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Abstract The stochastic dynamics toward the final attractor in exponential distributed time-
delay non-linear models is presented, then the passage time statistic is studied analytically
in the small noise approximation. The problem is worked out by going to the associated
two-dimensional system. The mean first passage time 〈te〉 from the unstable state for this
non-Markovian type of system has been worked out using two different approaches: firstly,
by a rigorous adiabatic Markovian approximation (in the small mean delay-time ε = λ−1);
secondly, by introducing the stochastic path perturbation approach to get a non-adiabatic
theory for any λ. This first passage time distribution can be written in terms of the important
parameters of the models. We have compared both approaches and we have found excellent
agreement between them in the adiabatic limit. In addition, using our non-adiabatic approach
we predict a crossover and a novel behavior for the relaxation scaling-time as a function of
the delay parameter which for λ � 1 goes as 〈te〉 ∼ 1/

√
λ.

Keywords Distributed time-delay · Non-linear population models · Non-adiabatic
approach · Non-Markov process · Relaxation from unstable states · First passage time
statistics

1 Introduction

Fluctuations are ubiquitous in nature and relaxation in a far-from-equilibrium system has
been studied extensively by many authors [1,2]. In particular, the relaxation process from the
initial unstable state has been one of the challenging problems in non-equilibrium statistical
mechanics. In fact, this problem is closely connected to the stochastic evolution of a popu-
lation starting from a situation far from equilibrium [3]. The relaxation analysis associated
with problems of distributed time-delay are under continuous investigation and will be the
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Noisy Asymptotic Dynamics 95

subject of our present program. The first obvious complication in the stochastic analysis
is the lack of a mathematical theory to tackle the first passage time (escape times) for a
general non-linear non-Markovian problem [4–6]. To our knowledge, this is the first time
that a systematic approach has been presented to solve the characterization of the escape
time from an initial unstable state toward the attractor in distributed time-delay non-linear
models.

In the present paper we are going to focus on the study of the stochastic dynamics and the
escape time from an unstable point in distributed time-delay nonlinear models. In order to
carry out this research we first introduce an adiabatic perturbation to describe the deterministic
dynamics of the system. Following this, we introduce noise into the system to study its
fluctuations. To tackle the problem of the escape time analytically we use two approaches
which are valid in the small noise limit. Firstly, the introduction of an adiabatic Markov
approximation and secondly, the use of the stochastic path perturbation approach (SPPA)
[7] which will turn out to be, in the present case, a non-adiabatic theory to get the mean
first passage time (MFPT) from the unstable point. This second approach leads us to an
analytic (non perturbative in the mean delay-time) formula for the first passage time statistics
toward the attractor in non-linear systems. Both approaches will be rigorously shown to
be perturbation approaches in the small noise approximation. We have compared the non-
adiabatic result vs. the adiabatic (Markov) approximation showing very good agreement
for small mean delay-time, and also against previous non-delay simulations [3]. The full
theoretical prediction, for any value of the mean delay-time, has been compared against
delay Monte Carlo simulations.

Another important point in presenting the SPPA to solve distributed delay models is that
this approach can also be extended to tackle many different normal forms, or when the
unstable point is for example non-linear (as may happen in non-biological models), allowing
us to characterize the general mechanism of relaxation in delay non-linear models. In the
present paper we are concerned with linear instabilities in the presence of an exponential
distributed delay, other cases will be the subject of future research.

2 Distributed Time-Delay in Non-Linear Population Models

Many species exhibit complex behavior far more wide-ranging than can be described by
the simple birth-death and logistic equation [8,9]. In order to advance the understanding
of this issue mathematicians have proposed time-delay population models. Concerning this
delay, the most general Verhults’s model, is the one that allows both a reproductive time-
lag τB and a logistic reaction time-lag τD [10] . In general, if the duration of the delay is
longer than the “natural period” of the system (usually as 1/r where r denotes population
growth rate in the absence of regulation) then large amplitude oscillations will be the result.
Indeed, as the time-delay increases it can have an increasingly destabilizing effect on the
population order parameter N (t), giving rise first to damped oscillations and then possibly to
divergent oscillations in the system of interest. Time-delay in the reaction rate can contribute
to destabilizing effects in the attractor N = K (where K is the carrying capacity of the
model); on the other hand, delayed birth rates are important to estimate perturbations in the
pattern formation. The above models involve idealizing the time-delay as a fixed single value
τD or τB [10–12]. Different deterministic situations have been studied considering distributed
delay models to affect the birth and/or death rate; all these cases have been proposed in order
to enlarge the description of a structured population model [13].
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96 M. O. Cáceres

Consider the following distributed time-delay non-linear problem:

d N

dt
= F(N , NG), N (t) ≥ 0,∀t ≥ 0 (1)

NG(t) =
∞∫

0

G(s)N (t − s)ds, G(t) ≥ 0,

∞∫

0

G(t)dt = 1. (2)

The occurrence of the weighted average NG may happen in the linear term, representing a
reproductive time-lag which may be measured by the gestation time; therefore, in the early
stage of the population growth this time-lag may be important in slowing down the rate of
population increase. In contrast, if NG occurs in the reaction term, this time-lag represents
modifications in the death rate due to maturation effects. In general, from any G(s) putting
N (t) = N∗ (1 + n(t)) and NG(t) = N∗ (1 + nG(t)), where F(N∗, N∗) = 0, and calling
a = − ∂N F |N=NG=N∗ ; b = − ∂NG F

∣∣
N=NG=N∗ the linear stability analysis around the

attractor, N �= 0, for a perturbation like n(t) ∝ exp (−ct + iωt) leads to the conclusion that
the rate of chance dn/dt is affected by n(t) and the weighted average nG(t) in the form:
ṅ = −an − bnG , where the damped rate and the frequency of oscillations are given by

c = a + b

∞∫

0

G(s)ecs cos (ωs) ds (3)

ω = b

∞∫

0

G(s)ecs sin (ωs) ds. (4)

For further details we present the stability analysis in Appendix 1.
In the present paper we will adopt

G(s) = λe−λs, (5)

as the probability modeling the distributed time-delay in the population model, but other
distribution could also be studied (see Appendix 2 for a generalization of the exponential
model). The mean time characterizing the time-lag in an exponential distributed time-delay
model is ε = ∫∞

0 tG(t)dt = λ−1. In particular, when λ → ∞ we recover the (usual) non-
delay case. Using explicitly the fact that the distribution time-delay is exponential we get
(see Appendix 1)

c + iω = λ

2

[(
1 + a

λ

)
±
√(

1 + a

λ

)2 − 4

λ
(a + b)

]
, (6)

therefore oscillations may occurs (ω �= 0) if and only if:
(

1 + a

λ

)2
<

4

λ
(a + b) (7)

2.1 Case a = 0

In this particular situation we get ṅ = −bnG thus if b > 0 the system is stable. In addition,

oscillations may happen if 1 < 4b/λ and we get ω = λ
2

√
4b
λ

− 1. In the case 1 > 4b/λ
there are no oscillations. Therefore, in the case a = 0 an exponentially distributed time-
delay causes only damped oscillations about the steady state value, but it cannot completely
destabilize the system. However, this restriction does not hold in the general case a �= 0.
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Noisy Asymptotic Dynamics 97

A typical example of this case is the logistic model with distributed time-delay in the
reaction term:

d N

dt
= r

[
N − N

K
NG

]
, r > 0. (8)

In this case a = − ∂N F |N=NG=N∗ = 0, b = − ∂NG F
∣∣
N=NG=N∗ = r > 0. Therefore for

any λ the system is stable, but may show damped oscillations if r/λ > 1/4. This is in direct
contrast to the fixed reaction time-delay model (leading to ṅ = −rn(t − τD)) for which
increasing τD affects both stability and the type of damping, i.e., if rτD > π/2 the steady
state K is unstable.

