, both L2 cache
and memory bandwidth explain the performance improvement.

A notable outlier is the GTX 970 card. The very low runtime is a consequence of a
much lower data transfer time, about 30 ms lower than the rest of the cards. Even when
this difference is taken into account, the runtime is still the best, and can be explained
as it is the card with biggest L2 cache.
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5 Conclusion and further work

The implementation of polarimetric radar products on a GPU was studied, and an
efficient implementation was found. This allows for a speedup of almost 20x in a
cheap GPU card when compared to an efficient serial implementation in C. This is a
promising result that could improve the processing time and lower the cost of weather
forecasting systems.

The procedure consisted of three steps: first implementing the algorithms in MAT-
LAB due to its rapid prototyping characteristics; then finding an efficient sequential
C implementation where functions are analyzed and tested in order to discover func-
tions computation requirements, data dependencies, potential application bottlenecks,
data communication, functionality dependencies, memory requirements and memory
pattern access for store and load operations; and finally moving to the parallel imple-
mentation in two phases, the first being a direct implementation in CUDA C of the
sequential algorithm and then, after profiling and analysis, proceeded to implement
an optimized version.

The direct parallel version was found to accelerate more than 10x, including CPU-
GPU communication time. The optimized version accelerates slightly more than 20 x
in a quite basic card.

A comprehensive profiling of the application was needed to find that it is memory
bound and that by using very few threads per block (4 x 4 threads per block) the runtime
improves notably. This is counter-intuitive as the general rule states that the number of
threads per block should be high in order to improve performance through maximum
usage of the processors. In this application, when 4 x 4 blocks were used, the achieved
occupancy (ratio of active warps to the maximum number of warps supported on a
multiprocessor) was 16.6 and a 50% warp execution efficiency, while when 16 x 16
thread blocks were used the achieved occupancy was about 96.2% and warp execu-
tion efficiency 99.4%. Even though these numbers suggested that the larger blocks
should result in better performance, the L2 cache missed reads dominated. Reducing
the block size allowed more granular memory reads that in turn decreased memory
latency by increasing hits in L2 cache and reducing the amount of reads from global
memory.

It was also found that although pinned memory is more expensive to allocate and
deallocate than pageable memory, it provides higher transfer throughput for large data
transfers.

A scalability analysis was performed using different NVIDIA graphic cards. When
better architectures were used, lower application runtimes were achieved. Using dif-
ferent profiling tools, it was found that this is a memory bound application. This result
was confirmed in the scalability study, where cards with larger L2 cache an higher
memory bandwidth present the best overall runtime.

Data transfer turned out to be a quite important factor in the overall runtime. Further
work with the usage of streams for overlapping data transfer time with kernel execution
is planned. In this case, a pre-formatting of the raw data has to be done, in which case
a data layout that favors coalesced memory readings will be sought.
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