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We study analytically and by numerical simulations the statistics of the aftershocks generated after large
avalanches in models of interface depinning that include viscoelastic relaxation effects. We find in all the analyzed
cases that the decay law of aftershocks with time can be understood by considering the typical roughness of the
interface and its evolution due to relaxation. In models where there is a single viscoelastic relaxation time there
is an exponential decay of the number of aftershocks with time. In models in which viscoelastic relaxation is
wave-vector dependent we typically find a power-law dependence of the decay rate that is compatible with the
Omori law. The factors that determine the value of the decay exponent are analyzed.
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I. INTRODUCTION

An elastic interface driven through a disordered energy
landscape is a generic model for many different physical
systems, such as domain walls in ferromagnetic materials
[1–3], wetting fronts on a rough substrate [4,5], and seismic
fault dynamics [6–8]. The characteristic feature of the dynam-
ics of slowly driven elastic interfaces is its evolution through a
sequence of abrupt events, called avalanches. In the presence
of viscoelastic effects, interface depinning has additional
interesting physical properties [9–11], one of them being
the existence of aftershocks, namely secondary avalanches
originated in the internal viscoelastic dynamics, that are not
directly related to the external driving. The prominent example
of a physical system in which aftershocks show up is the
seismic phenomenon [12]. There, aftershocks are so abundant
(they may even represent the numerical majority of the events)
that strong statistical regularities have been well established for
many years. The most famous of these empirical observations
is the Omori (or Omori-Utsu) law [13–15], stating that the
aftershock rate (the number of aftershocks per unit of time)
N (t) after a main shock decays as

N (t) ∼ 1

(t + c)p
. (1)

Here time is measured from the time of the main shock, and
p and c are phenomenological parameters. The value of c

is typically in the range of minutes. The most interesting
physical information contained in the Omori law is the fact
that for t � c, N (t) decays as a power law with an exponent
p. Experimentally, although typically a value of p around 1 is
referred to, a much wider range of values (between 0.9 and 1.5
according to Ref. [15]) has been observed. Moreover, it has to
be taken into account that the fitting of experimental data with
the power law (1) has usually important deviations. In spite of
this, the fact that the aftershock rate is roughly a power law
with time is well established.

There have been different proposals for the physical origin
of aftershocks. Some studies [16] have claimed that they
are related to aseismic afterslip occurring after large quakes.
Evidence for this mechanism is not compelling. In any case,
the model we will study does not include the possibility of
afterslip, meaning that the aftershocks we will observe are not
related to this physical mechanism.

The most accepted theory of aftershock production follows
the analysis in Ref. [17]. After a main shock, some parts of
the fault close to the ruptured region are suddenly loaded to
higher values of stress. This can produce the failure of these
regions in a finite time, according to the mechanisms of static
fatigue rupture. Within this framework, the Omori law has been
derived by a number of authors [17–20]. Note that according
to this mechanism, aftershocks should mostly appear outside
and nearby the region affected by the main shock.

In the past few years, it has been shown that the statistical
properties of earthquakes in single-fault systems can be well
described by the avalanches observed in viscoelastic models
of interface depinning [10,21,22]. Numerical simulations have
shown that these kind of models are able to reproduce
many statistical properties of earthquakes, like the Gutenberg-
Richter law with a realistic b exponent and friction properties
of the system compatible with experimental observations and
with the predictions of the phenomenological rate-and-state
equations [12]. In addition, these models display aftershocks
that qualitatively resemble real ones.

The purpose of the present work is to study in detail the
aftershock rate in these kinds of models and see whether this
rate is compatible with the Omori law.

II. THE MODEL

The models we study here are based on the standard
quenched Edwards-Wilkinson (qEW) model that describes
the dynamics of a purely elastic interface on a disordered
substrate [8]. A schematic pictorial view of this model is
presented in Fig. 1(a). For simplicity the sketch is made for the
one-dimensional case, but we will discuss the two-dimensional
case throughout the paper, which is the appropriate case for the
seismic context. The dynamical state of the model is described
by the coordinates xi at every spatial position i. It is convenient
to define fi as the total elastic force exerted over the site i,
except the force exerted by the k0 springs. In the present case
this is given by

fi = k1(∇2x)i . (2)

Here (∇2x)i ≡ ∑
j (xj − xi) (j being the neighbor sites to i)

is the discrete Laplacian operator.
The driving velocity V is supposed to be vanishingly small

compared with the dynamics of the xi variables. This means
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FIG. 1. (a) Mechanical representation of the quenched Edwards-
Wilkinson model. [(b) and (c)] Two viscoelastic variations of the
model.