2.2 Case b = 0

In this particular situation we get ṅ = −an and the stability analysis is trivial (c + iω =
λ
2

[(
1 + a

λ

)± (1 − a
λ

)]
). There are no oscillations and the system is stable if a > 0.

A typical example of this case is the Gompertz model with distributed time-delay in the
birth rate:

d N

dt
= −k NG ln

N

K
, k > 0. (9)

In this case a = − ∂N F |N=NG=N∗ = k, b = − ∂NG F
∣∣
N=NG=N∗ = 0. Therefore for any λ

there are no change in the steady state structure.

2.3 Case (a + b) > 0

In this situation the system ṅ = −an−bnG is always stable (c > 0). In addition, if
(
1 + a

λ

)2
>

4
λ
(a + b) there are no oscillations. In the opposite case when

(
1 + a

λ

)2
< 4

λ
(a + b) there

are damped oscillations with frequency ω = λ
2

√
4
λ
(a + b)− (1 + a

λ

)2.
A typical example of this case is the logistic model with linear distributed time-delay:

d N

dt
= r

[
NG − N N

K

]
, r > 0. (10)

In this case a = − ∂N F |N=NG=N∗ = 2r , b = − ∂NG F
∣∣
N=NG=N∗ = −r . Therefore

(a + b) = r > 0 the system is stable, but does not present oscillations for any value
of λ. This result is in direct contrast to the fixed birth time-delay model (leading to
ṅ = −2rn(t) + rn(t − τD)) for which increasing τD affects both stability and the type
of damping [14].

2.4 Case (a + b) < 0

In this case the dynamic system ṅ = −an − bnG has no oscillations and is always unstable.

2.5 Case (a + b) = 0

To close this section let me comment that there are other models that could also be included
in the class presented in Eq. (1). Consider, for example, an open-ended logistic-based growth
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98 M. O. Cáceres

function [15]; in this case the proposed dynamics in suitable dimensionless variables can be
written in the form

d N

dt
=
[

N − N N

K

]
(11)

d K

dt
= γ [N − K ] , γ > 0. (12)

In this model the logistic equation is coupled to an equation for the carrying capacity, a model
proposed in Ref. [15] to try to link the direct dependency of the population to its carrying
capacity, where γ is a ratio between the environmental development rate and the population
growth rate. First, note that if we write

K (t) =
∞∫

0

γ e−γ s N (t − s)ds =
t∫

−∞
γ e−γ (t−s)N (s)ds,

we can prove that K (t) fulfills the differential equation (12). Therefore we can study its
stability analysis as we presented previously by denoting K (t) → NG(t) and γ → λ. From
(11) it is simple to see that a = − ∂N F |N=K = 1, b = − ∂K F |N=K = −1. Therefore
(a + b) = 0 the system is stable and does not present oscillations for any value of γ . In
fact, the line N = K �= 0 is a critical line with eigenvalues {0;− (γ + 1)} of the Jacobian
matrix, and K = 0 is singular in the differential equation (11). It is also possible to see that
the trajectories of the system (11) and (12) are hyperbolic-like: N ∝ K −1/γ [16]. Although
this model may be of importance in biology, in the remainder of this paper we will not work
on this because its linear term does not have a delay.

3 Elimination of Fast Variables for Exponential Distributed Time-Delay Models

In numerous biophysical systems one is confronted with interplay between mechanisms that
evolve on vastly different time scales. An example is given by Eqs. (1), (2) and (5) when
λ � 1. In this case it is possible to see that NG is governed by a fast dissipative mechanism.
Then the fast variable NG is driven to a partial equilibrium, conditioned by the slow variable
N ; subsequently this partial equilibrium moves on the slow time scale.

In order to state these facts with more rigor, let us rewrite Eqs. (1), (2) and (5) in the form

d N

dt
= F(N , NG), N (t) ≥ 0,∀t ≥ 0 (13)

d NG

dt
= 1

ε
(N − NG) ,

1

ε
= λ > 0, (14)

where ε is the mean delay-time. Because the distribution G(s) is exponential the variable
NG(t) fulfills a closed differential equation in terms of N and NG . To prove this, we first
write Eq. (2) in the alternative way

NG(t) =
t∫

−∞
G(t − s)N (s)ds, (15)

then taking the time derivative in Eq. (15) we get

d NG

dt
= G(0)N (t)+

t∫

−∞

(
d

dt
G(t − s)

)
N (s)ds.
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Noisy Asymptotic Dynamics 99

Now using the fact that G(t) fulfills Ġ(t) = −λG(t) we finally get ṄG = λ (N − NG),
see also Appendix 2 for a more general case than the simple exponential distribution. The
initial condition for NG(0) is related to the pre-function ϕ(t) for t ∈ (−∞, 0). This is
simple to see from the fact that Eq. (2) can also be written in the form (15) then NG(0) =∫ 0
−∞ G(−s)N (s)ds = ∫∞

0 G(s)ϕ(−s)ds.

3.1 Adiabatic Approximation from Eqs. (13) and (14)

Substitute for NG a power series in the small parameter ε

NG = N (0)
G + εN (1)

G + ε2 N (2)
G + · · · (16)

and require the various orders of ε vanish separately. First there is a term of order ε−1,

(
N − N (0)

G

)
= 0 (17)

then N (0)
G = N . Thus, substituting this result in Eq. (13) gives

d N

dt
= F(N , N )+ O (ε) , (18)

which is the trivial approximation in the adiabatic elimination approach. The next order
consists of the terms in Eq. (14) proportional to ε0: d N (0)

G /dt = −N (1)
G . Finally, using

Eq. (17) we get

d N

dt
= −N (1)

G .

Now using the previous result, Eq. (18), we have

N (1)
G = −F(N , N ), (19)

this solution can be introduced in Eq. (13) to obtain the first correction to Eq. (18) in the form

d N

dt
= F

(
N , N (0)

G + εN (1)
G

)
+ O (ε2) . (20)

Note that this method can also be generalized to the multidimensional case when there
are yν slow variables N and zκ fast variables NG [17]; see also Appendix 2 to tackle the
generalized exponential case.

3.2 Example 1: Death Distributed Time-Delay in the Logistic Equation

Consider the situation where the distributed time-delay appears in the reaction term, in which
case we have

d N

dt
= F(N , NG)

= r

[
N − N NG

K

]
. (21)
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100 M. O. Cáceres

Then using Eqs. (17), (19) and (20) for this particular form of F(N , NG), we get up to O (ε2
)
.

d N

dt
= r

[
N − N

K
(N − εF(N , N ))

]

= r

[
N − N N

K
+ ε

N

K
F(N , N )

]

= r

[
N − (1 − εr)

N N

K
− εr

N N N

K 2

]
+ O (ε2) . (22)

We can now rewrite this deterministic equation in the form

d N

dt
= −U ′(N ), (23)

where the perturbed delay-dependent adiabatic potential is

U (N ) = −r N 2/2 + r (1 − εr) N 3/3K + εr2 N 4/4K 2 + O (ε2) . (24)

As expected, one of the important effects in a death distributed time-delay model is that there
is a change of O (ε) in the curvature around the attractor: N = K .

