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For purpose of enhancing the seismic performance of civil structures, external passive energy dissipation
systems have been extensively used. Usually, the energy dissipation system is provided once the struc-
ture has been designed. Obviously, a sequential procedure cannot lead to the best overall design. In this
paper, a simultaneous integrated design of the structure and passive control system is formulated as a
two-objective optimization problem. As in almost all optimization problems with conflicting objective
functions, in this study, different optimal solutions (efficient designs) that meet required restrictions
are obtained. Since, the stochastic structural response is obtained in the frequency domain from the
power spectral density function of the excitation, the proposed approach is very efficient, robust and
requires considerably less computational effort than time history analysis. The methodology is demon-
strated through a numerical example on a shear-type framed building.

� 2014 Elsevier Ltd. All rights reserved.
1. Introduction

For purpose of enhancing the seismic performance of civil struc-
tures, external passive energy dissipation systems have been exten-
sively used [1,2]. Traditionally, the process of designing a structure
and its passive vibration control system has been sequential and
obviously it cannot lead to the best overall design. In general, an
energy dissipation system is optimally designed to improve the
seismic performance after the structure has been initially designed
under constraints on weigh, strength and displacements [3,4]. How-
ever, because of the coupling between the structure and control sys-
tem, a simultaneous integrated design of both leads to a better
performance (optimal solution) than a sequential design [5–7].
Reyer [6] formally classified the various optimization strategies into
sequential, iterative, bi-level (nested), and simultaneous. A compar-
ison between those strategies was also conducted by the author.
Early works regarding sequential design were conducted by Khot
et al. [8], and Venkayya and Tischler [9]. To improve the optimality
level of sequential strategies, Grigiriadis et al. [10] and Smith et al.
[11] proposed iterative strategies which consist of first, improving
the structure design without compromising the control perfor-
mance then, optimizing the controller without compromising the
structural performance and so on until the tolerance is reached.
Bi-level strategies are based on two nested optimization loops.
The outer loop optimizes a scalar objective function which is a linear
combination of two objective functions, one related to the structure
and the other one to the controller, by varying only the structural
design. In the inner loop an optimal controller for each structure
selected by the outer loop is generated [12,13]. Finally, simulta-
neous optimization involves finding the optimal system design by
solving the same scalar objective function of the previous case,
but changing the design parameters of both structure and controller
[14–17]. This strategy usually involves a complex non-convex
mathematical problem. Fathy et al. [18] showed rigorously that sys-
tem-level optimally is guaranteed with the nested and simulta-
neous strategies, but not with the sequential o iterative strategies.
In the aerospace industry, integrated optimal design of structural-
control systems has had a great development in the last 30 years
as is evident from previous references; however, in civil engineering
applications, there is still a widespread resort to traditional
(sequential) design [19–21]. Most woks in the literature address
the integrated design of the structure combined with an active con-
trol system and only a few with a passive control system. A simulta-
neous integrated design of the structure-control system from a
composite objective function introduced as a linear combination
of structural and active control objective functions was presented
by Salama et al. [22]. A formal optimization procedure has been
developed by Chattopadhyay and Seeley [23] which addresses the
optimal locations of piezoelectric actuators and structural parame-
ters. An algorithm used to minimize multiple and conflicting
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objective functions associated with the coupled design of both,
structure and active control system is introduced by Cheng [24].
On two structural design examples, Pareto optimal solutions were
obtained. Rao et al. [25] presented a procedure similar to that Cheng
[24], but applied on two truss structures. Khot [26] proposed a
method to simultaneously design structure-control system to sup-
press structural vibrations due to external disturbances using a
multi-objective optimization approach based on global criteria. A
two-stage procedure for a controlled structural system design was
presented by Cimellaro et al. [27]. The methodology is based on a
redesign of the structure for better controllability by modifying
the linear structural system (mass, stiffness and damping) and
reducing the active control power. Similar approach, but applied
to inelastic structures is described in Cimellaro et al. [28].