that avalanches are instantaneous in the time scale of driving,
a condition that is quite well satisfied in actual seismicity.
For numerical convenience we consider a case in which the
substrate potential is a collection of discrete narrow wells at
which the interface (through the variables xi) can be trapped.
Each well is characterized by the maximum force f th

i that it
can apply on the surface. The actual pinning force f

pin
i cannot

overpass this maximum value. In mechanical equilibrium, the
force on each xi must balance, and in our narrow well limit
this means

k0(V t − xi) + fi = f
pin
i < f th

i . (3)

The dynamics of the model in the narrow well approxima-
tion can be stated as a set of rules for the evolution of the forces

fi acting on each site i [10]. On a stationary configuration
satisfying (3), time increases until k0(V t − xi) + fi = f th

i

for some i. At this stage the corresponding xi jumps to
the next potential well located at xi + z (z is taken from a
random distribution, defined in the appendix). Due to this
rearrangement, and according to (2), the forces f are modified
as

fi ← fi − 4k1z,
(4)

fj ← fj + k1z,

where j are the four sites (in two dimensions) neighbor to i.
This can generate a cascade of rearrangements that represents
an earthquake in the model. The avalanche finishes when the
stability condition (3) holds again at every site.

In general terms, viscoelastic relaxation is a mechanism by
which the mechanical energy of the system tends to be reduced
in time, taking the system to more relaxed configurations.
The existence of these mechanisms is well documented in the
earthquake context and has manifestations at the laboratory
scale, where, for instance, they are responsible for the slow
increase in time of the real contact area between two solid
bodies at rest [23]. Within the context of our numerical
models, these mechanisms can be conveniently represented by
additional terms in the time evolution equation of the model.
In some cases, they can be graphically represented by means
of linear viscoelastic elements.

It is not obvious a priori what the exact form of the
viscoelastic terms is that must be used to model seismic
processes in the most accurate way. It is for this reason that we
consider two different forms of the relaxation mechanism that
display different properties for the aftershock activity. They
are graphically represented in Figs. 1(b) and 1(c). The viscous
elements are all identical and characterized by a viscosity
coefficient η. The main difference between the two models
is that the one in Fig. 1(b) has a single time constant for
relaxation, whereas that in Fig. 1(c) has a distribution of
relaxation times depending on wavelength.

Similarly to the case of the qEW model, we define fi as the
total (visco-)elastic force exerted on the site i, except the force
applied by k0 springs, so Eq. (3) is also the stability condition
for the viscoelastic versions. However, even if the values of xi

remain fixed (i.e., as long as f
pin
i < f th

i for all i), fi’s are no
longer constant but evolve in time according to [24]

dfi

dt
= −k1

η
fi (model A), (5)

dfi

dt
= k1

η
(∇2f )i (model B). (6)

As in the qEW model, an avalanche occurs each time
k0(V t − xi) + fi = f th

i for some i. The time scale of relax-
ation η/k1 is supposed to be very large compared with the
time scale of the individual avalanches; namely we continue
to consider avalanches as instantaneous. Therefore, Eqs. (4)
continue to be valid in the viscoelastic case, as dashpots are
rigid during the avalanche development.

Since fi depend on time even if xi are constant, the
triggering of an avalanche is now a combined effect of
the driving and the viscoelastic dynamics of the system,
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FIG. 2. (a) The size S of the avalanches (see the definition in the
appendix) as a function of time for the case of model A [Fig. 1(b)].
The time axis is scaled by the driving velocity V , so all aftershocks
appear on the same vertical line. In (b) and (c), we take particular
clusters of events in (a) and plot them as a function of the time in
units of the relaxation time constant η/k1. We see here the decay
of the aftershock rate with time. The largest event in each cluster is
indicated by the small horizontal arrows. Note that in (b) the largest
event is the first one, but this is not the case in (c). This last case is
actually the typical situation.

respectively represented by the two terms on the left-hand
side of (3). Only in the case in which V � zk1/η (where z is
the average separation between potential wells) will we have a
complete separation of time scales, and we can tell which term
is the immediate responsible for each triggered event. We will
consider this limiting case from now on. In these conditions,
the avalanches are clustered in time. Each cluster is initiated
by the driving term. All the remaining events within the cluster
are aftershocks that are triggered by the relaxation term. Note
that the first event is not necessarily the largest one in the
cluster. An example of a time sequence of events obtained by
numerical simulations of model A is shown in Fig. 2. In real
seismicity the time scales of driving and relaxation are not
totally separated, and a clear-cut identification of aftershocks
is not possible. Although it is not our main concern here, it
is necessary to mention that both models A and B produce a
Gutenberg-Richter distribution of number of earthquakes as a
function of size, with a realistic value of the b exponent.