3.3 Example 2: Birth Distributed Time-Delay in the Logistic Equation

In this case we have

d N

dt
= F(N , NG)

= r

[
NG − N N

K

]
. (25)

Then using Eqs. (17), (19) and (20) for the present F(N , NG), we get up to O (ε3
)
.

d N

dt
= r

[(
N (0)

G + εN (1)
G + ε2 N (2)

G

)
− N N

K

]

= r N

[(
1 − εr + ε2r2)− N

K

(
1 − εr + 3ε2r2)+ 2ε2r2 N 2

K 2

]
+ O (ε3) . (26)

As expected, in this case the relaxation from the unstable state N = 0 is affected to O (ε)

by the distributed time-delay. We can also see from the perturbed delay-dependent adiabatic
potential, that the first change in the curvature is now O (ε2

)

U (N ) = −r
(
1 − εr + ε2r2

)
2

N 2 + r
(
1 − εr + 3ε2r2

)
3K

N 3 − 2ε2r3

4K 2 N 4 + O (ε3) , (27)

a situation which is different from the previous death distributed time-delay example, see
Eq. (24).
Remark In conclusion, from these two simple examples we see that if we had a non-
perturbative approach we should expect important changes in the relaxation from N = 0.
Therefore, in the presence of noise the characteristic time-scale for the relaxation from
N = 0 (escape process) would be affected by the distributed time-delay. In the present paper
we would like to show how the analysis of this scaling-time can be tackled in the small noise
approximation. We will present two different approaches: firstly, introducing an adiabatic
approximation (valid for λ � 1) and secondly, introducing a non-perturbative approach
valid for any value of λ > 0.
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Noisy Asymptotic Dynamics 101

4 Stochastic Approach for Exponential Distributed Time-Delay Models

Fluctuations are ubiquitous in biophysical systems, and we are often forced to consider
stochastic perturbation in the dynamic system because some parameters may fluctuate in
time or because there are degrees of freedom which are not considered in the dynamic model
[4–6,18,19]. A general way to introduce these fluctuations into a dynamic system of type (1)
may therefore be written in the form

d N

dt
= F(N , NG)+ √

θg(N , NG)ξ(t), ∀t ≥ 0 (28)

d NG

dt
= 1

ε
(N − NG) , ε−1 = λ > 0 (29)

where ξ(t) is a zero mean Gaussian white noise characterized by the correlation
〈
ξ(t)ξ(t ′)

〉 =
δ
(
t − t ′

)
, and

√
θ is the noise parameter. Here g(N , NG) represents a possible noise-

multiplicative character in the stochastic dynamics. Note that we have used Eq. (14) to take
into account the (exponential) distributed time-delay effects present in Eq. (2). In this form
now the processes N (t) and NG(t) conform a two-dimensional Markov process. Therefore
the associated Fokker–Planck equation can be written, which gives the exact time evolution
of the conditional probability of the system P (N , NG , t | N (0), NG(0)). The pdf (probability
distribution function) of the process N (t) itself will be given by the marginal distribution:

P(N , t | N (0)) =
∫ ∫

P (N , NG , t | N (0), NG(0)) P(NG(0))d NGd NG(0). (30)

Here, in agreement with Eq. (2), the initial condition associated with the delay population
NG(0) has been characterized by a general distribution P(NG(0)).

As can be noted, the process N (t) itself is non-Markovian, which means that its time
evolution is a non-trivial problem to solve [20]. Nevertheless, the 2D representation given
by Eqs. (28) and (29 ) allows us to write down a treatable adiabatic perturbation theory when
ε is a small parameter. The crucial point in doing this is the way we model the intensity of
the noise in terms of the adiabatic small parameter ε, and this calculation will depend on the
stochastic calculus that we use [18].

In general the 2D Fokker–Planck equation associated with the processes {N , NG} is given
(in the Stratonovich calculus) by

∂t P (N , NG , t | N (0), NG(0)) = LP (N , NG , t | N (0), NG(0)) , (31)

where the Fokker–Planck operator is

L ≡ L(N , NG , ∂N , ∂NG ) = −∂N F(N , NG)− 1

ε
∂NG (N − NG)+ θ

2
∂2

N g(N , NG)
2. (32)

The Fokker–Planck equation can be written in the form

∂t P (N , NG , t | N (0), NG(0)) = −∇ · J, (33)

where ∇ ≡ (∂N , ∂NG

)
, and the vector current J ≡ (JN , JNG

)
is given by

J (N , NG , t | N (0), NG(0)) =
[

F(N , NG)− θ

2
∂N g(N , NG)

2,
1

ε
(N − NG)

]

P (N , NG , t | N (0), NG(0)) . (34)

The Fokker–Planck evolution (33) must be solved with suitable boundary conditions
(BC) [19]; for example to assure the positivity of the process N (t) a reflecting BC would
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102 M. O. Cáceres

be (1, 0) · J|N=0 = 0, (when N = 0 is a regular point). Then the continuity equation (33)
ensures that the total probability remains constant inside the domain of interest defined by
the semi-infinite space D ≡ {N ∈ (0,∞) , NG ∈ (−∞,∞)}.

In principle, it is possible that the stationary pdf Pst (N , NG) (associated to LP (N , NG) =
0) does not have a potential structure [21], which is why the asymptotic adiabatic perturbation
theory in ε is a very useful method to tackle the problem posed in Eqs.(28) and (29).

A 2D Fokker–Planck operator can be worked out using eigenfunction techniques [19];
asymptotic techniques to go to the marginal 1D problem (associated with the process N (t)
itself) can also be used in a similar way as we did with the adiabatic approximation in
the previous “deterministic” section [17]. But if g(N , NG) �= 1 the result depends on the
particular stochastic calculus we use [18]. Therefore we now introduce a simplification in the
stochastic model and consider additive noise alone, which means that g(N , NG) = 1. In a
population model [3], this is a plausible ansatz when the unspecified random contributions are
more important at low density, see Appendix 3. Thus, we can use our perturbation approach
from Section III and add additive noise at the end of the adiabatic deterministic calculations.
In this way we can immediately write down the associated 1D Fokker–Planck for the marginal
process N (t)

∂t P (N , t | N (0)) =
[
∂N U ′(N )+ θ

2
∂2

N

]
P (N , t | N (0)) , (35)

where U (N ) is the perturbed delay-dependent adiabatic potential (see Section III, and the
next subsection). Therefore Eq. (35) represents a genuine Markovian approximation, see
Eq. (37).

In Appendix 4 we solve a particular 2D problem to show a calculation where a non-
Markov problem can be solved analytically, then we can compare this exact result with the
stochastic adiabatic (Markovian) approach (35).

4.1 Stochastic Adiabatic (Markov) Approach

The adiabatic expansion given in section III allows us to tackle the noise additive case in
a simple way. In general we have proved that, starting with a nonlinear model with an
exponential distributed time-delay, and introducing an adiabatic perturbation in ε = λ−1 we
can write in the small parameter ε the perturbative dynamics

d N

dt
= F

(
N , N (0)

G + εN (1)
G + ε2 N (2)

G + · · ·
)
. (36)

Therefore, by adding noise (white and Gaussian) to this deterministic dynamics we may write
in terms of Wiener differentials

d N = −U ′(N )dt + √
θdW (t), (37)

here U (N ) is the adiabatic potential calculated from Eq. (20)

U (N ) = −
∫ N

F
(

N ′, N (0)
G + εN (1)

G + ε2 N (2)
G + · · ·

)
d N ′. (38)

The 1D system proposed in Eq. (37) is much simpler than the 2D problem proposed
previously in Eq. (31). In particular, the stationary pdf Pst (N ) can always be found. In fact,
because here we are interested in the case N (t) ≥ 0 the system is reduced to work out the
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Noisy Asymptotic Dynamics 103

zero current problem; therefore, we have to solve
[

U ′(N )+ θ

2
∂N

]
Pst (N )

∣∣∣∣
N=0

= 0.