Few researchers treated the problem that simultaneously eval-
uates stiffness and added passive damping of linear structural sys-
tems subjected to seismic o random excitations. Takewaki [29]
introduce a design problem to minimize the sum of relative story
displacements to stationary random excitation subjected to a con-
straint on the sum of the stiffness and damping coefficients. Park
et al. [30] described an approach for an integrated optimal design
of a viscoelastically damped structural system. Optimization prob-
lem is formulated adopting as design variables, the amount and
locations of the viscoelastic dampers. To solve the optimization
problem, a genetic algorithm is used as a numerical searching tech-
nique. On the other hand, Cimellaro [31] proposed a procedure
based on a generalized objective function defined by a linear com-
bination of the norm of displacement, acceleration and base shear
transfer functions evaluated at the updated fundamental natural
frequency constrained by the total stiffness and damping.

For providing assistance to the structural engineer (decision-
maker), in the present work, a simultaneous integrated design of
the structure and passive control system formulated as a two-objec-
tive optimization problem is proposed. The outstanding point of the
procedure described in the study is to have chosen the total story
stiffness and the total story damping as conflicting-objective func-
tions. In general, by reducing stiffness, the absolute acceleration
and consequently the base shear decrease, but at the expense of an
increase in the displacements; on the other hand, by increasing
the energy dissipation, the relative displacements are reduced with
little or no increase in the absolute acceleration [31,32]. Thus, the
procedure gives a broad overview of different Pareto-optimal solu-
tions (designs) that meet a required structural performance, and
enables to select the best compromise solution as a trade-off
between stiffness and added damping. Knowing that the main con-
tribution to the total uncertainty is due to the excitation and with
the aim of achieving robust results, the most appropriate approach
to model the excitation is through a stationary stochastic process
characterized by a power spectral density function compatible with
the response spectrum defined by the seismic code provisions. Since
the maximum structural response is estimated in the frequency
domain through stochastic vibration theory, this approach is more
efficiently and requires considerably less computational effort than
time history analysis. From the results on a symmetrical building
modelled as a linear shear-type planar frame it is found that through
the proposed procedure, different efficient designs can be reached
maintaining the required level of structural performance.

2. Formulation of the integrated design problem

As mentioned before, the integrated design problem of the
structure and the passive control system is formulated as a two-
objective optimization problem expressed as follows:

Find z that minimizes the following objective function vector:

f ðzÞ ¼ ff 1ðzÞ; f 2ðzÞg ð1Þ
subjected to

giðzÞ 6 0; i ¼ 1;2; . . . ;p

uiðzÞ ¼ 0; i ¼ 1;2; . . . ; q

in which z is the design variable vector, f 1ðzÞ; f 2ðzÞ are the objective
functions and gi(z), uiðzÞ are the constraint functions.

The main characteristic of the two-objective optimization prob-
lem is that none of the feasible solutions allow simultaneously min-
imizing both objective functions. To overcome this problem a
Pareto-optimal solution is useful and defined as [33]: if vector zp

is a solution of Eq. (1), there exists no feasible vector z that would
decrease same objective function without causing a simultaneous
increase in, at least, other objective function. Usually several Par-
eto-optimal solutions exist for a vector optimization problem and
to select the best solution, the designer judgment alongside addi-
tional information are needed. There are several methods for solv-
ing a vector optimization problem. The most commonly used
approach, known as the weighting method, substitutes the vector
optimization problem Eq. (1) into a scalar one formulated as a
weighted sum of the individual objective functions as:

FðzÞ ¼ w1f 1ðzÞ þw2f 2ðzÞ ð2Þ

in which w1 and w2 are weighting factors.
A set of Pareto-optimal solutions denoted as fzpg can be gener-

ated by varying the weight of each objective function. In order to
select the best solution, the designer should previously define the
weight of each objective function from additional information
(cost, feasibility, etc.), or resort to a decision-making process
[34,35]. In this study, besides displaying the set of Pareto-optimal
solutions, the following decision-making process is adopted. In a
cooperative optimization procedure, the best solution should guar-
antee that each objective function reaches the lowest possible
value, even if it is not its own minimum value. For this, an optimal
solution zk

*(k = 1, 2) minimizing individually to each objective
function is obtained subjected to the constraints stated in Eq. (1).
Then, a matrix P can be constructed as:

P ¼
f 1ðz�1Þ f 2ðz�1Þ
f 1ðz�2Þ f 2ðz�2Þ

� �
ð3Þ

in which, the lowest values of each objective functions,
f k;min ¼ f kðz�kÞ, are in the diagonal elements of matrix P and the high-
est ones outside of it, f k;max ¼ max½f kðz�j Þ�; k–j k; j ¼ 1;2. During
cooperative optimization, the k-th objective function should never
have a value lower than fk,min (if the problem is well-defined), nor
should it exceed fk,min (it runs counter to the objective of minimizing
fk). Based on these assertions, the following objective function can
be constructed:

R ¼
Y2

k¼1

½ f k;max � f kðzpÞ�
½ f k;max � f k;min�

ð4Þ

in which, the range of R is 0 < R < 1 and zp denotes a Pareto-optimal
solution minimizes to Eq. (2).

Therefore the solution ẑ selected from Pareto-optimal set, {zp},
which maximizes R, is the best solution (rational compromise
solution).

2.1. Objective functions and constraints

In any structural design, the aim is to guarantee a required level
of structural performance at the lowest possible total cost. Assum-
ing that non-structural live and dead floor masses are defined by
operational requirements, the total cost is associated with the
structural stiffness and the size of energy dissipation system. With-
out limiting the applicability of the methodology to any type of
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structure, a shear-type building is assumed as example in which,
the stiffness and damping coefficients of each story are chosen as
design variables grouped into a design vector, z = {k1, k2, . . ., kn, c1,
c2, . . ., cn}T. Because the required level of performance can be
achieved through a trade-off between the total story stiffness
and the total story damping, the conflicting-objective functions
are defined respectively as:

f 1ðzÞ ¼
Xn

i¼1

ki

f 2ðzÞ ¼
Xn

i¼1

ci i ¼ 1;2 . . . n ð5Þ

in which ki and ci are the stiffness and damping coefficients of the
i-th story and n denotes the number of stories.

Constraint conditions may include displacements, stresses,
frequencies, bucking loads, as well as upper and lower bounds of
the design variables. In the present study the following constraint
conditions are adopted:

dmax 6 dl; 0 6 ci; kl 6 ki; n1 6 nl ð6Þ

in which ci, ki, are the damping and stiffness coefficients of the i-th
story of the optimized structure (design variables, see Eq. (5)); dmax

is the mean peak of the maximum inter-story drift determined from
Eq. (27);kl and dl, are the story stiffness lower limit and the inter-
story drift upper limit required by the structural performance crite-
rion (Eq. (33)); ni and nj are the damping ratio of the fundamental
vibrational mode of the optimized structure and the upper limit
required by design.

3. Seismic ground excitation

Usually, studies on design of energy dissipation systems are car-
ried out in time domain through Monte Carlo simulation using a
sufficient number of deterministic artificially generated records
[36]. However, in optimization problems with high computational
cost due to numerous iterations, an alternative simple method is
required. Spectral analysis, conducted in frequency domain, is an
attractive method in which, a power spectral density function
(PSDF), rather than a collection of time histories, can be advanta-
geously used for modelling the excitation.

3.1. Derivation of design spectrum compatible power spectral density
function

It is known that earthquake excitation is inherently random and
has a strong contribution to the total uncertainty of the seismic
analysis, therefore, if the evolution of the frequency content with
time can be neglected, the most appropriate approach to model
the excitation is through a stationary stochastic process character-
ized by a power spectral density function (PSDF). In this study the
earthquake excitation is assumed as a stationary Gaussian random
process with zero mean represented by means of a design spec-
trum compatible PSDF. Following the methodology developed by
Vanmarcke [37] cited in the work conducted by Giaralis and Spa-
nos [38], the design spectrum compatible PSDF can be approxi-
mated by the following recursive equation:

GðxjÞ ¼
4n

xjp� 4nxj�1

S2
aðxjnÞ

g2
j ðxj; nÞ

� Dx
Xj�1

k¼1

GðxkÞ
 !