We can make the following pictorial description of how
initial shocks and aftershocks are produced. In the left part of
Fig. 3(a) the form of fi is supposed to be totally relaxed, and
for the models we are analyzing this means fi = 0 [24]. When,
due to driving, the stability condition (3) is no longer satisfied
at some point (right), an initial shock occurs. This produces
rearrangements in the values of fi due to the avalanche
dynamics [Eqs. (4)], generating a nonrelaxed configuration
that evolves according to (5) or (6). As indicated in Fig. 3(b),

aftershockrelaxation

(b)

(a)

driving

forces

spatial position
primary shock

FIG. 3. (a) A relaxed distribution of forces fi (line), which for
the present models is a constant, and the values of f th

i − k0(V t − xi)
(crosses) in a one-dimensional sketch. As driving increases, crosses
move down, generating a primary shock. (b) After the primary shock,
the rearranged distribution of forces fi evolves due to the relaxation
term, eventually triggering aftershocks.

this relaxation can eventually produce aftershocks at some
nearby position.

This means that the number of aftershocks per unit of
time are the number of sites at which fi becomes larger
than f th

i − k0(V t − xi) due to the relaxation. However, the
calculation of this number is difficult because fi themselves
are changed after each aftershock. In order to get a rough
estimation, we consider a typical distribution fi(t = 0) of
the forces after some initial shock and consider its evolution
through relaxation, disregarding the changes of fi when
aftershocks actually occur. Assuming that the possible values
of f th

i − k0(V t − xi) are uniformly distributed, the probability
to trigger an aftershock at site i will be proportional to the
increase of fi above all previous values it has taken before.
Then, defining f max

i (t) as the maximum value of fi for all
times smaller than t [namely f max

i (t) = max0<τ<t fi(τ )], we
will estimate

N (t) ∼
∑

i

df max
i

dt
. (7)

The effect of aftershock interaction that we neglected in this
estimation will be reconsidered later. By now we concentrate
in making an estimate of Eq. (7).

The initial distribution of forces fi(0) needed for this
estimation must be taken as a typical distribution of forces
after a big shock in the system. For the models in Figs. 1(b)
and 1(c), if the shock produced some given displacements
of the surface δxi , the values of fi(0) are given by fi(0) =
k1(∇2δx)i . This is because dashpots are rigid in the time scale
of the avalanches. Typically, statistical properties of δxi are
characterized by a number ζ which is the roughness exponent
of the displacements during the shock. It indicates that for
two points on the surface a spatial distance L apart, the shock
produced displacements that scale with L as |δx0 − δxL| ∼
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Lζ . It can also be shown that this implies a spectral form of δx

of the form

|δxq |2 ∼ q−(d+2ζ ), (8)

|fq(0)|2 = q4|δxq |2 ∼ q4−d−2ζ , (9)

where d is the dimensionality of the surface (two in our case).
Once we have the force distribution at the initial time,

we must follow the evolution caused by relaxation. In the
simplest case of exponential relaxation, we can readily write
fi(t) = fi(0)e−k1t/η, where we see that for each i, fi(t) moves
monotonously in time (either increasing or decreasing) to the
relaxed value fi(t → ∞) = 0. In this case f max

i (t) is either
fi(t) if fi is negative or fi(0) if fi is positive, and N (t) can be
calculated as

N (t) ∼ d

dt

∑
i

′
fi(t), (10)

N (t) ∼ d

dt

∑
i

′
fi(0)e−k1t/η, (11)

where the prime in the sum means that it must be extended
only to the points for which fi is negative. In the end, this
expression clearly shows that

N (t) ∼ exp (−k1t/η) (model A), (12)

namely, in the case of a single relaxation time, the aftershock
rate decays exponentially in time with the same time constant.

