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A simple interparticle potential for a set of classical identical
particles is used to model martensitic transformations in two
dimensions. The influence of the symmetry of the phases
involved in the transformation on the reversibility of such

process is analyzed. Numerical simulations are used to confirm
the theoretical suggestion that a necessary condition for
reversibility is that transformations be group–subgroup.
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1 Introduction Martensitic transformations (MT) are
diffusionless shear transformations. These displacive first-
order solid–solid transitions take place between a high-
symmetry phase called austenite and a low symmetry (and
usually also low temperature) one called martensite.

Such transformations have been found in many metals
and alloys, but they are also present in some proteins and
ceramic materials. From a theoretical point of view, the
interest from this transformation comes from the fact that
very elementary processes govern the main effects that these
materials exhibit [1]. The MT is most commonly driven by
mechanical deformation or by a change in temperature, and
central to its phenomenology is the fact that, during the
transformation, the atomic displacements are very small,
typically lower than the interatomic distance. If the
transformation is driven by temperature, different orienta-
tions of martensite are obtained from a single crystal
austenite. They are called the martensitic variants and
emerge from distortions of the austenite structure along
different (but crystallographically equivalent) directions
when the martensite is formed.

Some materials exhibiting MT posses the ability to
recover their external shape upon thermal (or stress) cycling.
In this case, the transformation is called “reversible,” and
paradigmatic systems presenting a reversible MT are the
useful shape memory alloys [2]. Other materials, as steels,
exhibit irreversible MT [3]. A question arises: what are the
main factors determining this behavior?

One of the usual explanations for the irreversibility in
some materials (iron based, among others) focuses in the
change of volume that occurs during transformation, which
causes stress and defects. However, there are some materials
for which irreversibility is not associated to any change of
volume [4].

An interesting suggestion is given in Ref. [5], where a
mathematical theory is used to claim that a necessary
condition for reversibility of an MT follows simply from
symmetry relations between the parent and product phases:
reversible martensites are such that both phases are related
by a group–subgroup relation (because a unique parent
lattice can be identified for every transformed product),
whereas, irreversibility implies that such an identification is
impossible or ambiguous.

These results suggest that both mechanisms, change of
volume and symmetry, should contribute to the irreversibili-
ty of a martensitic transformation. Nevertheless, the
complexity of real systems makes difficult to analyze both
contributions separately. Moreover, realistic three-dimen-
sional potentials display partial irreversibility in spite of
group–subgroup relations between phases. This behavior
can be attributed to topological defects, which appears when
variants and twin structures grown in different directions.
These kinds of potentials are closer to real systems, and also
capture the complexity of the MT transitions in which
several factors contribute. As will become clear below, the
model used in this study (being 2D and exhibiting MT which
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almost no change of volume [6]) becomes an excellent
candidate for studying the isolated effect of the symmetry in
the reversibility of the transition.

The concept introduced by Bhattacharya and collabo-
rators in Ref. [5] can be easily understood making use of a
two-dimensional (2D) representation: the austenite phase is
properly represented by a hexagonal (also called triangular)
structure, and the martensitic variants can be associated with
three equivalent deformations along the three sides of the
triangle (see Fig. 1). When the angle a is less than p/2, the
martensitic phase obtained has a rectangular (equivalent to
the 3D rhombohedral) structure. The case a¼p/2 produces
a square martensitic lattice. In the triangular–rectangular
(T–R) MT, particle displacements are much lower than
nearest neighbor distances. T–R MT is then reversible
because each particle in the martensitic phase has a unique
way to return to the parent triangular structure. On
the contrary, the 2D triangular–square (T–S) MT is
irreversible. In this case, particles in the square phase do
not have a unique transformation path to go back to the
austenite phase, because the displacements are such that
particles in the martensitic phase are at the same distance of
the two nearest places to move. When the transformation to
the austenitic phase proceeds, they have two possibilities of
forming the austenitic structure and hence they do not
necessarily return to their initial positions.

The formal manner to express these ideas is the
following: the rectangular lattice, belonging to the 2mm
spatial plane group, is a subgroup of the 6mm symmetry
group at which the hexagonal structure belongs. On the
contrary, the symmetry group of the square martensite (plane
group 4mm) is not a sub-group of the 6mm symmetry group
of the hexagonal austenite [7]. This is enough to claim that
this last transition is irreversible [5].