xj > x0 ð7Þ

in which G(xj) and SaðxjnÞ are the one-sided PSDF and the median
pseudo-acceleration response spectrum, respectively, at a specific
frequency xj and n ¼ 0:05 is the assumed damping ratio; Dx is
the frequency step in which the frequency range is discretized;
the peak factor gj is calculated by Eq. (8). Specifically, it represents
the factor by which the rms value of the response of a SDOF oscil-
lator must be multiplied to predict the level Sa below which the
peak response of the oscillator will remain, with probability
p, throughout the duration of the input process Ts. Herein, the
following approximated semi-empirical formula for the calculation
of the peak factor is adopted, which is known to be reasonably
reliable for earthquake engineering applications [35]:

gj ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 ln 2tj 1� exp �q1:2

j

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p lnð2tjÞ

q� �� �� �s
ð8Þ

in which

tj ¼
Ts

2p
xjð� ln pÞ�1 ð9Þ

and

qj ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 1

1� n2 1� 2
p

tan�1 nffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� n2

p
 !vuut ð10Þ

Eqs. (9) and (10) are close form expressions derived for a white
noise PSDF which has to be a priori assumed without knowledge
of GðxjÞ when the peak factor is calculated by Eq. (8). Ts = 20 s is
the duration assumed for the underlying stationary process;
p = 0.5 is an appropriate probability assumed for the purposes of
this study and xo = 0.36 rad/s denotes the lowest bound of the exis-
tence domain of Eq. (7) for a PSDF [36].

The power spectrum density estimation obtained by Eq. (7) can
be improved via the following iterative scheme [37]:

Giþ1ðxjÞ ¼ GiðxjÞ
St

aðxj; nÞ
Si

aðxj; nÞ

" #2

ð11Þ

in which St
aðxj; nÞ and Si

aðxj; nÞ are the target design spectrum and
the associated design spectrum estimated in the i-th iteration,
respectively.

4. Evaluation of stochastic response

The equations governing the dynamic motion of the structure
provided with added viscous dampers subjected to an earthquake
excitation may be written in the matrix form as:

M€xðtÞ þ ðCþ CvÞ _xðtÞ þ KxðtÞ ¼ �Mr€xgðtÞ ð12Þ

where M, K and C are the mass, stiffness and the damping matrices
of size n � n, respectively, the matrix of the added viscous damping
is denoted by Cv, r is the influence vector, €xgðtÞ is the horizontal
acceleration of ground motion and, €xðtÞ, _xðtÞ and x(t) are the gener-
alized acceleration, velocity and displacement vectors, of size n � 1
respectively, being n the number of degree of freedom.

Note that, the matrix K and Cv are defined through elements ki

and ci respectively obtained from the optimization process and the
connectivity matrices.

Eq. (12) can be written such as the following system of first-
order differential equations:

d
dt

y ¼ G y þw ð13Þ

where y is the state vector of size 2n � 1

y ¼ fxT _xTgT ð14Þ

G is the augmented system matrix of size 2n � 2n

G ¼
½0� ½I�

�M�1K �M�1ðCþ CmÞ

" #
ð15Þ
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Fig. 1. Planar building frame (dimensions in m).

Fig. 3. Pushover of planar building frame.
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and w is the excitation vector of size 2n � 1

w ¼ �ff0g f1g€x0gT ð16Þ

where {0} and {1} denotes the null and unit vector, respectively, of
size 1 � n; [0] and [I] denotes the null and identity matrix, respec-
tively, of size n � n; M�1 is the inverse of mass matrix M, and €x0ðtÞ
denotes the ground motion assumed as a zero-mean white noise
random process with a PSDF of constant intensity, So.

Let the covariance matrix of y be S with

Sij ¼ E½yiyj� ð17Þ

in which E[.] is the expectation operator and yi is the i-th element of
vector y.

It can be shown [35] that for a zero-mean white noise random
process, S satisfies the following differential equation:

d
dt

S ¼ GST þ SGT þ D ð18Þ

in which D is the covariance matrix between the state and excita-
tion vectors of size 2n � 2n and Dij = 0 except that D2n,2n = 2p S0.

