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This work studies the ability of the two-center local spin quan-

tities, provided by the partitioning of the expectation value of

the spin-squared operator <Ŝ
2
> corresponding to N-electron

systems, for determining spin-exchange coupling constants

within the Heisenberg spin Hamiltonian model. The spin-

exchange parameters, which characterize this Hamiltonian for

a determined system, have been evaluated in the HeH2

aggregate and in several Hn clusters (n 5 2, 3, 4) with different

geometrical arrangements, using internuclear distances larger

than the equilibrium ones (beyond the bonding regions). The

results found have been analyzed and compared with those

arising from other approaches, showing the feasibility of our

methodology. VC 2014 Wiley Periodicals, Inc.

DOI: 10.1002/qua.24698

Introduction

The partitioning of the values of a determined molecular prop-

erty into contributions which can be assigned to atoms or

groups of atoms which compose an N-electron system has

proven to be a very useful technique in molecular physics and

quantum chemistry. The number of electrons N, the electronic

energy, the electron density and so forth have been decom-

posed according to the fragments of the molecular system,

providing interesting insights into its molecular structure and

its atomic bondings. Another property studied within this

scheme is the expectation value of the spin-squared operator

<Ŝ
2
> corresponding to a state of an N-electron system. The

partitioning of the <Ŝ
2
> quantity into one- and two-center

terms (local spins) allows one to know the spin state of an

atom or group of atoms within a molecular system and to

describe the magnetic interactions between its centers. The

task of dividing suitably the spin values <Ŝ
2
> has been

tackled through several procedures. Some authors have pro-

posed the use of atomic projection operators associated with

the nuclei of the system,[1–7] while others have undertaken a

direct partitioning of the <Ŝ
2
> quantity.[8–18] Although the

results provided by both partitioning types have been widely

discussed, their local spin values have scarcely been utilized to

determine magnetic properties in the studied systems.[4,9,19]

On the other hand, the phenomenological Heisenberg spin

Hamiltonian has successfully been applied in many areas of

chemistry and material science to describe relative energies of

the states arising from different spin couplings in compounds

containing unpaired electrons.[20] A rigorous determination of

the coupling constants of this operator from ab initio wave

functions requires the use of symmetry-adapted functions that

involves a high-computational cost. Consequently, different

approximated computational procedures have been pro-

posed[21–24] to perform this task; most of them are based on

the use of the energies arising from the high-spin (HS) and

broken-symmetry (BS) determinants. This picture provides an

intuitive insight into the magnetic interactions in terms of fer-

romagnetic and antiferromagnetic couplings, although the use

of the BS determinants implies a spin contamination in the

results obtained. In the approaches reported by Noodle-

man[21,22] and Yamaguchi and coworkers,[23–26] the evaluation

of coupling constants is carried out through the difference of

the total spin expectation values <Ŝ
2
> corresponding to the

HS and BS determinants. However, in multispin systems the

evaluation of these coupling constants has required the use of
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two-center local spin values, which have been calculated by

means of different averages of the one-center local spin

ones,[4–26] or perturbative approaches.[27] The aim of this work

is to carry out a study of the capability of two-center local

spins arising from the direct partitioning of the <Ŝ
2
> quan-

tity to determine coupling constants in different situations

which have not been examined, to our knowledge, in a sys-

tematic manner. To perform this task, we consider systems

possessing two or more magnetic sites which exhibit one,

two, or three equal or different coupling constants. To imple-

ment this study, we have chosen the HeH2 and Hn (n 5 2, 3, 4)

clusters at different geometrical arrangements, using stretched

internuclear distances. These clusters have been considered as

simple prototype systems which present several spin coupling

constants and have also been described within other

approaches.[28,29]

The organization of this work is as follows. The second sec-

tion describes the procedure utilized to evaluate the coupling

constants, within the framework of the Heisenberg spin Hamil-

tonian, in the studied systems, as well as the formulations

used in other treatments. This section also reports the direct

partitioning of the expectation value of the spin-squared oper-

ator <Ŝ
2
> and the formulation of one- and two-center local

spins resulting from that division. In third section, we show

the computational aspects, the numerical values obtained and

the corresponding discussion as well as a comparison between

our results and those arising from other methods. Finally, in

the last section we highlight the conclusions of this work.