MT have been exhaustively explored, both experimen-
tally and theoretically. Several mathematical models were

constructed to study MT, most of them including different
kind of particles interacting through complex potentials [8,
9]. However, such a complexity is not necessary to
qualitatively describe an MT: a isotropic potential for
identical particles can display multiple stable crystalline
structures [10, 11] that can be in turn associated to the parent
and product phases of the MT. Following this idea, we
developed in a previous work a spherically symmetric two
body classical potential by slightly modifying a 6–12
Lennard–Jones prototype [6]. Such a potential produces
different crystalline configurations whose relative stability
can change when some of the parameters of the model is
varied. Such variation drives a martensitic transformation in
the system, and several interesting effects associated to them
can be analyzed [6, 12–14]. In Ref. [6] we showed that the
T–R transformation displays the shape-memory effect,
whereas, in the T–S transformation the shape-memory
effect is absent.

Here, we use such simple model to analyze how the
symmetry of the crystalline configurations connected by an
MT affects the reversibility of such transition. We performed
numerical simulations to verify if the T–R transformation is
reversible and the T–S transformation is not. Our work
shows that the suggestion of Ref. [5] about the irreversibility
of group–nonsubgroup MT can be confirmed with a very
simple model.

2 Model and numerical simulation details The
interaction potential has a repulsive core at short distances
and attractive tail at large distances. This potential is based
in the standard Lennard–Jones (LJ) one, but some extra
contributions are included in order to have ground state
configurations other than the compact ones. In Ref. [6] we
conducted a detailed description of the model. A potential
that has the required properties is a sum of four terms,
V(r)¼V0þV1þV2þV3, where the main contributions
come from the first two terms.

The first one, V0¼A0 [1/r
12� 2/r6þ 1], acts if r< 1 and

is the repulsive part of a LJ potential. Its weight in the total
potential is measured by the parameter A0.

The quartic term V1¼ [(r� 1)2(rþ 1� 2c)2/(c� 1)4]� 1
contributes with the attractive part to the total potential and
is different from zero if r< rc.

The last two terms V2 and V3 were included to penalize
the triangular lattice, and/or favoring the martensitic phase.
The first one provides a small minimum of amplitude A2

(centered at d2), whereas the second one is a small maximum
of amplitude A3 centered at d3:

V2 ¼ �A2
ðr � d2 � s2Þ2ðr � d2 þ s2Þ2

s24

ðacting if d2 � s2 < r < d2 þ s2Þ;

V3 ¼ A3
ðr � d3 � s3Þ2ðr � d3 þ s3Þ2

s34

ðacting if d3 � s3 < r < d3 þ s3Þ:

Figure 1 2D martensitic transformation described in this paper.
Red arrows indicate the deformations applied at each segment,
whereas, blue segment denotes the elongated side of the triangle.
The three martensitic variants correspond to elongate one of the
three sides of the triangle. The value of the angle a defines the
geometry of the martensite: if a<p/2 a rectangular martensite is
obtained, whereas, a¼p/2 produces a square martensite.
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Then, V(r) generates a family of isotropic potentials,
each of one being fully determined by the set of parameters
P¼ {A0, A2, A3, c, d2, s2, d3, s3}. We have performed a
search among several sets that, of course, do not exhaust all
the possibilities, and we find the two set of parameters, which
we consider adequate to describe T–R and T–S transitions.
The set P1¼ {A0, 0.003, 0.01, 1.722, 0.98, 0.04, 1.74, 0.2}
drives a T–R transition by changing the parameter A0. We
found a critical value Ac

0 ¼ 0:067, above which the
minimum energy state corresponds to a triangular (T)
structure of lattice parameter close to one. For A0 < Ac

0, the
minimum energy structure is a rectangular (R) lattice.
Besides, the T–S transition is obtained from the set
P2¼ {0.024, A2, 0.01, 1.730, 0.98, 0.1, 1.74, 0.2} with
variable A2. The transition value in this case is Ac

2 ¼ 0:022
(see details in Ref. [6]).

Since the triangular lattice is the high-symmetry (6mm)
phase, the T structure is naturally identified with the
austenite. Moreover, the R (2mm) and S (4mm) low-
symmetry structures will be associated with the martensitic
phases.

As we said, the martensitic variants in this model arise
from deformations of the triangles forming the hexagonal
parent phase. To determine whether some particle in the
sample corresponds to austenite or martensite structures, the
elongated side of each triangle is colored. Thus, triangular
(not distorted) regions have no colored segments, whereas,
each martensitic variant is identified by a different color. See
an example in Fig. 2.

Both, T–R and T–S transformations were numerically
studied by solving the temporal dependence of the particle
coordinates. We use the Verlet scheme and include a local
friction term proportional to the velocities. Details of the
implementation, which correspond to a zero temperature
Langevin simulation, can be found in Ref. [6]. All the results
showed in this work correspond to a system of N¼ 40,000
particles with open boundary conditions.