As the excitation is assumed stationary, D is time independent,
then, the stationary solution of Eq. (18) can be obtained by solving
the Lyapunov matrix equation:

GST þ SGT þ D ¼ 0 ð19Þ
(a)

0 1 2 3 4
0

0.2

0.4

0.6

0.8

1

1.2

T [s]

Sa
 [g

]

Fig. 2. (a) UBC 97, Pseudo-accel. resp. spectrum
It is important note that the previous stochastic response has been
obtained from a white noise type excitation €x0ðtÞ with constant
PSDF; however, the PSDF obtained by Eq. (11) which represents
the stationary Gaussian random process, €xgðtÞ is not constant over
the frequency range. This obstacle can be circumvented by filtering
the white noise €x0ðtÞ through two linear filters as follows:

€xgðtÞ þ 2ngxg _xgðtÞ þx2
g xgðtÞ ¼ �ð€xf ðtÞ þ €x0ðtÞÞ ð20Þ

€xf ðtÞ þ 2nf xf _xf ðtÞ þx2
f xf ðtÞ ¼ �€x0ðtÞ ð21Þ

in which xg, ng, xf and nf are the ground filter parameters. Eqs. (20)
and (21) lead to the Clough and Penzien stationary PSDF [39]:

GCPðxjÞ¼ S0
1þ4n2

g ðxj=xgÞ2

1� xj=xg
	 
2

h i2
þ4n2

g ðxj=xgÞ2

0
B@

1
CA ðxj=xf Þ4

1� xj=xf

	 
2
h i2

þ4n2
f ðxj=xf Þ2

0
B@

1
CA
ð22Þ

Thus, to make compatible the PSDFs given by Eqs. (11) and (22), the
filter parameter are estimated by fitting both functions.

On the basis of the above considerations, the stochastic struc-
tural response is obtained by solving the Eq. (19) in which, the
state vector, y, the augmented system matrix, G, and excitation
vector, w, can be re-written as follow:

y ¼ xT _xT xf _xf xg _xg
� �T ð23Þ

G¼

½0� ½I� f0gT f0gT f0gT f0gT

�M�1K �M�1ðCþCv Þ �f1gTx2
f �f1g

T 2nf xf f1gTx2
g f1g

T 2ngxg

f0g f0g 0 1 0 0
f0g f0g �x2

f �2nf xf x2
g 2ngxg

f0g f0g 0 0 0 1
f0g f0g 0 0 �x2

g �2ngxg

2
6666666664

3
7777777775
ð24Þ

w ¼ ff0g f0g 0 0 0 � €x0gT ð25Þ
(b) 
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and the elements of the covariance matrix D of size 2n + 4 � 2n + 4
are Dij = 0 except that D2n+4,2n+4 = 2p S0,.

Once the mean square value of structural response have been
determined by Eq. (19) in matrix S, the standard deviation vector
of the inter-story drift can be obtained as [40]:

rd ¼ frig ¼ diagðT S TTÞ1=2
i ¼ 1;2 . . . n ð26Þ

in which T is a constant matrix consisting of 1, �1 and 0.
The mean peak of the maximum inter-story drift needed in Eq.

(6) can be calculated from the standard deviation value deter-
mined by Eq. (26) as follows [41]:

dmax ¼ pf rmax ð27Þ
pf ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 ln meTs

p
þ 0:5775ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2 ln meTs

p ð28Þ

in which dmax is the mean peak of the maximum inter-story drift
(Eq. (6)), rmax is the maximum value of the inter-story drift vector
(Eq. (26)), pf is the peak factor, me is the modified mean zero-cross-
ing rate, and Ts is the time duration of the excitation. Der Kiureghian
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Fig. 5. Pareto-optimal solutions (different combinations of total story stiffness and
total story damping).
[40] derived a simple expression for me from a SDOF subjected to
white noise ground acceleration given by:

me ¼
1:90n0:15 � 0:73
	 


m; ðn < 0:54Þ
m; ðn P 0:54Þ

(
ð29Þ

where

m ¼ x1

p
ð30Þ

in which m is the zero-crossing rate of the response, and x1 and n
are the natural frequency and the damping ratio of the SDOF struc-
ture, respectively. For multi-degree-of-freedom (MDOF) structures,
both parameters which correspond to the fundamental vibration
mode are used under the assumption that the fundamental mode
dominates the dynamic response.