Theoretical Review

As is well-known, the Heisenberg spin Hamiltonian model has

been formulated as

Ĥ5E022
X

A<B

JAB ŜAŜB (1)

where E0 is a constant meaning the origin of the energy scale

chosen for that model, A; B; . . . are the magnetic sites within

the system, JAB the coupling constant between them and ŜA

and ŜB the spin operators assigned to those centers. In Noo-

dleman’s treatment,[21] the expectation values of the Hamilto-

nian Ĥ in Eq. (1) are calculated through Slater determinants.

One of these determinants is the highest pure spin multiplet

(HS) in which all its orbitals are singly occupied with spin up

(a ferromagnetic disposal). The other determinants are mixed

spin symmetry and lowered spin symmetry; they are denomi-

nated BS states possessing singly occupied orbitals with spin

down (an antiferromagnetic disposal). Consequently, the differ-

ences of the energies ðEHS 2EBS Þ corresponding to the deter-

minants are

EHS 2EBS 52 2
X

A<B

JAB <ŜAŜB>
HS 2 < ŜAŜB>

BS
� �

(2)

There are different possibilities to formulate the BS determi-

nants so that Eq. (2) constitutes a system of linear equations

in the variables JAB provided that the two-center expectation

values <ŜAŜB>
HS and <ŜAŜB>

BS have previously been

evaluated.

Taking into account the decomposition of the spin-squared

operator Ŝ
2

5 ð
X

A

ŜAÞ2 between its one- and two-center spin

operators associated with these centers, one can formulate

<Ŝ
2
> 5

X

A

< Ŝ
2

A > 1 2
X

A<B

< ŜAŜB > (3)

and assuming identical one-center terms <Ŝ
2

A > values for

both HS and BS states[23,25] (<Ŝ
2

A>
HS �< Ŝ

2

A>
BS as applicabil-

ity condition) one can relate differences of total spins to differ-

ences of two-center local spins

<Ŝ
2
>HS 2 < Ŝ

2
>BS 52

X

A<B

<ŜAŜB>
HS 2 < ŜAŜB>

BS
� �

(4)

For a system with two magnetic centers, Yamaguchi and

coworkers[23,25] formulated the unique coupling constant JAB

according to Eqs. (2) and (4), resulting

JAB52
EHS 2EBS

<Ŝ
2
>HS 2 < Ŝ

2
>BS

(5)

Afterward, this treatment was generalized to multispin sys-

tems involving a more sophisticated formulation.[26]

Alternatively, the determination of JAB parameters can be

addressed through a rigorous calculation of the two-center

local spins.[4,9,19] As mentioned in the Introduction, the pur-

pose of this work is to know the capabilities of two-center

local spins derived from the direct partitioning model of the

expectation value of the spin-squared operator <Ŝ
2
> accord-

ing to[8,10,12,14–17]

<Ŝ
2
> 5

X

A

< Ŝ
2
>A1 2

X

A<B

< Ŝ
2
>AB (6)

to evaluate coupling constants within the Heisenberg spin

Hamiltonian. According to this purpose, the terms <Ŝ
2

A > and

<ŜAŜB > (arising from the spin atomic operator formulation)

will be identified, respectively, with those <Ŝ
2
>A and <Ŝ

2
>AB

(arising from the direct partitioning of <Ŝ
2
> of Eq. (6)), as

was proposed in Ref. [8]. In this work, we will use local spins

arising from our direct partitioning of <Ŝ
2
> quantity in the

Hilbert space.[15] In the case of states described by Slater

determinants, this partitioning leads to

<Ŝ
2
>AB 5

1

4

X

l2A

X

m2B

ðPsSÞllðPsSÞmm1dAB
1

2

X

l2A

X

m2B

ðPsSÞlmðPsSÞml

(7)

Equation (7) represents both one- and two-center local spin

terms in a compact formula by means of the Kronecker delta

dAB. In this formula, l; m; . . . are the atomic orbitals, S is their

overlap matrix, and Ps5Pa2Pb is the spin density resulting

from the decomposition of the cumulant matrix (Pa and Pb are

the a- and b-blocks of the first-order reduced density matrix

respectively); in this relationship, the sums are restricted to the
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atomic functions assigned to the corresponding center.