3 T–R reversible transition In a previous work, we
showed that the T–R transition is reversible in a
monocrystalline sample [6]. In the protocol used, the change
of the parameter A0, which drives the T–R transitions, was
made in an abrupt manner because our goal was to determine
the dependence of the typical grain size of the martensitic
phase on the distance A0 � Ac

0 from the value Ac
0 at which

austenite and martensite are in equilibrium. We found that
deep quenches (i.e., higher values of A0 � Ac

0) produce faster
transformations and martensites with a much finer texture.

In this work, we are interested in understand how much
the behavior previously observed is dominated by the way in
which the parameter A0 was changed. In order to study the
transformation details, we repeated the transformation–
retransformation process with a different protocol, in which a
very slow change of A0 is applied.

The initial condition consisted in a monocrystalline
rectangular sample in a triangular structure. This configura-
tion was allowed to relax through the dynamical algorithm at
a value of A0 for which austenite is stable. This relaxed
configuration (shown in Fig. 2A) was the starting point from
which the parameter A0 was decreased at a constant rate.
During the process, the evolution of the system was recorded
as the T–R transformation proceeds. The first sign of the
transformation is the nucleation of martensite variants at the
edges of the sample. These nuclei grow, invading the interior
of the sample, and it is also evident the existence of two
variant wedge sectors, whose borders are the habit lines of
the transformation (Fig. 2B). When the transformation is
completed (Fig. 2C), the twinned martensite has practically
disappeared. The number and size of the martensitic variants
in the martensitic rectangular phase depends on the rate DA0.
This problem was addressed in our paper of Ref. [14] for the
T–R transformation.

To model the retransformation to austenite, we reverse
the previous conditions by slowly increasing A0. In Fig. 2D a
snapshot of the process can be observed, with several
wedges and small regions of local deformation generated by
interstitial particles. In some cases, these deformations
remain in the system at higher values of A0, even when the
monocrystalline arrangement is recovered when A0 reaches
the region of stability of the austenite. This is the case of the
austenite obtained at the rate DA0¼ 5� 10�9, which can be
observed in Fig. 3A. Nevertheless, if the transformation is
driven at a slower velocity, the final austenite does not
display interstitial particles (see the austenite obtained
for a rate DA0¼ 1� 10�9 in Fig. 3B). In any case, the
configuration obtained after a complete transformation-

Figure 2 Snapshots of direct and reverse martensitic trans-
formations. (A) Initial relaxed austenitic phase at A0¼ 0.085.
Starting from this configuration, the value of A0 is decreased at a
constant rate DA0¼ 5� 10�9. (B) Beginning of the transformation
at A0¼ 0.059. (C) Martensite obtained at A0¼ 0.055. From this
structure, the reverse transformation is driven by applying an
increase in A0 at the same rate DA0 as in the direct transformation.
(D) Structure at A0¼ 0.085 in the process of retransformation.
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retransformation cycle is composed by a single grain of
monocrystalline austenite, presenting retained martensite at
the borders of the sample.

A suitable manner to describe the behavior of the system
during the transformation–retransformation process is by
recording the temporal evolution of the fraction of particles
in the martensitic phase,Fm¼Nm/N (with Nm the number of
particles belonging to one of the martensitic variants). In
Fig. 4A, we show the evolution ofFm as a function of A0 for
the two rates previously described. The curves with open
symbols correspond to the direct T–R transformations,
whereas, full symbols indicate the reverse transformations,
from the rectangular martensite to the triangular austenite. At
the starting point (A0¼ 0.085) Fm is close to 0, indicating
that almost all the system is in the austenitic phase, with the
exception of a few particles located in the borders and
corners of the sample. The value of Fm remains constant
during the first steps of the process, consisting in the
decrease of A0 and a constant rate. When the parameter A0

drops below its critical value, Ac
0 ¼ 0:067, the quick growth

Fm indicate the beginning of the T–R transformation. For
lower values of A0, Fm reach the value one, indicating that

the sample has transformed completely to martensite. The
reverse transition starts from the martensitic phase obtained
in the T–R transformation. The slow increase of A0 gives rise
to an abrupt decrease ofFm at a value A0 > Ac

0. Note that, for
the two cycles showed, Fm saturates at a value higher that
one. This result is compatible with the retained martensites
observed in Fig. 3A and B. The hysteretic behavior of this
transformation was studied in Ref. [12].