Damping ratio nk of k-th mode needed in Eq. (6) can be obtained
from the complex conjugate eigenvalues of matrix G as:

nk ¼ �
akffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

a2
k þx2

k

q ð31Þ

in which the complex conjugate pairs of eigenvalues of G are given
by:

kk ¼ ak � jxk k ¼ 1;2 . . . m ð32Þ

where m is the number of modes and j ¼
ffiffiffiffiffiffiffi
�1
p

:

5. Numerical example

5.1. Example: 10 story planar building frame

The example consists of the three bays, 10-stories high steel
frame, in a building with two planes of symmetry and with a
regular stiffness distribution in height. As reported in Ref. [42],
the structure was designed for a PGA of 0.5 g (value from seismic
hazard curve that has a 2% chance of exceedance in 50 years) in
accordance with the provisions of the UBC [43]. The total mass
per floor is 47 t and it is assumed a Young’s modulus of steel
E = 200 GPa, resulting in a fundamental period for low amplitude
vibration equal to T1 = 1.67 s. The internal damping was assumed
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Fig. 6. Structural variables from Pareto-optimal solution 1.
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Fig. 7. Structural variables from Pareto-optimal solution 2.
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to be 2% of critical damping ratio for all modes. Without loss of
generality and for the sake of simplicity, an equivalent shear-type
model of the original frame (Fig. 1) is defined by minimizing the
differences in the modal parameters between both, model and
structure.
5.2. Excitation and constraint conditions

The excitation (Fig. 2a) was defined from the UBC [43] pseudo-
acceleration response spectrum for seismic zone Z = 0.4, soil profile
type SC, and seismic source type A, with closest distance to known
seismic source equal to 5 km. In Fig. 2b the corresponding compat-
ible PSDF obtained by Eq. (11) (dashed line) and the Clough–Penz-
ien approach (Eq. (22)) (continuous line) are displayed.

To meet the structural performance required, in this example
the following constraint conditions (Eq. (6)) are assumed:
To ensure an overall linear structural behaviour, from a push-
over analysis of the original structure (Fig. 3), the upper limit of
the inter-story drift (maximum allowable inter-story drift)
assumed constant was established as:

dl ¼ hhi ð33Þ

With

h ¼ d
h
¼ 0:0125 ð34Þ

in which hi is the i-th story height; h is the upper limit of the inter-
story drift ratio; d = 0.467 m is the roof displacement at the elastic
limit of the pushover curve (Fig. 3) and h is the building height.
– While the optimal constraint on the minimum stiffness is left to

the professional judgment, without loss of generality in this
study, the story stiffness lower limit, kl (Eq. (6)), was deter-
mined from the original structure (without added damping)



0 0.5 1 1.5 2 2.5 3

1
2
3
4
5
6
7
8
9

10(a)

Damping coef. [MNs/m]

St
or

y 
le

ve
l 

Total story damping = 3.03 MNs/m, ξ1= 0.047

0 50 100 150

1
2
3
4
5
6
7
8
9

10(b)

Stiffness coef. [MN/m]

St
or

y 
le

ve
l 

Original
Int. design C&K

0 0.5 1 1.5 2

1
2
3
4
5
6
7
8
9

10(c)

Max. interstory drift ratio [%]

St
or

y 
le

ve
l 

Original
Int. design C&K

0 1 2 3 4 5 6

1
2
3
4
5
6
7
8
9

10(d)

Max. base shear [MN]

St
or

y 
le

ve
l 

Original
Int. design C&K

Fig. 8. Structural variables from Pareto-optimal solution 3.
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Fig. 9. Structural variables from Pareto-optimal solution 4.
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as the minimum story stiffness that leads to the maximum
inter-story drift allowable of dl ¼ 0:0125hi with an excitation
that has a 10% chance of exceedance in 50 years.

– Without loss of generality, assuming that on the structure pro-
vided with added dampers the damping ratio of the fundamen-
tal mode was limited by design to 10%, it was necessary to
impose the following condition n1 < 0:1 on Eq. (6).

6. Discussion of results

As a baseline case, on the original structure (without changes in
the stiffness) the total story damping to meet the required struc-
tural performance level (allowable inter-story drift, dl ¼ 0:0125hi)
is determined by the proposed methodology using only the objec-
tive function f2(z) (Eq. (5)). Fig. 4a shows the optimal distribution
of story damping coefficients obtained on the structure with the
original story stiffness distribution (Fig. 4b). In Fig. 4c–d can be
observed that with a total story damping equal to 2.6 MNs/m
(n1 = 0.0584), the structural performance level on the maximum
inter-story drift (dl = 0.0125hi) is reached at first story level and
the base shear is reduced about 37.5% with respect to the original
structure.