This equation has the solution

Pst (N ) ∝ exp

(
−2

θ
U (N )

)
. (39)

From this we can calculate the first passage time to leave the unstable state N = 0. A
time-scale can therefore be defined as representing the relaxation toward the stationary state
(attractor of the problem N = N∗). This problem will be presented in the next section.

4.2 The MFPT in the Adiabatic (Markovian) Approximation

To study the first passage time statistics for a non-Markov process is a complex task, and to
calculate the passage time statistics for a general 2D Markov problem is also a non-trivial
problem [4]. Here we are going to use our previous adiabatic result Eq. (37) (a Markovian
approximation to any O (εn)) to calculate the MFPT. This value is the characteristic time-scale
taken to reach the domain of attraction in the noisy version of Eq. (1), i.e., the scaling-time
to characterize the stochastic relaxation from N = 0 to N = N∗ from the dynamics of Eqs.
(28) and (29) with g(N , NG) = 1.

It has been proved that from linear instability there is a universal scaling-time which
characterizes the transition from microscopic disorder to macroscopic order. The pioneer
calculations were carried out using a stochastic self-consistent scaling theory [1]. This onset
time has been called Suzuki’s scaling-time τS . The dominant contribution in terms of the noise
intensity

√
θ is given by: τS ∝ ln(1/θ). Nevertheless, if the instability were not linear this

scaling-time would follow a different law in terms of noise intensity. This fact can also be seen
from the self-consistent scaling theory [1,22], and from the SPPA [7,23,24]. Alternatively,
by using the first passage time theory for a Markovian process it is also possible to prove that
asymptotically this scaling-time is just given by the MFPT calculated from N = 0 to N∗. In
order to ascertain this fact we want to introduce this explicit calculation as a complementary
approach to be compared later, for full details see Appendix 5.

For small noise the scaling-time for the onset of the macroscopic order is universal and
independent of the saturation term [1,22], therefore we can use formula (97) with the potential
U (N ) = − 1

2 AN 2 (neglecting the saturation term) from Eq. (38). Thus, we get for the
dominant contribution in the small parameter θ

τ(N f ) � 1

2A

(
ln

N 2
f A
θ

− ψ

(
1

2

)
+ · · ·

)
, (40)

where ψ
( 1

2

) � −1.9351 is the Digamma function ψ (z) = d
dz ln�(z) and N f < O (N∗).

Corrections to this expression depend on the neglected saturation term. For example in a
Logistic model the first correction coming from the non-linear term would be N f /K .
Remark In the small noise approximation, the scaling-time for the onset in non-linear models
with linear instability (with exponential distributed time-delay structure) is characterized in
the Markov approximation, by the curvature of the perturbed delay-dependent adiabatic
potential (38) around the unstable point, i.e., A ≡ A (ε) = U

′′
(N = 0). Therefore Eq. (40)

gives (for small noise) the scaling time in the Markov adiabatic approximation to any order ε.
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5 Non-Adiabatic Calculation of the Relaxation Scaling-Time

The non-adiabatic analysis of stochastic escape times from the unstable state can be carried
out by introducing the SPPA into the stochastic dynamics of (exponential) distributed time-
delay models (1), i.e.: the dynamics of Eqs. (28) and (29) with g(N , NG) = 1

d N

dt
= F(N , NG)+ √

θξ(t)

d NG

dt
= λ (N − NG) , ∀λ ≥ 0, (41)

where ξ(t) is a zero mean Gaussian white noise, and as before λ is the delay parameter.
In the small noise approximation the SPPA consists of obtaining information about the

first passage time statistics without solving the Fokker–Planck equation. This is done by
analyzing the stochastic realizations of the process under study when they are written in
terms of Wiener paths [3,7,23–25].

Here we are going to use the SPPA to calculate the characteristic time-scale of the escape
process from N = 0 associated with the set of equations (41). The universality of the escape
process is controlled by the type of instability [7,23,24,26,27]. The non-linear term from the
saturation introduces corrections to the dominant small noise calculations [3].

In particular, in the next calculations we will focus in linear unstable points with BC
N (t) > 0 for t > 0; it should be noted that invoking symmetry arguments the present result
can also be used to analyze, for example, the distributed time-delay bistable stochastic flux:
Ẋ = XG −X3+ √

θξ(t)which is an archetypal model for pattern formation in non-biological
system.

Therefore, starting from (41) at short time we only need to consider the expansion around
N = NG = 0

F(N , NG) � ∂NG F
∣∣
N=NG=0 NG + · · · , (42)

defining q = ∂NG F
∣∣
N=NG=0 we can write near the unstable point (N , NG) = (0, 0) the 2D

stochastic differential equation (SDE)

d N

dt
= q NG + √

θξ(t), ∀q > 0 (43)

d NG

dt
= λ (N − NG) , ∀λ ≥ 0. (44)

Any saturation term would depend on the proposed non-linear model F(N , NG), but this
term is not important to the dominant contribution of the calculation of the escape process
when the instability is linear. For small enough θ this contribution can be neglected. Eqs.
(43) and (44) can be written in matrix notation

d

dt

(
X1

X2

)
= −A·

(
X1

X2

)
+ √

θ

(
ξ1(t)
0

)
, (45)

where the matrix A =
(

0 −q
−λ λ

)
, and X1 = N , X2 = NG . A particular solution (stochastic

realization) of this SDE can be written as

X (t) = exp (−At)X (0)+ √
θ

∫ t

0
exp
[−A

(
t − t ′

)]
dW

(
t ′
)
. (46)

123

Author's personal copy



Noisy Asymptotic Dynamics 105

Considering X (0) = 0 and the Wiener differential dW
(
t ′
) = (dW1

(
t ′
)
, 0
)

in Eq. (46) the
realization of X1(t) can be written in the form

X1(t) =
∫ t

0
exp
[−A

(
t − t ′

)]
11 dW1

(
t ′
)

(47)

=
√
θ

2

[
1 − 1

�

] ∫ t

0
e−α+(t−t ′)dW1

(
t ′
)

+
√
θ

2

[
1 + 1

�

] ∫ t

0
e−α−(t−t ′)dW1

(
t ′
)
, t ≥ 0 (48)

where

� ≡ √1 + 4q/λ > 1. (49)

Note that the eigenvalues of this system can be read from Appendix 4, making the replacement
β → −q . Therefore, we see that there is one eigenvalue which is negative

α+ = λ

2

(
1 +√1 + 4q/λ

)
> 0

α− = λ

2

(
1 −√1 + 4q/λ

)
< 0.