The determination of the two-center local spins <Ŝ
2
>HS

AB and

<Ŝ
2
>BS

AB according to formula (7) and their introduction in the

system of equations given in Eq. (2) allow one to calculate the

JAB parameters in systems possessing one or several identical

or different spin coupling constants. Alternatively, values of

the two-center local spins <Ŝ
2
>HS

AB and <Ŝ
2
>BS

AB arising

from other direct partitionings of the quantity <Ŝ
2
> could be

utilized.[8,16,17] In the next section, we report results arising

from the application of this methodology to several Hydrogen

clusters with different geometrical arrangements which repre-

sent a variety of situations and interactions between their

magnetic sites.

Results and Discussion

The determination of energies EHS and EBS required in Eq. (2)

has been performed at unrestricted Hartree–Fock (UHF) and

unrestricted Becke-3-parameter-Lee-Yang-Parr (UB3LYP) func-

tional levels, using the GAUSSIAN 09 package[30] and the

atomic basis sets STO-3G, 6–31G, 6–31G(d,p), and cc-pVTZ.

Likewise, with that package we have evaluated the spin-

density matrix elements Ps and the overlap integrals S needed

in Eq. (7). The calculation of the two-center local spins <Ŝ
2
>AB

has been carried out, in subsequent steps, using our own

codes. The solutions of the systems of linear equations

expressed by Eq. (2) have been obtained using MATHEMATICA

9.0.[31] We have constructed these systems of equations with

each of the determinants of type BS which represent all possi-

ble spin orientations of the individual centers plus the deter-

minant which describes the HS state. We have evaluated the

different coupling constants JAB (as well as the E0 quantity) in

the systems H2(D1h), H3(D3h), H4(Td), HeH2(C2v), H3(D1h),

H4(D4h), H3(C2v), and H3(Cs), at different internuclear distances.

The Hydrogen atoms which compose all these systems were

situated at distances much longer than the equilibrium one in

Figure 1. Point groups and geometrical distances of the systems studied in this work. [Color figure can be viewed in the online issue, which is available at

wileyonlinelibrary.com.]
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the H2 molecule and consequently, all the electrons around

the Hydrogen atoms can be regarded as magnetic active cen-

ters. The geometrical arrangements of these clusters are

shown in Figure 1. In the case of HeH2(C2v) cluster, we pretend

to study the influence of the He atom on the stretched H2

molecule (at d
0
H-H 5 3 Å) scanning the distances dH-He (see Fig.

1). In the H4(D4h) cluster case, a singular value decomposition

was used to solve the resulting overdetermined system of lin-

ear equations,[29] which arises from considering four a centers,

three a and one b centers, and two a and two b centers set

out in diagonal and neighbor positions. The cluster H4(TdÞ
presents similar features, although to compare our results with

those arising from the Yamaguchi approach only two states

(the lowest energy ones) have been considered.

Tables 1 and 2 report values of the coupling constants cal-

culated at different internuclear distances d (see Fig. 1) for the

mentioned clusters described at UHF level in the basis sets

STO-3G and 6–31G(d,p), respectively. We have grouped the

systems according to the number of coupling constants hav-

ing a different value; a unique value (H2(D1h), H3(D3h), H4(,TdÞ
and HeH2(C2v)), two different values (H3(D1h), H4(D4h), and

H3(C2v)) and three different ones (H3(Cs)). A survey of the

results contained in these Tables shows a strong dependence

of the coupling constant values on the internuclear distances;

this feature is exhibited as in the minimum basis sets as in the

larger 6–31G(d,p) ones. Starting with the H2(D1h) molecule,

the reference system, this dependence shows an exponential

decay as expected.[32] For internuclear distances between the

interacting centers considered dH-H � 3 Å and longer ones

(beyond the bonding region), all the Hn (n 5 2, 3, 4) clusters

present similar values for their corresponding J constants

involving those centers, for both basis sets. The clusters

HeH2(C2v), H3(C2v), and H3(Cs) also present this feature for the

values of J (in the HeH2 cluster) and J
0

(in the H3(C2v) and

H3(Cs) ones). These coupling constants correspond to interac-

tions between two H centers maintained at the fixed distance

d
0

of 3 Å (see Fig. 1), while the distance d of these two centers

to another atom (He in the HeH2(C2v) cluster and H in the

H3(C2v) and H3(Cs) ones) is scanned. The value of J for H2(D1hÞ
at the internuclear distance of 3 Å is the reference for these