For the q-dependent relaxation case (model B) the evolution
of fi(t) does not need to be monotonous in time, which
complicates the analysis. Yet to try to make an estimate, let us
assume fi(t) is indeed monotonous. If this is the case, Eq. (10)
can still be used. Assuming also symmetry between regions
at which fi > 0 and fi < 0, Eq. (10) can be rewritten up to a
factor of 2 as

N (t) ∼ d

dt

∑
i

|fi(t)|, (13)

where now the sum is unrestricted. To estimate fi(t) we first
solve Eq. (6) in Fourier space as

fq(t) = fq(0)e−q2k1t/η, (14)

and now we write

fi(t) ∼
∫

d2qfq(t) exp(iqt) (15)

=
∫

d2qfq(0) exp(−q2t) exp(iqt). (16)

Assuming random phases between different fq(0)’s, and
using (9) with d = 2 we can estimate

fi(t) ∼
(∫

d2q|fq(0)|2 exp(−2q2t)

)1/2

(17)

∼
(∫

d2qq2−2ζ exp(−2q2t)

)1/2

(18)

∼ t−(2−ζ )/2. (19)

FIG. 4. Model A. Density of aftershocks as a function of time
after the main shock, calculated according to Eq. (7) for three
different initial interfaces with different roughness (as indicated) and
the corresponding analytical estimate Eq. (12). We see the perfect
accordance between the two.

From here and (13) we finally get

N (t) ∼ t−(4−ζ )/2 (model B). (20)

The first main outcome of this analysis is that, contrary to
the case of exponential relaxation, a q-dependent relaxation
is naturally able to give a power-law decay of the aftershock
rate, compatible with the Omori law.

In view of the approximations made in the previous
derivation, we will first present some numerical tests of
the accuracy of Eqs. (12) and (20) as estimations of the
aftershock rate as given by Eq. (7). In order to do this we start
with well-characterized initial distributions of fi . We take
three different initial force distributions: in one case we take
random values of δx and calculate f as fi = (∇2δx)i . This
choice corresponds to a roughness exponent ζ = −1. In the
second case we take fi as random uncorrelated values, which
corresponds to ζ = 1. In the third case we use as a starting
configuration an interface generated by a simulation in the
purely elastic qEW model [Fig. 1(a)]. For this kind of surface,
a value ζ � 0.75 is well established.

We evolve the initial force distribution in time, according to
the appropriate relaxation mechanism (5) or (6). The estimated
number of aftershocks is calculated using expression (7). The
results are presented in Figs. 4 and 5 for models A and B
and compared with the respective analytical estimates (12)
and (20).

For the exponential relaxation (Fig. 4) we see that the
aftershock rate calculated using Eq. (7) is perfectly compatible
with the analytical estimation Eq. (12). This is not surprising
as for this case there is no approximation in passing from
Eq. (7) to the analytical estimate Eq. (12). For the q-dependent
relaxation (Fig. 5), the results obtained using Eq. (7) reveal
some differences with the analytical estimate (20). On one
hand, we see the appearance of a small time cutoff in
the power-law decay. This cutoff is due to a large q (or
small distance) cutoff in the model implied by the finite
lattice parameter. Although this effect is not contained in the
analytical estimation Eq. (20), it is easily obtained considering
a maximum q when integrating Eq. (18). The qualitative form
of the result reproduces very well the effect of the c parameter
in the Omori expression, Eq. (1). In addition, the decay
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FIG. 5. Same as described in the caption to Fig. 4 for model B,
and the corresponding analytical estimate Eq. (20). We see that the
analytical estimate gives a slightly smaller decay exponent than the
one calculated using Eq. (7).

exponent predicted by Eq. (20) is a bit smaller than the actual
result for N (t) calculated using Eq. (7). The discrepancy is
actually not too large (amounting approximately to a difference
of 0.15 in the value of the exponent) and is rather independent
of the roughness of the initial surface [25].

The aftershock rate as given by Eq. (7) can be named
the “primary” aftershocks. A more accurate estimation of the
aftershock rate must account for the modifications in the values
of fi that every triggered aftershock generates. A qualitative
analysis of the kind of effect we must expect is the following.
If N (t) is the rate of primary aftershocks and if a primary
aftershock actually occurred at time t0, it refreshes the values
of fi in the region it affected, resetting the production of
aftershocks in this region, which now becomes proportional
to N (t − t0). A full counting of all aftershocks must take
this effect into account. The full effect is difficult to assess
analytically, but to make some quantitative estimation, we
proceed as follows. We consider an initial aftershock from
a primary distribution N (t). Let us assume it occurred at
time t0. Now it is supposed that this primary aftershock has a
probability α of generating a secondary one, at a time defined
by the distribution rate N (t − t0). If it actually occurs, it can
generate a third one, and so on. In this way, with the primary
rate N (t) and some assumed value of α we can have an
indication of the full aftershock rate. In Fig. 6 we see the effect
of finite α values on two typical forms of N (t), namely the
exponential form N (t) ∼ exp(−t), appropriate for model A,
and the Omori form N (t) ∼ 1/(t + c)p, appropriate for model
B.