(50)

For strictly λ > 0 and for t → ∞ the first integral in Eq. (48) is bounded (in fact
considering that α+ > 0 this integral represents a genuine Ornstein-Uhlenbeck process
h+(t)). For t → ∞ the second integral diverges exponentially because α− < 0, therefore it
is convenient to rewrite this second integral in the form

√
θ

e|α−|t

2

[
1 + 1

�

] t∫

0

e−|α−|t ′dW1
(
t ′
) = √

θ
e|α−|t

2

[
1 + 1

�

]
h−(t), λ > 0. (51)

Here the process h−(t) fulfills the SDE

dh−(t)
dt

= e−|α−|tξ(t), h−(0) = 0,

where ξ(t) is a zero mean Gaussian white noise. It is therefore possible to see that the process
h−(t) saturates and for t → ∞ it is a well defined random variable�. Due to the fact that in
the present calculations we are interested in positive solutions for X1(t), the stationary pdf
for Pst (h−(∞)) adopts the form (see [3])

P (�) = 2

√ |α−|
π

e−|α−|�2
, � ∈ (0,∞) . (52)

Now we introduce the approximation that in the intermediate regime h−(t) saturates to the

random variable � and h+(t) →
√〈

h+(t)2
〉

to a constant, thus we can replace h−(t) → �

and h+(t) → (2α+)−1/2. Taking into account all these considerations we can rewrite Eq.
(48) in the form

X1(t) =
√
θ

2

[
1 − 1

�

]
h+(∞)+ √

θ
e|α−|t

2

[
1 + 1

�

]
h−(∞), λ > 0, t > 0. (53)
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Therefore, in this intermediate regime, when X (te) = X f , Eq. (53) can be inverted as

te = 1

|α−| ln

(
X f − √

θC+ (2α+)−1/2

√
θ�C−

)
, (54)

where

C+ = 1

2

[
1 − 1

�

]
> 0

C− = 1

2

[
1 + 1

�

]
> 0.

Formula (54) gives the escape time te to reach a prescribed value X f as a random quantity
whose statistics are determined by those of h−(∞).From this transformation law it is possible
to get all the moments of the passage times, indeed it is also possible to calculate the pdf of
the first passage times [3]. Now we just want to calculate the MFPT and to compare this value
with the one obtained from the adiabatic (Markov) perturbation theory presented previously.
From Eqs. (54) and (52) the MFPT is given by

〈te〉 = 1

|α−|

〈
ln

(
X f − √

θC+ (2α+)−1/2

√
θ�C−

)〉

= 1

|α−|

⎡
⎣ln

(
X f − √

θC+ (2α+)−1/2

√
θC−

)
−

∞∫

0

ln(�)P(�)d�

⎤
⎦

= 1

|α−|

[
ln

(
X f − √

θC+ (2α+)−1/2

√
θC−

)
+ 1

2

(
ln |α−| − ψ

(
1

2

))]

= 1

2 |α−|

⎡
⎣ln

⎛
⎝
(

X f − √
θC+ (2α+)−1/2

C−

)2 |α−|
θ

⎞
⎠− ψ

(
1

2

)⎤
⎦ . (55)

Comparing this result with the one from the adiabatic approximation Eq. (40), we see that as
a consequence of the distributed time-delay the non-adiabatic rate Anon−A is different from
the adiabatic one A (ε) ≡ U

′′
(N = 0)

Anon−A = |α−| =
∣∣∣∣λ2
(

1 −√1 + 4q/λ
)∣∣∣∣ . (56)

In addition, the non-adiabatic threshold Nnon−A is now a function of q, θ and λ, see Eq. (49),

Nnon−A = X f − √
θC+ (2α+)−1/2

C−
= 2�N f

1 +�
+
√

θ

2α+
1 −�

1 +�
, (57)

the first correction is O (θ0
)

in the noise intensity and this represents a larger effective
threshold 2�N f / (1 +�) ≥ N f , which will lead to a delay in the MFPT. The second

correction in Eq. (57) comes from the coupled fluctuations of N and NG and is O
(√
θ
)

. In

Fig. 1, for different noise intensities θ we present the Log-Log plot of the MFPT as a function
of the delay parameter λ, showing a crossover between the short and long regimen at λ ∼ 1.

In the limit of large λ � 1 (adiabatic regime: ε = λ−1 → 0) the SPPA predicts
a rate Anon−A = |α−| → q (1 − qε + · · · ) which is in agreement with the adiabatic
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Fig. 1 MFPT from Eq. (55) (in
arbitrary units) for N f = 1/2 and
q = 1 as a function of the delay
parameter λ for four values of the
noise intensity
θ(= 10−10, 10−6, 10−4, 10−2).
The corresponding asymptotic
values for λ � 1 from top to
bottom (11.90; 7.25; 4.93; 2.60)
are in excellent agreement with
the non-delay Monte Carlo
simulations of Ref. [3]. The
crossover for λ ∼ 1 and the
power law regime for λ � 1 can
clearly be seen 100

101

102

M
F

P
T

(a
.u

.)
(a.u.)

( =10-2 )
( =10-4 )
( =10-6 )
( =10-10)

Markov approach to O (ε). Also in this limit the non-adiabatic threshold Nnon−A gives
asymptotically

Nnon−A = N f − √
θC+ (2α+)−1/2

C−
→ N f (1 + qε + · · · )

−√
θ

(
q

8
ε3/2 − q2

2
ε5/2 + · · ·

)
, for ε = λ−1 → 0, (58)

note that this correction cannot be obtained from the Markov approximation. The second
term in Eq. (58) is a small perturbation which comes from the fluctuations of NG induced
from the dynamics of N (t), see ( 41). In Fig. 1 it can be seen that the asymptotic values
of the MFPT for different noise intensities and large λ are in excellent agreement with the
Monte Carlo simulations (for different noise intensities θ ) of the stochastic logistic equation
of reference [3]. See also Fig. 2 were we present numerical simulations for any λ and noise
intensity θ = 10−4.

In the opposite limit λ � 1 (large mean-delay time ε = ∫∞
0 tG(t)dt = λ−1, i.e., highly

non-adiabatic regime), we get from the SPPA, see Eq. (55), the interesting dominant result

〈te〉 → 1

2
√
λr

⎡
⎢⎣ln (1/2)− ψ(1/2)+ ln

⎛
⎝1 − 2N f

√
2
√
λr

θ

⎞
⎠

2
⎤
⎥⎦ , for λ � 1, (59)

precluding a power law behavior 〈te〉 ∝ 1/
√
λ for λ � 1, this novel behavior can also be

seen in Fig. 1.
In Fig. 2 we show a numerical simulation of Eq. (41) with F(N , NG) = NG − N 2. We

have found (within the numerical errors) a power-law behavior ∝ λ−ν for small λ in partial
agreement with the theoretical prediction 〈te〉 ∝ 1/

√
λ. Also the existence of the crossover at

λ ∼ 1 can be seen. In the same figure we show, as a function of λ, Monte Carlo data against
the theoretical prediction (line) for θ = 10−4. A fitting with data points in the interval of
λ ∈ (10−2, 10−1

)
would give ν ∼ 0.6. In Fig. 2 we also show data points with the error bars.

The error bars correspond with the Monte Carlo Standard Deviation σ . As one can notice
from this graph Standard Deviation increases for low values of λ. This means that variation
about numerical mean values μ of the first passage times increases as λ → 0. Thus we can
conclude that the theoretical prediction falls within the confidence interval μ± σ .
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Fig. 2 Monte Carlo simulation of the MFPT (in arbitrary units) for N f = 1/2 for the exponential distributed

time-delay Eq. (41) using a logistic model F(N , NG ) = NG − N 2, as a function of the delay parameter λ, and
for noise intensity θ = 10−4. The asymptotic value of the MFPT for λ � 1 is 4.93 · · · and is in agreement
with the non-delay Monte Carlo simulations of Ref. [3]. The crossover at λ ∼ 1 as well as the power-law
behavior ∝ λ−ν (for λ � 1) can also be seen from the simulations. The SPPA scaling prediction 〈te〉 ∝ 1/

√
λ

(for λ � 1) is in agreement with the present delay Monte Carlo simulations (within the error bars) at the
highly non-adiabatic regime

To conclude this section let me note that an analytical expression for the pdf of the first
passage time can also be calculated from the transformation law (54):