cases. The obtained values point out that the interaction

between two adjacent magnetic centers is affected by their

distance to a third atom, even in the case of the diamagnetic

He one. The J
0 0 value of the H3(CsÞ also performs according to

those patterns. The J
0

values in the clusters H3(D1h) and

H4(D4h) represent interactions between two nonadjacent cen-

ters and two diagonally placed centers, respectively; the

reported values reflect simultaneously the effect of the distan-

ces between both centers and from those to their neighbors.

Consequently, one can conclude that our proposal for evaluat-

ing Heisenberg coupling constants by means of the two-

center local spins reported in Eq. (7), in Hydrogen clusters,

Table 1. Values (in cm21) of the coupling constants J, J
0
, and J

0 0 for Hydrogen clusters at stretched distances HAH (d/Å) and d
0
5 3.0 Å (see Fig. 1).

H2(D1h) H3(D3h) H4(Td) HeH2(C2v)
H3(D1h) H4(D4h) H3(C2v) H3(Cs)

d/Å J J J J J J
0

J J
0

J J
0

J J
0

J
0 0

2.0 22839 22395 21686 213.74 22881 219.25 22708 12.92 22804 25.068 22837 273.73 22.696

2.2 21416 21248 21001 244.13 21428 25.437 21376 2.886 21386 235.04 21415 275.03 21.679

2.4 2700.8 2639.4 2553.3 261.48 2703.7 21.624 2689.4 0.182 2682.6 254.68 2700.1 275.67 21.087

2.6 2342.1 2320.5 2293.1 269.93 2342.8 20.345 2338.8 20.298 2332.3 265.73 2341.6 276.01 20.697

2.8 2163.7 2156.5 2147.5 273.75 2163.8 20.070 2162.8 20.203 2158.8 271.41 2163.4 276.24 20.401

3.0 276.46 274.17 271.56 275.38 276.49 20.026 276.24 20.093 274.17 274.17 276.34 276.34 20.229

3.225 231.47 230.88 230.26 276.24 231.48 0.003 231.43 20.029 230.53 275.55 231.41 276.41 20.110

3.5 210.17 210.06 211.46 276.40 210.17 0.001 210.16 20.005 29.870 276.18 210.15 276.44 20.044

4.0 21.115 21.089 21.149 276.45 21.156 0.000 21.156 20.000 21.124 276.43 21.154 276.46 20.006

5.0 20.008 20.009 20.010 276.46 20.009 0.000 20.009 20.000 20.009 276.46 20.009 276.46 0.000

Results correspond to UHF level using STO-3G basis sets. (1 cm21 5 4.556 microhartrees 5 2.859 cal/mol)

Table 2. Values (in cm21) of the coupling constants J, J
0
, and J

0 0 for Hydrogen clusters at stretched distances HAH (d/Å) and d
0
5 3.0 Å (see Fig. 1).

H2(D1h) H3(D3h) H4(Td) HeH2(C2v)
H3(D1h) H4(D4h) H3(C2v) H3(Cs)

d/Å J J J J J J
0

J J
0

J J
0

J J
0

J
0 0

2.0 23285 22572 21470 210.89 23385 294.77 23046 226.26 23181 214.18 23278 2144.1 25.090

2.2 21802 21472 2999.0 270.91 21839 232.32 21711 0.505 21719 251.47 21798 2149.4 24.014

2.4 2987.2 2838.4 2637.0 2111.5 2999.4 210.15 2953.0 2.825 2931.9 291.19 2984.4 2152.9 23.073

2.6 2538.5 2474.1 2391.2 2135.0 2542.1 22.958 2526.4 1.396 2505.3 2119.8 2536.8 2155.1 22.208

2.8 2292.3 2265.9 2232.7 2147.3 2293.3 20.769 2288.4 0.356 2273.6 2137.3 2291.3 2156.4 21.452