In the exponential case, we see how increasing values of α

change the time constant decay of the exponential distribution
to larger values. For the Omori case, there is a visible effect
that can be described as an effective increase of the c value;
however, for large times the value of the power-law exponent
is not modified.

Now we turn to numerical simulations in the actual
viscoelastic models to try to confirm this behavior. We proceed
as follows. An initial surface from the purely elastic qEW
model is generated as before, keeping track of the values of
forces fi , interface positions xi , and the thresholds forces f th

i .
We make two different evolution algorithms. In one of them fi

is relaxed in time, and each time fi + k0(V t − xi) reaches f th
i

FIG. 6. Effect of aftershocks triggering other aftershocks. Pri-
mary aftershocks are generated with a rate N (t). In (a) N (t) �
exp(−t), in (b) N (t) � 1/(t + c)p (we take p = 1.5, c = 1, for
concreteness). Each aftershock can trigger successive ones with
probability α. We see that the effect of a finite α is to change the
time decay constant in the exponential case (a), whereas in the Omori
case (b) it has a minor effect on the form of the decay rate.

we count one aftershock, but the values of fi and the position
of the interface are not modified. This is actually quite similar
to the analysis in Figs. 4 and 5 and is made only for comparison
purposes. The aftershocks counted in this way correspond to
what we have called the primary aftershocks. In the second
algorithm, each time fi + k0(V t − xi) reaches f th

i , we fully
develop the avalanche, modifying the form of fi according
to the evolution Eqs. (4). This changes the occurrence of
ulterior aftershocks and modifies the aftershock rate. We refer
to this as the full counting of aftershocks. The comparison
between the two situations is presented in Fig. 7. It displays
qualitatively the effect presented in Fig. 6. In the case of model
A, full counting produces a decrease in the time decay constant
of the distribution, which, however, continues to be roughly
exponential. In the case of model B, the full counting rate
of aftershocks continues to be a power-law decay. The decay
exponent seems to be in this case somewhat larger than the
one obtained considering only primary aftershocks.

Finally, we now present the results obtained from full
simulations of the viscoelastic models A and B. Namely, we let
the system evolve for a long time until it reaches a stationary
state and follow and record the activity in the system in this
regime (obtaining sequences as the one presented in Fig. 2).
We classify all aftershocks by its occurrence time with respect
to the initial event in the cluster. By definition, these are
strictly positive values. We then make the statistics of these
times. The results are contained in Fig. 8. For model A the
aftershocks show an exponential decay (with some deviations
at short times) with an effective time constant that is larger (in
a factor ∼2.6 in this case) than the bare value η/k1. For model
B, an Omori law, with a short time cutoff and a power-law
distribution at long times is clearly observed. The value of the
decay exponent is close to 2, compatible with the previous
results (Fig. 7) corresponding to an interface with a roughness
similar to the original qEW model. This is an indication that the
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FIG. 7. Aftershock rates obtained using a starting configuration
corresponding to an equilibrium qEW surface. Open symbols corre-
spond to the case in which each triggered aftershock is not allowed
to modify the distribution of fi . Full symbols instead correspond to
the case in which each aftershock modifies the values of fi according
to the avalanche dynamics [Eq. (4)]. Panels (a) and (b) correspond to
models A and B [Eqs. (5) and (6)].

FIG. 8. Aftershock rates in full simulations of the viscoelastic
model studied in this paper. (a) In the single relaxation time case
[model A, Eq. (5)] the aftershock rate is roughly exponential, with
a decay time larger than the relaxation time in the system. (b) For
q-dependent relaxation [model B, Eq. (6)], an Omori law is obtained,
with a value of the decay exponent close to 2. (c) Aftershock rate for
model C [Eq. (21)].

distribution of fi in the full viscoelastic model after big shocks
has a similar roughness as in the original qEW model. This
is not surprising: Since avalanches occur instantaneously, they
are unaffected by the viscous elements in the model, namely
they occur exactly as in a qEW model.

III. SUMMARY AND DISCUSSIONS

In this paper we have studied the statistics of aftershocks
produced in interface depinning models that include viscoelas-
tic relaxation. Two cases were analyzed in detail, namely the
single-relaxation-time case [model A, Eq. (5)] and a case
of q-dependent relaxation [model B, Eq. (6)]. These two
cases can be conveniently described by simple mechanical
analogs, using springs and dashpots (Fig. 1). The model with
a single relaxation time produces aftershocks decaying in time
exponentially. The observed time constant of the aftershock
rate is larger than the system relaxation time due to the
cumulative effect of secondary aftershocks (those triggered
by previous aftershocks). For the q-dependent relaxation an
analytical estimate gives a power-law decay of the aftershock
rate, with a numerical value of the exponent p = (4 − ζ )/2,
with ζ being the roughness exponent of the avalanches
that occur in the system. Numerical simulations confirm the
power-law decay form, although they yield numerical values
of the exponent somewhat larger than the analytical prediction.
In particular, we measure p � 2. The effect of secondary
aftershocks is much less noticeable in this case.