P (te) = P (�(te))

∣∣∣∣d�dte

∣∣∣∣
= P

(
� = Nnon−A exp

[− |α−| te
]

√
θ

)
Nnon−A |α−| exp

[− |α−| te
]

√
θ

, (60)

with P (�) given by Eq. (52).
In addition if we wish to have a description for the stochastic dynamics of N (t) we could

introduce the instanton-like approximation, by using Eq. (60), in order to have a mean-field
description for the stochastic evolution of N (t) [3]

N (t) � �(t − te) ,

with �(z) the step function and te a random variable characterized by P (te).
In the non-delay case (ε = 0) the pdf (60) has been tested for the stochastic Logistic

equation and we have found excellent agreement against the numerical solutions of the
associated SDE [3]. The comparison of our non-adiabatic theory against time-delay Monte
Carlo simulations for different non-linear models will be the subject of future contributions.
It is interesting to note that more general cases than additive noise, as we have presented in
Eq. (41), could also be tackled using the SPPA, as well as the case where the instability is
non-linear. In these situations higher order contributions in the noise intensity perturbation
have to be considered [26,27]; work along these lines is in progress.

6 Conclusions

In order to characterize the stochastic dynamics toward the final attractor in exponential
distributed time-delay non-linear models, the dynamics of the associated 2D system is pre-
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sented. The passage time statistics has been studied analytically in the small noise approx-

imation O
(√
θ
)

. The first passage time problem (from the linear unstable state) for this

non-Markovian type of system has been worked out using two different approaches. Firstly,
we calculated the MFPT from a rigorous adiabatic Markovian approximation in the small
parameter ε = λ−1 (the mean delay-time), and secondly, we introduced a non-adiabatic SPPA
(valid for any value of λ > 0) to find an analytic expression for the first passage time distri-
bution of the present non-Markovian problem, see (60). The MFPT, (55), has been written
in terms of the important parameters of the (exponential) distributed time-delay model. We
have compared both approaches and we have found excellent agreement between them when
λ � 1. Using our stochastic path perturbation approach we predicted for small λ (large mean
delay-time ε) a novel behavior for the relaxation scaling-time which goes as 〈te〉 ∼ 1/

√
λ for

λ � 1 (for fixed noise intensity), therefore using the present non-adiabatic approach we have
proved the existence of an important crossover in the behavior of the MFPT as a function of
the delay parameter λ.

Numerical stochastic simulations have been presented to check the validity of our theo-
retical predictions, see Fig. 2. To end these conclusions let me point out that a generalized
biparametric exponential model for the time-delay distribution G(s) can also be studied in a
similar way by introducing a second perturbation approach, see Appendix 2, this will be the
subject of future contributions.

Acknowledgments M.O.C. thanks Christian D. Rojas R. for helping with the numerical simulations; grant
from SECTyP, Universidad Nacional de Cuyo, Argentina, and grant PIP 90100290 (2010-12) from CONICET,
Argentina.

Appendix 1: Linear Stability Analysis for Distributed Time-Delay Processes

Here we study the stability around the attractor N = NG = N∗ > 0 for distributed time
delay models. Expanding F(N , NG) around N∗ and putting N (t) = N∗ (1 + n(t)); NG(t) =
N∗ (1 + nG(t)) in Eq. (1) we get

d N (t)

dt
� ∂N F |N=NG=N∗

(
N − N∗)+ ∂NG F

∣∣
N=NG=N∗

(
NG − N∗) , (61)

thus defining a = − ∂N F |N=NG=N∗ ; b = − ∂NG F
∣∣
N=NG=N∗ we obtain:

ṅ(t) = −an(t)− bnG(t), (62)

where nG(t) = ∫∞
0 G(s)n(t − s)ds. Introducing the perturbation n(t) ∝ exp (−ct + iωt)

the stability analysis is characterized by the integral

c + iω = a + b

∞∫

0

G(s)e(c+iω)sds. (63)

Using an exponential distribution: G(s) = λe−λs we get

c + iω = a − λb [c − λ+ iω]−1 , (64)

here we have used (c − λ) < 0 in order to have a convergent integral. This quadratic equation
can be solved for (c + iω) then we get the solution given in Eq. (6).
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Appendix 2: Concerning the Exponential Distribution

In order to justify the use of an exponential probability distribution G(s) as a plausible
example for our approach, consider a distribution which has a peak around tD and a width
σ around this peak. Choice of the distribution G(s) is dictated both by the nature of the
delay and the feasibility of solving the stability problem at the attractor and the calculation
of the escape time from the unstable state N = 0. Since to our knowledge, there are no
experimental results which lead to an automatic choice for G(s), the sensible approach is
to select functions which have not only appropriated shapes but which are also sufficiently
simple to enable the problem analytically. A plausible biparametric distribution could be

G(s) = Nλ exp (−λ |s − tD|) , s ∈ (0,∞) , (65)

the constant N is given by normalization condition in the positive domain, i.e.,
∫∞

0 G(s)ds =
1, then:

N = (2 − e−λtD
)−1

. (66)

In the case tD = 0 we get the exponential distribution G(s) = λe−λs . From the distribution
(65) the mean-delay time and the variance are

〈s〉 = N
(

e−λtD

λ
+ 2tD

)

σ 2 ≡ 〈
s2〉− 〈s〉2 = 2

(
1

λ2 + N t2
D

)
− N 2

(
e−λtD

λ
+ 2tD

)2

.

So the variance σ 2 ≡ σ 2(λ, tD) as function of the parameters has interesting behaviors to
be explored. For example for fixed λ the variance saturates at large tD , and for fixed tD the
variance goes to zero for large λ. For tD �= 0 the limit λ → ∞ corresponds to the fixed delay
case G(s) → δ (s − tD), so this distribution is a good subject for study.

Note that according to the sign of (s − tD) the distribution G(s) fulfills the equations

dG+

ds
= −λG+(s), s > tD (67)

dG−

ds
= +λG−(s), s < tD . (68)

Using these Green functions G±(s) it is possible to write a systematic evolution equation for
the variable NG(t). To do this we first introduce a change of variable to write Eq. (2) in the
alternative way

NG(t) =
t∫

−∞
G(t − s)N (s)ds. (69)

Note the difference between the present definition (with a weighted average) and Mori-
Langevin models written in terms of convolution equations [20]. Now, if we take the time
derivative in Eq. (69) we get

123

Author's personal copy



Noisy Asymptotic Dynamics 111

d NG

dt
= G(0)N (t)+

t∫

−∞

(
d

dt
G(t − s)

)
N (s)ds

= G(0)N (t)+
t−tD∫

−∞

(
d

dt
G(t − s)

)
N (s)ds +

t∫

t−tD

(
d

dt
G(t − s)

)
N (s)ds

= G(0)N (t)− λ

t−tD∫

−∞
G+(t − s)N (s)ds + λ

t∫

t−tD

G−(t − s)N (s)ds. (70)

In the last line integrals have been simplified by using the Green functions G±(s). Now if
we take another time derivative in Eq. (70) we get

d2 NG

dt2 = G(0)
d N (t)

dt
− 2λG(tD)N (t − tD)+ λG(0)N (t)

− λ
t−tD∫

−∞

(
d

dt
G+(t − s)

)
N (s)ds + λ

t∫

t−tD

(
d

dt
G−(t − s)

)
N (s)ds.

= G(0)
d N (t)

dt
− 2λG(tD)N (t − tD)+ λG(0)N (t)+ λ2 NG(t). (71)

In the last line we have used once again the Green functions and the definition of NG(t).We
see the complex structure induced by the sharp peak of the distribution around tD .