To complete the description of the transition, we show in
Fig. 4B the histograms of distances between particles for
four configurations obtained during cycle of rate DA0¼ 5
� 10�9. The histograms of panels (1)–(3), correspond to the
snapshots of Fig. 2A, C and D, respectively. As expected,
two characteristic distances are observed in the martensitic
phase (see panel (2)), whereas, only one appears in the
austenitic (triangular) phases. Note that at the point (4) the
triangular structure was recovered in almost all the sample.
As we increase A0, the value of Fm continues to decrease
slowly and the height of the triangular peak also grows with
A0 (not shown here).

The transformation–retransformation protocol was re-
peated for different values of the rate DA0 and the same
qualitative behavior was observed: (i) a polyvariant
martensite is obtained at the end of the T–R transformation,
whose structure depends on DA0, and (ii) a monocrystalline
austenite (with some elastic deformations and a few defects)
is recovered at the end of the complete cycle.

These results confirm that the T–R martensitic transfor-
mation is reversible. As we first claim in Ref. [6], this
behavior is a consequence of the way in which the T–R
transformation proceeds: the particles displacements during
the MT are much lower than the interparticle distance itself.
Consequently, particles have a single way to coming back to
the initial position. Moreover, the reversibility of the
transition is the main cause of the shape memory effect in
this simple model. This is one of the most striking effects
observed in materials that suffer MT and, as was
demonstrated in Ref. [6], an essential condition for this to
happen is that the transformation be reversible.

Figure 3 Final states obtained at two different rates. (A)
DA0¼ 5� 10�9 and A0¼ 0.137. (B) DA0¼ 1� 10�9 and
A0¼ 0.121. Note that, although interstitial particles are present
in the first case, the austenite obtained is monocrystalline as the
defects deform only locally the lattice.

Figure 4 (A) Fraction of particles in martensitic phase as a function of A0 for cycles at ratesDA0¼ 1� 10�9 (in black) andDA0¼ 5� 10�9

(in red). Open symbols correspond to the T–R transformation, whereas full symbols indicate the reverse transformation. (B) Histograms of
distances between particles for four points of the red cycle of panel (A).
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4 T–S irreversible transition In the work, [6] we
dedicated a few lines to the T–S transition. In that paper, we
started with a value of the driving parameter for which the
triangular phase is stable (A2¼ 0.03) and abruptly change A2

to a value for which the square phase has lower energy.
Using this protocol, the obtained martensitic state was a
polycrystalline structure formed by grains of square phase in
the three different orientations, related to the three possible
deformations of the parent triangle. When the parameter A2

was reversed to the initial value and letting the system
evolve, a polycrystalline triangular structure was obtained,
which retained some small grains of square phase.

Here, we explore in detail the T–S transition, implement-
ing the protocol described in the previous section. In Figs. 5
and 6, we show the snapshots of two transformations at
different rates,DA2¼ 1� 10�9 and 5� 10�9. In both figures,
we note that the T–S transformation does not proceed as the
T–R one: two variant wedge sectors (as the ones in Fig. 2B)
are not observed here. Another clear difference is that the
martensite obtained in the T–S transition is untwined. On
the other hand, the final martensitic phase has a number of
variants, which depends on the rateDA2, as was also observed
in the T–R transformation.

The reverse transition to the austenitic phase is triggered
by an increase in A2 at the same rates used in the T–R
transformation. The final states obtained are shown in Fig. 7.
Note that a polycrystalline austenite is obtained in both cases,
as observed also in Ref. [6] for a different protocol.

The temporal evolution of the fraction of particles in the
martensitic phase, Fm, is shown in Fig. 8A for the two rates
DA2 displayed previously. We analyzed the T–S forward and
reverse transitions by observing this quantity in detail.
Starting from a sample in the austenitic phase (for which
Fm¼ 0) we decrease the value of A2 and observe that Fm

have a quick growth at a value of A2 lower than the critical
one ðAc

2 ¼ 0:022Þ, as expected from the hysteretic behavior
that these systems display (see Ref. [12]). For lower values of
A2 the value ofFm saturates to a value close to one, indicating
that the sample has transformed almost completely. The
second part of the cycle starts from the martensitic square
state obtained in the T–S transformation. The slow increase of
A2 gives rise to an abrupt decrease ofFm at a value A2 > Ac

2.
The hysteresis loops have comparable widths, indicating that
the rates DA2 used in the simulations are low enough to
disregard non-equilibrium effects in the transformation
process. We show in Fig. 8B the histograms of distances

Figure 5 Snapshots of the T–S transition at a rate DA2¼ 1� 10�9. The value of A2 is indicated in each panel. (A) Initial condition:
triangular structure relaxed at A2¼ 0.03. (B) Beginning of the transition. (C) The final state is a square structure consisting of five grains of
the three martensitic variants.