One of our main conclusions of this paper is that the
q-dependent relaxation that appears for certain types of
viscoelastic relaxation generates a power-law decay of the
aftershock rate, compatible with the phenomenological Omori
law for earthquakes. Yet the measured value p � 2 is higher
than typically reported values in actual seismicity (between
0.9 and 1.5 [15]). We want to discuss possible mechanisms
that may produce smaller, more realistic values of p in the
context of viscoelastic models.

One possibility is to have a different q dependence of
the relaxation mechanism. We have discussed in detail the
case ḟ ∼ −f , which produces an exponential decay of
aftershocks, and ḟ ∼ ∇2f , which gives a potential decay,
with an analytically estimated p = (4 − ζ )/2. A higher-order
relaxation mechanism, as, for instance,

df

dt
∼ −∇4f (model C) (21)

(which has, in fact, been shown to be plausible for some
viscoelastic models [22]), gives a smaller p. In particular,
for this case it is analytically estimated (on the same lines
as before) that p = (6 − ζ )/4. The result of numerical
simulations with this model is shown in Fig. 8(c) and it
shows that, in fact, the aftershock rate of this model is a
power law, with p � 1.4. This makes it clear that different
relaxation mechanisms produce different aftershock rates, with
higher-order mechanisms giving rise to smaller p values.

A second mechanism giving rise to a smaller p value
is realized in the model studied in Ref. [21]. There the
viscoelastic relaxation is supposed to affect not only the force
exerted by the k1 springs (see Fig. 1 here) but also that exerted
by the driving springs k0. This implies that the forces that

042129-6



AFTERSHOCK PRODUCTION RATE OF DRIVEN . . . PHYSICAL REVIEW E 90, 042129 (2014)

are relaxed have a contribution fi ∼ k0xi [in addition to the
component fi ∼ k1(∇2x)i , Eq. (2)]. An analytical estimation
of the consequence of this fact leads to a much smaller value
of p, as in fact it is effectively observed in actual simulations
with these kind of models (see Ref. [21], Figs. 6 and 9).

The dependence of the aftershock rate on the precise relax-
ation mechanism is interesting in view of the actual variation of
p observed in different geographical locations [15]. It may be
expected that a deeper understanding of the relation between
the p value and the kind of relaxation mechanism at play can
give information on what the relevant relaxation mechanism
is in different geographical locations.

We want to finish with a qualitative discussion concerning
the nature of the mechanism producing aftershocks in the
present viscoelastic models compared with the mechanism
originally proposed in Ref. [17]. The traditional mechanism
assumes that aftershocks occur in regions that are overloaded
due to the stress redistribution caused by the initial shock. This
implies at once that aftershocks are not expected inside the
rupture region of the initial shock, where stress has decreased.
This is at odds with the observation that a majority of
aftershocks occur within the initial rupture region. Helmstetter
and Shaw [19] have shown how this can be explained assuming
a stochastic model of the stress redistribution within the initial
rupture region. Combined with an assumed rate-and-state
friction law, they obtain a realistic Omori law for the aftershock
rates. The models we study here are, on one hand, inherently
stochastic as the position xi and strength f th of the pining
centers are stochastic variables. The existence of aftershocks
depends crucially on this assumption, and the aftershocks
always occur within the region affected by previous shocks in
the same cluster. On the other hand, we do not need to assume
the validity of the rate-and-state description of the sliding
process. A phenomenology compatible with rate-and-state
friction emerges naturally from the microscopic relaxation
mechanisms introduced [22]. Yet, an unrealistic feature of our
models is the consideration of only local elastic interactions,
whereas it is well known that, due to the three-dimensional
nature of the full problem, long-range elastic interaction should
be considered. We expect that realistic long-range interaction
will have an effect in the aftershock rate, as, in particular, long-
range elastic interactions modify the typical roughness of qEW
interfaces. Also, in the presence of long-range interactions, a
fraction of the aftershocks can nucleate outside the region

affected by previous shocks, giving rise to a more realistic
situation. Unfortunately, the precise assessment of the effects
caused by the consideration of long-range elastic interactions
in models with viscoelastic relaxation can be addressed only
by costly numerical simulations that are out of our present
possibilities.
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APPENDIX: NUMERICAL DETAILS

The narrow pinning centers are chosen to be randomly
distributed along the x axis, with an average separation
z = 0.1. The results are independent of this particular choice.
Pinning centers are uncorrelated among different spatial
positions. For the numerical implementation, each time the
interface moves forward, the location of the new narrow well
is obtained by adding to the previous position a quantity z, that
is exponentially distributed, with mean value z. This generates
a random uncorrelated distribution for the location of the wells.