3.0 2157.8 2147.6 2135.1 2153.3 2158.0 20.144 2156.6 0.028 2147.6 2147.6 2157.2 2157.2 20.921

3.225 277.97 274.78 270.90 2156.2 278.02 20.001 277.74 20.024 273.01 2153.5 277.64 2157.6 20.528

3.5 232.14 231.49 231.08 2157.4 232.15 0.008 232.12 20.016 230.18 2156.5 232.00 2157.7 20.243

4.0 25.700 25.684 25.686 2157.8 25.701 0.001 25.701 20.001 25.395 2157.7 25.675 2157.8 20.050

5.0 20.085 20.085 20.084 2157.8 20.085 0.000 20.085 0.000 20.082 2157.8 20.085 2157.8 20.001

Results correspond to UHF level using 6–31G(d,p) basis sets. (1 cm21 5 4.556 microhartrees 5 2.859 cal/mol)
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leads to JHH values which turn out to be transferable from the

simplest H2(D1h) molecule to more sophisticated Hn clusters,

in different geometrical arrangements, at distances longer

than 3 Å between two neighbor atoms. These numerical deter-

minations agree with the conclusions reported in Ref. [28] for

this type of systems, which were described by means of ana-

lytical solutions at full configuration interaction level, requiring

a considerably higher computational expense. In Tables 3 and

4, we report results arising from an identical methodological

study of those systems, described at UB3LYP level in the STO-

3G and 6–31G(d,p) basis sets. As can be observed, the results

in these Tables, compared with their counterparts in Tables 1

and 2, reveal a strong influence of the electron correlation.

Previous studies have reported that density functional theory

methods typically overestimate J values,[29,33,34] as confirmed

in the present results. Although the coupling constant values

found differ significantly from the minimum basis sets to larger

ones[28] and from the uncorrelated level to correlated one,

Table 3. Values (in cm21) of the coupling constants J, J
0
, and J

0 0 for Hydrogen clusters at stretched distances HAH (d/Å) and d
0
5 3.0 Å (see Fig. 1).

H2(D1h) H3(D3h) H4(Td) HeH2(C2v)
H3(D1h) H4(D4h) H3(C2v) H3(Cs)

d/Å J J J J J J
0

J J
0

J J
0

J J
0

J
0 0

2.0 25543 24699 22733 268.57 25707 32.74 25156 66.13 25548 213.47 25539 2196.9 217.69

2.2 22769 22487 21800 2131.3 22830 30.01 22702 37.79 22746 285.17 22767 2200.5 212.47

2.4 21421 21319 21096 2168.9 21440 11.54 21405 4.808 21397 2150.8 21419 2202.3 28.865

2.6 2739.6 2701.7 2630.8 2188.0 2745.6 3.529 2733.7 23.582 2723.1 2180.5 2738.2 2203.2 26.528

2.8 2387.9 2374.7 2351.4 2197.1 2389.2 1.791 2385.0 23.637 2378.3 2193.4 2386.5 2203.3 24.196

3.0 2204.7 2199.1 2191.8 2201.1 2204.6 1.092 2203.2 22.175 2199.1 2199.1 2203.6 2203.6 23.665

3.225 2100.4 297.32 295.99 2202.9 2100.5 0.200 299.71 21.019 297.51 2202.0 299.70 2204.0 22.313

3.5 242.85 241.12 241.36 2203.9 242.90 0.037 242.59 20.404 241.33 2203.4 242.39 2204.2 21.270

4.0 29.406 29.246 29.069 2204.5 29.399 0.002 29.356 20.050 29.044 2204.2 29.116 2204.4 20.520

5.0 20.441 20.447 20.435 2204.7 20.446 0.000 20.446 20.000 20.414 2204.7 20.254 2204.5 20.206

Results correspond to UB3LYP level using STO-3G basis sets. (1 cm21 5 4.556 microhartrees 5 2.859 cal/mol)

Table 4. Values (in cm21) of the coupling constants J, J
0
, and J

0 0 for Hydrogen clusters at stretched distances HAH (d/Å) and d
0
5 3.0 Å (see Fig. 1).