Figure 6 Snapshots of the T–S transition at a rate DA2¼ 5� 10�9. The value of A2 is indicated in each panel. The initial condition is the
same as Fig. 5A. (A) Beginning of the transition. (B) Growth of martensitic phase. (C) Final square structure consisting of sixteen grains of
the three martensitic variants.
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between particles for four configurations obtained during
cycle of rate DA2¼ 5� 10�9. The histograms of panels (1)
and (2) correspond to the first part of the cycle, and a clear
T–S transition can be observed asA2 decreases. As in the T–R
transition, in the T–S one we observe two characteristic
distances in panel (2), indicating the presence of a martensitic
phase. Moreover, panels (3) and (4) correspond to the inverse
transition. Note that at the point (3), for which A2¼ 0.03, the
triangular structure was recovered and the triangular peak
grows only slightly for higher values of A2, as can be seen in
panel (4). A further increase in A2 does not change the
situation observed in the panels (3) and (4).

In order to test the robustness of the results obtained for
the T–S transition, we performed the transformation–
retransformation protocol for different values of the rate
DA2 and obtained the same kind of results: (i) a sharp T–S
transformation, at the end of which a polyvariant untwined
martensite is obtained with a number of variants which
depends on the rate DA2; and (ii) a polycrystalline austenite
when the reverse transition is completed.

In all the cases studied the final structure obtained after
a complete cycle exhibit grains of triangular (austenitic)
geometry of different orientation. The initial monocrystalline

structure of Fig. 5A is always lost after the transformation–
retransformation cycle, even when the distribution of
distances clearly corresponds to a triangular phase. The
polycrystalline structure obtained indicates that the T–S
transformation is irreversible.

Moreover, and although it is beyond the purpose of this
paper, numerical simulations were conducted of a square–
triangular transition. The result is qualitatively the same as
described in the triangular–square case: starting from an
initial condition of square structure, and varying the
parameter A2 in order to bring the system to a region of
parameters where the stable phase is the triangular one, the
transformation occurs and the final structure is a polycrys-
talline phase with regions of different orientation, making the
transition irreversible (not shown here).

5 Summary and conclusions Using an isotropic 2D
potential devised for identical particles, the effect that the
symmetry of the crystalline configurations connected by a
martensitic transformation has on the reversibility of such
transition was analyzed. Two sets of parameters were used,
one producing a group–subgroup T–R transition and the
other a group–nonsubgroup T–S transition. Both trans-
formations have associated almost no change of volume [6]
and this fact is one of the main strengths of the model, as it
allows isolating the effect of the symmetry in determining
the reversibility of the transition.

We performed numerical simulations using a protocol
in which the parameters that drive the transformations are
changed at a very slow and constant rate. We simulate the
direct and reverse transition, performing cycles at different
rates for the two transitions studied.

In the two cases, we analyzed the details of the process by
observing snapshots of the particles during the process and the
evolution of the fraction of particles in the martensitic phase.
To check the structure of the configurations we construct
histograms of the distances between particles in different
stages of the transition.

Figure 8 (A) Fraction of particles in martensitic phase as a function of A2 for the rates of Figs. 5 and 6. Black square symbols correspond to
DA2¼ 1� 10�9, whereas red circles indicate the cycle with DA2¼ 5� 10�9. Full symbols correspond to the forward T–S transformation,
whereas open symbols indicate the reverse transformation. (B) Histograms of distances between particles for four points of the red cycle of
panel (A).

Figure 7 Snapshots of the final states of T–S transitions at two
different rates. (A) DA2¼ 1� 10�9. (B) DA2¼ 5� 10�9. Note that
in both cases austenitic grains of different orientation appear.
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For the group–subgroup T–R transition, a polyvariant
martensite is formed at the end of the forward transforma-
tion, and a monocrystalline austenite with local elastic
deformations appears at the end of the reverse transition.
These results confirm the reversibility of this transition.

On the contrary, for the group–nonsubgroup T–S
transition a polyvariant untwined martensite is obtained as
a result of the direct transition, and a polycrystalline austenite
after the reverse transition is ended. The lack of the initial
monocrystalline austenite implies that this transition is
irreversible.

The obtained results are in accordance with theoretical
expectations [5] and demonstrate that elementary processes,
which can be studied with very simple models, govern the
main effects presented by materials exhibiting MT.
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