The value of the threshold forces f th at each pinning center
is taken from a Gaussian distribution with mean value 1 and
standard deviation 1. Negative values are discarded. As these
values are uncorrelated for different pinning centers, each time
the interface jumps to a new position, the value of f th is chosen
anew.

The size S of an avalanche is defined as the sum of
all displacements at every point on the interface, namely
S = ∑

i δxi = ∑
i(x

after
i − xbefore

i ), where “before” and “after”
refer to the values of xi before the beginning and after the end
of the avalanche.

Throughout the paper, the value of k1 is set to k1 = 1. The
value of k0 is 0.05 in Fig. 2 and in the construction of the qEW
surface in Figs. 4 and 5 and 0.15 in Figs. 7 and 8. The spatial
numerical lattice is an N × N square, with periodic boundary
conditions. The value of N is 1024 in all cases except in
Figs. 8(b) and 8(c), where it is 256.
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[3] S. Lemerle, J. Ferré, C. Chappert, V. Mathet, T. Giamarchi, and

P. Le Doussal, Phys. Rev. Lett. 80, 849 (1998).
[4] E. Rolley, C. Guthmann, R. Gombrowicz, and V. Repain, Phys.

Rev. Lett. 80, 2865 (1998).
[5] P. Le Doussal, K. J. Wiese, S. Moulinet, and E. Rolley, Europhys.

Lett. 87, 56001 (2009).
[6] Y. Ben-Zion and J. R. Rice, J. Geophys. Res. 98, 14109 (1993).
[7] D. S. Fisher, K. Dahmen, S. Ramanathan, and Y. Ben-Zion,

Phys. Rev. Lett. 78, 4885 (1997).

[8] D. S. Fisher, Phys. Rep. 301, 113 (1998).
[9] M. C. Marchetti, A. A. Middleton, and T. Prellberg, Phys. Rev.

Lett. 85, 1104 (2000).
[10] E. A. Jagla, F. P. Landes, and A. Rosso, Phys. Rev. Lett. 112,

174301 (2014).
[11] S. Papanikolaou, D. M. Dimiduk, W. Choi, J. P. Sethna, M. D.

Uchic, C. F. Woodward, and S. Zapperi, Nature 490, 517
(2012).

[12] C. H. Scholz, The Mechanics of Earthquakes and Faulting
(Cambridge University Press, Cambridge, UK, 2002).

[13] F. Omori, J. Coll. Sci. Imp. Univ. Tokio 7, 111 (1894).
[14] T. Utsu, Geophys. Mag. 30, 521 (1961).