H2(D1h) H3(D3h) H4(Td) HeH2(C2v)
H3(D1h) H4(D4h) H3(C2v) H3(Cs)

d/Å J J J J J J
0

J J
0

J J
0

J J
0

J
0 0

2.0 26775 25298 22372 2129.4 26947 2249.8 25733 2244.6 26573 2174.2 26767 2409.2 254.30

2.2 23727 23129 21846 2257.6 23828 221.00 23446 227.75 23607 2194.2 23719 2430.4 238.28

2.4 22136 21878 21326 2346.3 22173 1.700 22043 215.92 22049 2304.0 22129 2439.2 228.92

2.6 21256 21143 2912.3 2398.4 21268 2.216 21220 216.55 21200 2373.3 21251 2444.4 221.74

2.8 2750.5 2702.1 2607.0 2426.2 2754.0 1.180 2734.8 212.74 2715.7 2410.8 2746.4 2447.1 215.92

3.0 2451.7 2431.5 2393.8 2439.8 2452.8 0.570 2444.6 27.853 2431.5 2431.5 2448.3 2448.3 211.59

3.225 2255.2 2247.7 2235.0 2446.5 2255.4 0.194 2252.0 23.975 2244.4 2443.1 2252.9 2449.8 27.266

3.5 2125.3 2123.3 2119.5 2449.6 2125.3 0.017 2124.1 21.612 2120.0 2448.5 2124.0 2450.8 23.888

4.0 231.77 231.66 230.75 2451.0 231.68 20.008 231.50 20.225 230.16 2450.5 231.09 2451.5 21.150

5.0 21.519 21.523 21.490 2451.6 21.534 20.000 21.533 20.001 21.426 2451.8 21.497 2451.9 20.085

Results correspond to UB3LYP level using 6–31G(d,p) basis sets. (1 cm21 5 4.556 microhartrees 5 2.859 cal/mol)

Table 5. Values (in cm21) of the coupling constant J for the H2(D‘h) molecule at stretched distances HAH (d/Å) and UHF and UB3LYP theory levels, using

STO-3G, 6–31G, 6–31G(d,p), and cc-pVTZ basis sets.

UHF UB3LYP

d/Å STO-3G 6–31G 6–31G(d,p) cc-pVTZ STO-3G 6–31G 6–31G(d,p) cc-pVTZ

2.0 22839 (22639) 23297 (22931) 23285 (22918) 23291 (22920) 25543 (24309) 26795 (24594) 26775 (24575) 26906 (24573)

2.2 21416 (21365) 21812 (21695) 21802 (21686) 21822 (21705) 22769 (22449) 23741 (23006) 23727 (22991) 23820 (23023)

2.4 2700.8 (2688.4) 2993.6 (2957.3) 2987.2 (2950.9) 21009 (2972.3) 21421 (21340) 22144 (21904) 22136 (21892) 22208 (21937)

2.6 2342.1 (2339.1) 2542.9 (2531.7) 2538.5 (2527.2) 2555.9 (2544.6) 2739.6 (2719.3) 21262 (21175) 21256 (21175) 21315 (21221)

2.8 2163.7 (2163.0) 2295.1 (2291.7) 2292.3 (2288.9) 2304.2 (2300.7) 2387.9 (2383.0) 2754.2 (2727.3) 2750.5 (2723.7) 2800.2 (2767.8)

3.0 276.46 (276.30) 2159.3 (2158.2) 2157.8 (2156.7) 2165.1 (2164.0) 2204.7 (2203.5) 2453.5 (2444.7) 2451.7 (2442.8) 2495.6 (2484.1)

3.225 231.47 (231.45) 278.62 (278.37) 277.97 (277.72) 282.13 (281.86) 2100.4 (2100.2) 2255.9 (2253.4) 2255.2 (2252.7) 2294.6 (2291.0)

3.5 210.17 (210.16) 232.33 (232.29) 232.14 (232.10) 234.51 (234.46) 242.85 (242.82) 2125.5 (2125.0) 2125.3 (2124.8) 2159.9 (2158.9)

4.0 21.115 (21.115) 25.713 (25.712) 25.700 (25.699) 26.969 (26.966) 29.406 (29.406) 231.77 (231.75) 231.77 (231.75) 255.53 (255.45)

5.0 20.008 (20.009) 20.085 (20.085) 20.085 (20.085) 20.282 (20.282) 20.441 (20.441) 21.519 (21.519) 21.519 (21.519) 27.201 (27.200)

In parenthesis, the Yamaguchi values arising from Eq. (5). (1 cm21 5 4.556 microhartrees 5 2.859 cal/mol)
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their performance, in terms of the transferability, is very similar

at both levels of theory.