Only five representative Pareto-optimal solutions (i. e. designs
with different combinations of story stiffnesses and story damping
coefficients) generated by varying the weight of each objective
function (Eq. (2)) that meet the previous constraint conditions
(Section 5.2) are shown in Fig. 5. It should be noted that both,
the total story stiffness and the total story damping obtained in
each solution have been normalized with those values of the base-
line case (Fig. 4) as follows:
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Fig. 10. Structural variables from Pareto-optimal solution 5.
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K j ¼
Pn

i¼1ki

 �jPn

i¼1ki

 �o
Dj ¼
Pn

i¼1ci

 �j

½
Pn

i¼1ci�
o j ¼ 1; . . . ;5 i ¼ 1;2; . . . ;n ð35Þ
in which K j and Dj are the total stiffness and damping ratio, respec-
tively and superscript ‘‘j’’ refers to j-K Pareto-optimal solution and
superscript ‘‘o’’ refers to baseline case (Fig. 4).

Optimal distributions of story damping coefficients, story stiff-
nesses, maximum inter-story drifts and maximum base shear
obtained with the proposed methodology for each Pareto-optimal
solution (Fig. 5) are displayed in Figs. 6–10, respectively.

The following observations can be made from the results pre-
sented in Figs. 6–10.

Solution 1 (Fig. 6) corresponds to the case in which the struc-
ture has the minimum permissible total story stiffness (42% of
the total story stiffness of baseline case, K1 ¼ 0:42) and the largest
total story damping (6.73 MNs/m, D1 ¼ 2:59). These quantities lead
to the lowest maximum base shear (2.02 MN) with a maximum
inter-story drift ratio equal to 1.25% at 6th and 7th story. On the
other end of Pareto-optimal solution set (solution 5, Fig. 10), the
total story stiffness is equal to that of the original structure (base-
line case) but with an optimal distribution and the story drift is
controlled without added damping. The distribution of base shear
remains approximately unchanged. Solutions 2, 3 and 4 show
intermediate results. In solutions 3 and 4 it is important to high-
light the particular combination of total story stiffness and damp-
ing necessary to reach the structural performance (dl = 0.0125hi).
From solution 3 (Fig. 8) can be observed that with a 17% increase
on the total story damping of the baseline case (Fig. 5)
(D3 = 1.167), the total story stiffness can be reduced approximately
40% (K3 = 0.585); while that in solution 4 (Fig. 9), the total story
stiffness can be reduced 22% (K4 = 0.78) by installing a total story
damping equal to 40% (D4 = 0.41) of that required in the baseline
case (Fig. 5). It is important to highlight the uniform inter-story
drift distribution that is attained in all solutions (1–5). Taking
into account additional information, the designer will decide
which solution will be the best for each application. Using the
decision-making process (Eq. (4)), the solution 3 is the best solu-
tion which leads to the maximum value of R.

7. Conclusions

In the present work, a simultaneous integrated design of the
structure and the passive control system is formulated as a two-
objective optimization problem. The main characteristic of the pro-
posed procedure is to have chosen the total story stiffness and the
total story damping as conflicting-objective functions. Thus, the
methodology gives a broad overview of different Pareto-optimal
solutions that meet a required structural performance and enables
to decision-maker to select the best compromise solution. This
solution represents the maximum benefit that can be obtained
from both objectives stated in the optimization problem resulting
in an efficient and well-balanced structural design.

The proposed approach is very efficient, robust and requires
considerably less computational effort than time history analysis
since the stochastic structural response is estimated, from the
power spectral density function that characterizes the excitation,
in the frequency domain. Moreover, in the expectation of a better
overall design, the weighting method can be easily extended to
more than two conflicting objective functions (multi-objective for-
mulation) and several constraint conditions, but with higher com-
putational costs.

Numerical results, obtained from a symmetrical building mod-
elled as a linear shear-type planar frame, showed that with the
proposed integrated procedure, different efficient alternative
designs can be reached maintaining the required level of structural
performance.
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