Equation (71) can be used to find a closed evolution equation for NG(t)only if we introduce
a perturbation in tD . For example defining a new variable ṄG(t) and introducing a Taylor
expansion N (t − tD) = [N (t)− Ṅ (t)tD + N̈ (t)t2

D/2 + · · · ] we can find to any order in tD

a set of coupled equations equivalent to the system (1)

d N

dt
= F(N , NG)

d NG

dt
= VG (72)

dVG

dt
= G(0)Ṅ (t)− 2λG(tD)N (t − tD)+ λG(0)N (t)+ λ2 NG(t).

We could tackle this problem, but instead of doing this we prefer in this paper to introduce a
systematic non-perturbative approach in the delay distribution. For this reason, and in order
to get insight into this complex problem as we follow the work, we will be concerned only
with the exponential distribution.

In the exponential case, G(t) fulfills dG(t)/dt = −λG(t) then system (1) and (2) are
reduced to the set of equations

d N

dt
= F(N (t), NG(t))

d NG

dt
= λ (N (t)− NG(t)) .

This result can also be seen from the previous calculation taking tD = 0.
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Appendix 3: Concerning the Additive Noise Ansatz

At low density, and in order to justify the use of additive noise, let us start the discussion
with the well accepted generalized Volterra equation for n-species

d Ni

dt
= ki Ni + β−1

i

n∑
j=1

ai j Ni N j . (73)

The first term describes the behavior of i th species in the absence of others; when ki > 0,
the i th species is postulated to grow in an exponential Malthusian manner with ki as the rate
constant. When ki < 0 and all other N j = 0, the population of the i th species would died
exponentially. The quadratic terms describe the interaction of the i th species with all other
species. The constants ai j might be either positive, negative or zero. A positive (negative)
tells us how rapidly encounters will lead to an increase (decrease) in Ni ; a zero ai j denotes
the fact that i th and j th species do not interact. The positive quantities β−1

j have been named
“equivalence” numbers by Volterra, also ai j = −a ji and it is assumed aii = 0. The quantity
q j is defined as the value of N j in the steady state, i.e., the set of values

{
q j
}

is defined

by the equation qi

[
kiβi +∑ j=1 ai j q j

]
= 0, which is also valid under canonical average

[28]. When none of the q ′s vanish, it was proved by Volterra that there exist a constant of
motion which depends on the set {qk}. Many other important properties concerning canonical
average of functions of Ni and Ṅi have also been proved [28], in particular

[[Ni ]] = qi[[
Ni N j

]] = qi q j ,

here [[· · · ]] indicates the canonical (or time) average. Defining vi = log Ni/qi it is also
possible to prove that the constants ai j/βi can be related to canonical averages.

Let us now assume that the species of interest is not only influenced by other specific
species of the set of n, but also by external random facts. Then the basic equations for
population growth might be of the form (73) with the additional term Ui (t) representing
random unspecified influences.

d Ni

dt
= ki Ni + Ni

⎡
⎣Ui (t)+

n∑
j=1

(ai j/βi )N j

⎤
⎦ . (74)

In [28] it was assumed that the combination of Ui (t) (external influence) and the sum in
(74) might then be considered as a random function of time, Fi (t) (in particular a zero mean
Gaussian white noise).

Considering only the dynamics of species i th (disregarding the dynamics of the remaining
species) and based on the canonical average

(
ai j/βi

) = [[
v̇iv j

]] /[[
v2

j

]]
, and if the time-

scale of the rest of species is much faster, it is plausible to consider the sum as a random
function of time, then the sum in Eq. (74) will end up in a contribution like ∼ Ni Fi (t) (i.e.,
a multiplicative noise which may be important at high density).

Now we want to study a new unspecified contributionUi (t) → Ui (t, {Nk})but considering
that this unspecified influence becomes more important at low densities (which may happen
for a particular species [29]), the simplest assumption to propose is Ui (t, {Nk}) ∼ ξi (t)/Ni (t)
with ξi (t) being a Gaussian white noise. Thus, this new unspecified contribution will end up
in the form of an additive noise to the dynamics of the i th species. Then at low density the
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important stochastic contribution will come from the additive noise. We note that the present
additive noise is not tempted to describe “extraneous predation”.

Appendix 4: The Distributed Time-Delay Ornstein–Uhlenbeck Process

The unidimensional Ornstein-Uhlenbeck process with an exponential distributed time-delay:

d X1 = −βX2dt + √
θdW (t) (75)

X2(t) =
∞∫

0

λe−λs X1(t − s)ds, (76)

can be written in the following form (I use Einstein’s notation for repeated indices’s)

d Xi = −Ai j X j dt + Bi j dW j (t), {i, j} = 1, 2, (77)

where dW j (t) is a Wiener differential, and Ai j , Bi j are constant matrices

A =
(

0 β

−λ λ

)
(78)

B =
(
θ 0
0 0

)
. (79)

Compare with Eqs. (43) and (44) associating N → X1 and NG → X2.
From Eq. (77) the corresponding 2D Fokker–Planck is

∂t P (X(t)| X(t0)) =
[
∂Xi Ai j X j + 1

2
∂Xi ∂X j

[
B · B�]

i j

]
P (X(t)| X(t0)) . (80)

Due to the linearity of the process, this equation can be solved using different methods [6,18,
19]. However, because the process is Gaussian, the conditional probability P (X(t)| X(t0))
is completely characterized by the first 〈X(t)〉 and second cumulant

〈〈
X(t)X�(s)

〉〉 ≡ σ t−s .
It can also be noted that the eigenvalues of Ai j have a positive real part (if β > 0)

α+ = λ

2

(
1 +√1 − 4β/λ

)

α− = λ

2

(
1 −√1 − 4β/λ

)
, (81)

which means that the process does have a stationary state. Note that if 4β/λ > 1 there will
be oscillatory behaviors during the transient. Following Gardiner [18] we will focus on the
fact that the matrix A is of dimension 2 × 2, therefore the stationary covariant matrix σ is
given by the formula

σ = (det A)B · B� + [A − (TrA) 1] · B · B� · [A − ( TrA) 1]�

2 (TrA) (det A)

=
(
σ11 σ12

σ21 σ22

)
= θ

2β

(
β
λ

+ 1 1
1 1

)
. (82)

The moments are

〈X(t)〉 ≡ M (t) = exp (−At) · X(0), (83)
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and stationary correlations are〈〈
X(t)X�(s)

〉〉
≡ σ t−s = exp [−A (t − s)] · σ . (84)

We see that the cumulant is the Green function G (t) = exp (−At) · σ . Using right and left
eigenvectors of A the matrix exp (−At) can be calculated as:

exp (−At) =
(

e−α+ t

2

[
1 − 1

�

]+ e−α− t

2

[
1 + 1

�

] β
λ�

(
e−α+t − e−α−t

)
−1
�

(
e−α+t − e−α−t

) e−α+ t

2

[
1 + 1

�

]+ e−α− t

2

[
1 − 1

�

]
)
, (85)

with

� ≡ √1 − 4β/λ.

The 2D conditional probability distribution is given by

P (X(t)| X(s)) = (2π det A)−1/2 exp

[−1

2
(X − M (t − s))� · σ−1

t−s · (X − M (t − s))

]
.

(86)

Other interesting properties of the system can also be calculated analytically [18]. For
example, the spectrum matrix:

S(ω) = 1

2π

∞∫

−∞
e−iωτG (τ ) dτ

= 1

2π
(A + iω)−1 · B · B� ·

(
A� − iω

)−1
.