042129-7

http://dx.doi.org/10.1080/00018730802420614
http://dx.doi.org/10.1080/00018730802420614
http://dx.doi.org/10.1080/00018730802420614
http://dx.doi.org/10.1080/00018730802420614
http://dx.doi.org/10.1103/PhysRevB.58.6353
http://dx.doi.org/10.1103/PhysRevB.58.6353
http://dx.doi.org/10.1103/PhysRevB.58.6353
http://dx.doi.org/10.1103/PhysRevB.58.6353
http://dx.doi.org/10.1103/PhysRevLett.80.849
http://dx.doi.org/10.1103/PhysRevLett.80.849
http://dx.doi.org/10.1103/PhysRevLett.80.849
http://dx.doi.org/10.1103/PhysRevLett.80.849
http://dx.doi.org/10.1103/PhysRevLett.80.2865
http://dx.doi.org/10.1103/PhysRevLett.80.2865
http://dx.doi.org/10.1103/PhysRevLett.80.2865
http://dx.doi.org/10.1103/PhysRevLett.80.2865
http://dx.doi.org/10.1209/0295-5075/87/56001
http://dx.doi.org/10.1209/0295-5075/87/56001
http://dx.doi.org/10.1209/0295-5075/87/56001
http://dx.doi.org/10.1209/0295-5075/87/56001
http://dx.doi.org/10.1029/93JB01096
http://dx.doi.org/10.1029/93JB01096
http://dx.doi.org/10.1029/93JB01096
http://dx.doi.org/10.1029/93JB01096
http://dx.doi.org/10.1103/PhysRevLett.78.4885
http://dx.doi.org/10.1103/PhysRevLett.78.4885
http://dx.doi.org/10.1103/PhysRevLett.78.4885
http://dx.doi.org/10.1103/PhysRevLett.78.4885
http://dx.doi.org/10.1016/S0370-1573(98)00008-8
http://dx.doi.org/10.1016/S0370-1573(98)00008-8
http://dx.doi.org/10.1016/S0370-1573(98)00008-8
http://dx.doi.org/10.1016/S0370-1573(98)00008-8
http://dx.doi.org/10.1103/PhysRevLett.85.1104
http://dx.doi.org/10.1103/PhysRevLett.85.1104
http://dx.doi.org/10.1103/PhysRevLett.85.1104
http://dx.doi.org/10.1103/PhysRevLett.85.1104
http://dx.doi.org/10.1103/PhysRevLett.112.174301
http://dx.doi.org/10.1103/PhysRevLett.112.174301
http://dx.doi.org/10.1103/PhysRevLett.112.174301
http://dx.doi.org/10.1103/PhysRevLett.112.174301
http://dx.doi.org/10.1038/nature11568
http://dx.doi.org/10.1038/nature11568
http://dx.doi.org/10.1038/nature11568
http://dx.doi.org/10.1038/nature11568


E. A. JAGLA PHYSICAL REVIEW E 90, 042129 (2014)

[15] T. Utsu, Y. Ogata, and R. S. Matsu’ura, J. Phys. Earth 43, 1
(1995).

[16] J. C. Savage, J. L. Svarc, and S.-B. Yu, J. Geophys. Res. 112,
B06406 (2007); H. Perfettini and J.-P. Avouac, ibid. 109, B02304
(2004).

[17] J. H. Dieterich, J. Geophys. Res. 99, 2601 (1994).
[18] A. Marcellini, Tectonophysics 277, 137 (1997).
[19] A. Helmstetter and B. E. Shaw, J. Geophys. Res. 111, B07304

(2006).
[20] G. Zoller, S. Hainzl, M. Holschneider, and Y. BenZio, Geophys.

Res. Lett. 32, L03308 (2005).
[21] E. A. Jagla, Phys. Rev. E 81, 046117 (2010).
[22] E. A. Jagla and A. B. Kolton, J. Geophys. Res. 115, B05312

(2010).

[23] J. H. Dieterich and B. D. Kilgore, in Faulting, Friction, and
Earthquake Mechanics, Part II (Birkhauser, Basel, 1994), pp.
283–302.

[24] Note that in the two viscoelastic models studied here, if xi are
constant, fi tend to zero with time, meaning that all the elastic
energy of the interface is viscoelastically relaxed. It would be
straightforward to consider a more realistic case in which only
a fraction of the elastic energy of the interface is relaxed (see
Ref. [10]). This, however, complicates the presentation, without
adding to the physics of the problem.

[25] Further analysis shows that Eq. (20) actually fits very well
the quantity given by Eq. (13). This means that the slight
difference is due to the nonperfect equivalence of expressions (7)
and (13).

042129-8

http://dx.doi.org/10.4294/jpe1952.43.1
http://dx.doi.org/10.4294/jpe1952.43.1
http://dx.doi.org/10.4294/jpe1952.43.1
http://dx.doi.org/10.4294/jpe1952.43.1
http://dx.doi.org/10.1029/93JB02581
http://dx.doi.org/10.1029/93JB02581
http://dx.doi.org/10.1029/93JB02581
http://dx.doi.org/10.1029/93JB02581
http://dx.doi.org/10.1016/S0040-1951(97)00082-6
http://dx.doi.org/10.1016/S0040-1951(97)00082-6
http://dx.doi.org/10.1016/S0040-1951(97)00082-6
http://dx.doi.org/10.1016/S0040-1951(97)00082-6
http://dx.doi.org/10.1029/2004GL021871
http://dx.doi.org/10.1029/2004GL021871
http://dx.doi.org/10.1029/2004GL021871
http://dx.doi.org/10.1029/2004GL021871
http://dx.doi.org/10.1103/PhysRevE.81.046117
http://dx.doi.org/10.1103/PhysRevE.81.046117
http://dx.doi.org/10.1103/PhysRevE.81.046117
http://dx.doi.org/10.1103/PhysRevE.81.046117