In Tables 5, 6, and 7, we have gathered coupling constant

values JHH for the systems H2(D1h), H3(D3h), and H4(Td),

respectively. These Tables contain results arising from the

Yamaguchi approach and those from our own algorithms to

make a suitable comparison between both procedures. We

have chosen these systems for simplicity as they possess a

unique value for their coupling constants and a unique dis-

tance between any nucleus pair. Consequently, the Yamaguchi

treatment can be formulated by Eq. (5); alternatively our

results have been obtained from the values of two-center local

spins <Ŝ
2
>AB [Eq. (7)] provided by the direct partitioning of

the <Ŝ
2
> quantity [Eq. (6)]. The comparison of these results

has been performed using identical computational conditions

(correlation level and basis set). As can be seen from these

tables, the magnitude of the coupling constants obtained

from both methods turns out to be very similar, and it is

almost coincident around 3 Å (the internuclear distance to

which the results become transferable). The dependence of

these results on the level of electronic correlation of the wave

function and the basis sets utilized is also quite similar for

both procedures. To get a clearer insight into the basis set

effects on the J values, we have performed all these calcula-

tions using four basis sets, the minimum STO-3G basis and the

extended 6–31G, 6–31(d,p), and cc-pVTZ ones. As can be

observed in these Tables, in all cases there are big differences

between the J values obtained using the STO-3G basis and the

corresponding values on 6–31G, 6–31G(d,p), and cc-pVTZ

bases, which are fairly similar. These results point out that con-

vergence can be obtained with sufficiently large basis sets.

These findings are in agreement with previous studies involv-

ing different approaches to determine coupling constants[28]

and spin populations.[35]

Concluding Remarks

In this work, we have studied the ability of using two-center

local spin values to evaluate coupling constants within the

Heisenberg spin Hamiltonian model. The two-center local spins

utilized to perform this task have been those arising from a

direct partitioning of the <Ŝ
2
> quantity corresponding to an

N-electron system. Our proposals have been applied to

describe coupling constants in several Hydrogen clusters, with

Table 6. Values (in cm21) of the coupling constant J for the H3(D3h) cluster at stretched distances HAH (d/Å) and UHF and UB3LYP theory levels using

STO-3G, 6–31G, 6–31G(d,p), and cc-pVTZ basis sets.

UHF UB3LYP

d/Å STO-3G 6–31G 6–31G(d,p) cc-pVTZ STO-3G 6–31G 6–31G(d,p) cc-pVTZ

2.0 22395 (22251) 22582 (22353) 22572 (22343) 22554 (22324) 24699 (23820) 25311 (23980) 25298 (23963) 25329 (23935)

2.2 21248 (21208) 21479 (21401) 21472 (21394) 21469 (21392) 22487 (22227) 23139 (22625) 23129 (22614) 23153 (22613)

2.4 2639.4 (2628.9) 2843.8 (2817.1) 2838.4 (2811.8) 2843.0 (2817.1) 21319 (21248) 21886 (21697) 21878 (21689) 21904 (21702)

2.6 2320.5 (2317.8) 2478.0 (2469.1) 2474.1 (2465.3) 2479.8 (2471.3) 2701.7 (2683.2) 21149 (21081) 21143 (21076) 21169 (21095)

2.8 2156.5 (2155.8) 2268.4 (2265.5) 2265.9 (2263.0) 2270.1 (2267.4) 2374.7 (2370.0) 2704.9 (2681.2) 2702.1 (2678.3) 2729.1 (2701.9)

3.0 274.17 (274.02) 2148.9 (2148.0) 2147.6 (2146.6) 2150.2 (2149.3) 2199.1 (2198.2) 2433.1 (2424.9) 2431.5 (2423.3) 2460.3 (2450.3)

3.225 230.88 (230.86) 275.39 (275.14) 274.78 (274.54) 276.11 (275.88) 297.32 (297.08) 2249.0 (2246.6) 2247.7 (2245.3) 2278.2 (2274.9)