Therefore the spectrum of the process X1(t) is given by

S(ω)11 = 1

2π

θ2
(
λ2 + ω2

) (
β2λ2 − 2βλω2 + λ2ω2 + ω4

)
[
λ2ω2 + (βλ− ω2

)2]2 .

This formula allows us to characterize the spectral properties of the exponential distributed
time-delay Orstein-Uhlenbeck process. Note that even when the noise is white the spectrum
of X1(t) has a structure for any value of λ. In the limit λ → ∞ (the non-delay case) we

reobtain the spectrum of the Orstein-Uhlenbeck process S(ω)11 → θ2

β2+ω2 . To conclude this
section, note that due to the Markovian nature of this 2D problem the regression theorem
states that the time development G (t) is for t > 0 governed by the same law of the time
development of the mean.

The Non-Markov Marginal Distribution

To calculate the marginal distribution, projected on the variable X1, it is very simpler to work
out with the Fourier transform of the 2D conditional probability distribution P̃ (k, t | X(t0)),
which from Eq. (86) reads

P̃ (k, t | X(t0)) = exp

[
−1

2
k j ki

(
σ t−t0

)
i j + iki Mi (t − t0)

]
, (87)

taking k2 = 0 in this expression we get the Fourier transform of the marginal process X1

P̃ (k1, t | X(0)) = exp

[
−1

2
k1k1 (σ t )11 + ik1 M1 (t)

]
, (88)
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which can immediately be Fourier anti-transform giving

P ( X1, t | X(0)) = 1√
2π (σ t )11

exp

(
− (X1 − M1 (t))2

2 (σ t )11

)
, (89)

with

(σ t )11 =
(

e−α+t
[

1 − 1

�

]
+ e−α−t

[
1 + 1

�

])(
θ

4λ
+ θ

4β

)
(90)

+ θ

2λ�

(
e−α+t − e−α−t)

M1 (t) =
(

e−α+t
[

1 − 1

�

]
+ e−α−t

[
1 + 1

�

])
X1(0)

2
(91)

+ β

λ�

(
e−α+t − e−α−t) X2(0).

This is an exact non-Markov result. We can see, as expected, that the marginal conditional
pdf for the process X1(t) depends on both initial conditions X1(0) and X2(0). At long time,
t → ∞, the process X1(t) reaches a stationary pdf Pst (X1) which depends on the delay
parameter λ. Therefore, we can compare this non-perturbative result with that obtained from
the adiabatic perturbation theory.

At long time from Eqs.(90) and (91) we get that M(t) → 0 and (σ t )11 → σ 11 =
θ
2

(
1
λ

+ 1
β

)
, therefore Pst (X1) can be written in the form

Pst (X1) = 1√
2πσ 11

exp

(
−2

θ
U (X1)

)
, (92)

with

U (X1) = X2
1

2
(

1
λ

+ 1
β

) . (93)

Physically this non-adiabatic result tells us that for the exponential distributed time-delay

Orstein-Uhlenbeck process, the relaxation time is changed to β →
(

1
λ

+ 1
β

)−1
. This result

is in agreement with the adiabatic approximation given in Eq. (27) using the replacement
r → −β and K → ∞. As can be seen from Eq. (27), making N → X1, and adding
noise of intensity

√
θ we can write: d N = −U ′(N )dt + √

θdW (t), where the perturbed

delay-dependent adiabatic potential U (N ) � β
(
1−εβ+ε2β2+O(ε3))

2 N 2 → β
2(1+εβ) X2

1 is just
the expansion of the exact result given in Eq. (93) with 1/λ = ε.

Appendix 5: MFPT in the Adiabatic (Markov) Approximation

From the 1D Fokker–Planck Eq. (35) the general equation to solve the MFPT to reach
threshold N∗ for the first time is given by the Dynkin equation [6,30]

− U ′(N0)
dT (N∗/N0)

d N0
+ θ

2

d2T (N∗/N0)

d N 2
0

= −1, with BC T (N∗/N∗) = 0. (94)
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The second BC comes from some regular or singular BC at the other extreme of the domain
[31]. The solution of this equation can be written in terms of

ψ(x) = exp
2

θ

x∫

x0

dU (x ′), x0 < N∗, (95)

compare this function with the stationary pdf in the adiabatic approximation (39). Therefore,
the MFPT from N = 0 to N∗ associated with the Fokker–Planck Eq. (35) with reflecting BC
at N = 0 will be denoted by τ (N∗) ≡ T (N∗/0) and is given by the formula [31]

τ(N∗) = 2

θ

N∗∫

0

dy

ψ (y)

y∫

0

ψ(z)dz. (96)

To get an analytical expression for this MFPT we now introduce an asymptotic calculation
in the small noise parameter

√
θ . Consider now that the adiabatic potential (38) takes the

form U (N ) = − 1
2 AN 2 + 1

n BN n + · · · ; the exponent n depends on the type of nonlinearity
occurring in the saturation term of Eq. ( 1), and the coefficients A,B are given by its adiabatic
expansion (see the examples given in Eqs.(24) and (27) for two different delay cases). A non-
linear saturation model extrapolated from the Logistic to the Gompertz case would give a
different exponent n in the saturation of the adiabatic potential and would depend on the model
of delay we used. For example, r N

ν

[
1 − (N/K )ν

]
reproduces the non-delay Gompertz’s or

Logistic models in the limit ν → 0 or ν → 1 respectively.
The MFPT from 0 → N f for a 1D continuous Markov process with reflecting BC at

N = 0 is, using (96), given by

τ(N f ) = 2

θ

N f∫

0

dy

y∫

0

exp

(
2

θ
[U (y)− U (z)]

)
dz, (97)

here we have used the Fokker–Planck Eq. (35) which is consistent to the SDE (37). Using
the perturbed delay-dependent adiabatic potential (38) and neglecting the saturation terms
we write U (N ) � − 1

2 AN 2, then MFPT from Eq. (97) is (denoting α ≡ θ/A) given by

τ(N f ) = 2

θ

N f∫

0

dy

y∫

0

exp

(−A
θ

[
y2 − z2]) dz

= 2α

θ

N f∫

0

dy

y/
√
α∫

0

ze−z2

√
y2 − αz2

dz

=
√
πα

θ

N f∫

0

e−y2/α Erfi
[
y/

√
α
]

dy

= N 2
f

θ
Fpq

[
{1, 1},

{
3

2
, 2

}
,− N 2

f A
θ

]
,

where Erfi[z] = erf[i z]/ i , and F
[{a1, . . . , ap}, {a1, . . . , aq}, z

] = Fpq [a, b, z] is a gener-

alized hypergeometric function [32]. Introducing the dimensionless parameter η = N 2
f A
θ

we
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can see that asymptotically for η � 1

2η Fpq
[{1, 1}, { 3

2 , 2
}
,−η](

ln η − ψ
( 1

2

)) → 1.

This means that asymptotically for small noise Suzuki’s scaling-time is equivalent to the
MFPT

τ(N f ) → 1

2A

(
ln

N 2
f A
θ

− ψ

(
1

2

))
. (98)

It is meaningful to comment here that Suzuki’s scaling-time τS = 1
2A

(
ln

N 2
f A
θ

− ψ
( 1

2

))

can also be obtained from the SPPA working out the SDE d N = ANdt +√
θdW (t) to solve

the random time te at the threshold value N (te) = N f [3]. In addition, this problem can be
solved when the noise is Gaussian and non-white [25], or when the coefficient A = A(t) is
a function of time (i.e.: a time dependent potential) [33,34].
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