3.5 210.06 (210.06) 231.67 (231.63) 231.49 (231.44) 232.83 (232.78) 241.12 (241.09) 2124.1 (2123.6) 2123.3 (2122.8) 2153.6 (2152.7)

4.0 21.089 (21.089) 25.697 (25.695) 25.684 (25.682) 26.747 (26.744) 29.246 (29.246) 231.47 (231.44) 231.66 (231.63) 254.16 (254.07)

5.0 20.009 (20.009) 20.085 (20.085) 20.085 (20.085) 20.279 (20.279) 20.447 (20.447) 21.523 (21.523) 21.523 (21.523) 26.477 (26.477)

In parenthesis, the Yamaguchi values arising from Eq. (5). (1 cm21 5 4.556 microhartrees 5 2.859 cal/mol)

Table 7. Values (in cm21) of the coupling constant J for the H4(Td) cluster at stretched distances HAH (d/Å) and UHF and UB3LYP theory levels using

STO-3G, 6–31G, 6–31G(d,p), and cc-pVTZ basis sets.

UHF UB3LYP

d/Å STO-3G 6–31G 6–31G(d,p) cc-pVTZ STO-3G 6–31G 6–31G(d,p) cc-pVTZ

2.0 21686 (21635) 21486 (21444) 21470 (21428) 21446 (21404) 22733 (22566) 22401 (22307) 22372 (22282) 22266 (22149)

2.2 21001 (2978.9) 21007 (2979.6) 2999.0 (2971.8) 2972.3 (2946.3) 21800 (21701) 21865 (21761) 21846 (21744) 21793 (21695)

2.4 2553.3 (2545.7) 2642.8 (2629.8) 2637.0 (2623.8) 2635.9 (2623.4) 21096 (21053) 21334 (21266) 21326 (21259) 21305 (21252)

2.6 2293.1 (2291.0) 2394.7 (2389.2) 2391.2 (2385.6) 2389.1 (2383.8) 2630.8 (2616.9) 2917.5 (2882.0) 2912.3 (2877.4) 2902.8 (2878.3)

2.8 2147.5 (2146.9) 2235.0 (2232.8) 2232.7 (2230.6) 2231.3 (2229.4) 2351.4 (2347.4) 2611.0 (2598.9) 2607.0 (2591.4) 2608.4 (2598.4)

3.0 271.56 (271.44) 2136.7 (2135.9) 2135.1 (2134.3) 2134.0 (2133.3) 2191.8 (2190.7) 2396.2 (2389.7) 2393.8 (2387.5) 2403.1 (2399.1)

3.225 230.26 (230.24) 271.52 (271.30) 270.90 (270.68) 270.29 (270.08) 295.99 (295.74) 2238.3 (2236.2) 2235.0 (2232.8) 2252.8 (2251.4)

3.5 211.46 (211.46) 230.80 (230.77) 231.08 (231.05) 232.05 (232.01) 241.36 (241.33) 2120.6 (2120.2) 2119.5 (2119.2) 2143.4 (2143.0)

4.0 21.149 (21.149) 25.685 (25.685) 25.686 (25.686) 26.559 (26.555) 29.069 (29.068) 231.67 (231.65) 230.75 (230.74) 251.73 (251.70)

5.0 20.010 (20.010) 20.086 (20.086) 20.084 (20.084) 20.248 (20.248) 20.435 (20.435) 21.590 (21.590) 21.490 (21.490) 25.991 (25.991)

In parenthesis, the Yamaguchi values arising from Eq. (5). (1 cm21 5 4.556 microhartrees 5 2.859 cal/mol)
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different geometrical arrangements, and in the HeH2 aggre-

gate, in a wide range of internuclear distances beyond the

bonding regions. The results show that the regions in which

the coupling constant JHH is transferable from the H2 molecule

to larger clusters are similar to those obtained from more

sophisticated methods. Our procedure is conceptually simple

and computationally suitable; its dependence on the level of

correlation of the wave functions and the basis sets is similar

to that exhibited by other exact or approximated approaches.

We are currently working on the application of this methodol-

ogy to describe architectures of heteroborane compounds and

carborane clusters to determine their magnetic properties.
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