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Abstract: Inthis paper we study integral operators with kernels
Kix, g} = fafx =AMy Kalx = An g,
kdxd — Cafxyf|x]"8 where O;: B — T are homogeneous functions of degree zero, satisfying a size and a Dini
condition, A; are certain invertible matrices, and »fg1 + -+ nfga — 2 —a, 0 = a < ». We obtain the appiopriate

weighted L#-L9 estimate, the weighted BMO and weak type estimates for certain weights in A{p, g}. We also give
a Coifman type estimate for these operators.
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1. Introduction

letO0<a<nl<melN ForT<i<m, let1< g, < oo besuchthat nfg.+ .-+ nfg, = n — a. We denote by
L =1L, , the unit sphere in R". Let 0; € L'(Z). Ifx &£ 0, we write x’ = x/|x|. We extend this function to R\ {0} as
(%) = h(x). Let

L)
k) = e

(1)

Y E-mail: sriveros@famafunceduar
t E-mail: urciuslo@famatunceduar

Unauthenticated
Download Date | 1/3/18 7:46 PM



M.S. Riveros, M. Urciuolo

In this paper we study the integral operator

Taflx) = WK[Xr y)fly) dy. (4)

with K(x y) = ky(x—Ay) - ky[x— Ay y), where A, are certain invertible matrices and f € LT

Loc

(R).

In the case A; = &/, o; € R, Godoy and Urciuolo in [B] obtain the [P(R", dx)-L%(R", dx) boundedness of this operator
for0<a<n 1<p<nfaand 1fg="1/p—ain. Inthe case that ) are smooth functions, in [12], Rocha and Urciuolo
consider the operator 7, for matrices Ay, ..., A, satisfying the following hypothesis:

A; 1s invertible and A; — A; 1s invertible for £, 1 < 1, j < m. (H)

They obtain that T, is a bounded operator from HP (R, dx) into LY(R", dx), for 0 < p < nfa and 1/g = 1/p — a/n.
For0< a < nand1<s < ocowedefine

iz
Moaf) = sup|8|°"”(i i |f[x)|3dx) ,
8 |B| Je

where the supremum is taken along all balls B such that x belongs to B. We observe that M = Mgy, where M is the
classical Hardy-Littlewood maximal operator, also for 0 < a0 < 1, M, = M, is the classical fractional maximal operator.

It is well known [9] that if w is a welght (ie. w is a non negative function and w & L] (R, dx)) then M, is a bounded

operator from [ (R", w?) into L3[R", w?), for 1 < p < nfa and 1/g = Jp — aln, if and only if

i g ”q(i p’)”px oo 3
sx;p[(|8|j;w) |B|j;w <0, (3)

where 1/p 4+ 1/p" = 1. The class of weights that satisfy (3) is called Alp. g).

Throughout this paper we understand that for p = oo, (J'E |f|9)”p stands for ||fye ||os. Tor any measurable set E. With
this in mind we define the class A(p, g) still by (3] forall 1 < p <coand 1< g <oco. ITA,, p =1, denotes the classical
Muckenhoupt class of weights, we note that w € Alp, g) fand only if w? € A o, and as a particular case w € Alp, p)
1s equivalent to w? € A, We recall that Aw = | 4 As. Also, the statement w € Afoo, 0o) s equivalent to w T e AL

In [10, 11] we consider {; = 1 and weights satisfying the following condition: There exists ¢ > 0 such that
wlAx) < cw(x). (4)

for ge. x e B®, 1 <1 < m.

We note that if w is a powerweight then w satisfies (4). Observe that there are other weights that satisfy this condition.

For example, consider
wix) = J[—Ln|x| o <e

1 i o|x>e’.

In [7). it is shown that w € A; and it is easy to check that for any a € R\ {0} there exists C, such that wiax) < C,w(x),
for a.e. x € R. In [11] we obtaln weighted estimates for this kind of operator and certaln weights satisfying (4], precisely
as for the classical fractional integral operator [, with 0 < a <0 n, or the singular integral operator with a = 0, we prove
the LFR®, wf)-L9(R" w?) boundedness of T, for welghts w € Alp. g). 1< p < nla Vg=1p—alrand 0 < a < n.

Civen a function f € L] [R", dx), we define the sharp maximal function by

1 1
MEFx) = sup — | |fly)— — | |f]| du.
=2 |B|f‘ ¥ |Q|fg' " ’
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and the space
BMO = {f el (R" dx). M*F ¢ .I'_‘”[R”,dx)},

Loc

the norm in this space is |[f|| = |M*f||lee. There is also a weighted version of BMO, denoted by BMO(w), that is

described by the seml norm
1 1
flllw = sup ||w W(—f f[x]——ff dx).

It is easy to check that [||f]|| = WA In [11] we also obtain the weighted weak type (1,n/(n—«)) estimate for
w e A1, nf(n— o)) and w satisfying (4). We also prove that if w € A(nfa, oo) and w satisfies (4) then

ain
7ol < ¢ farre) . g

The key argument to obtain the above stated results was the Coifman type estimate (see [11, Theorem 2.1])

f T F )P wi) dx < € f M, F) P wix) di,
A A

fel=R", dx), p>0and w e A, satisfying (4).

For integral operators with rough kernels of the form

O —y)

Taaflx) = h—gl @

fly)dy,

in [3, 8, 13] the authors obtain weighted estimates for Tge for certain functions € homogeneous of degree zero and
0 e [#(5% ") for some p = 1. In [2] the authors prove the corresponding weighted results for & = 0. Also in [1] the
authors obtain a Coifman type inequality for general fractional integrals operators with kernels satisfying a Hormander
condition given by a Young function. In Section 2 we describe this condition.

In this paper we consider the operator 7, defined in (2) where, for 1 <[ < m, k is given by [1) and the matrices 4
satisfy the hypothesis (H). For 1 < p < oo and { € L'(Z), we define the LP-modulus of continuity as

@ (f) = sup ||Qg[- + 4yl — Qf[‘)”p.g-
Jgl=1

We will make the following hypotheses about the functions €3, 1< < m:

there exists p; > g; such that £}, € [F{(L), (Hq)
! dt
f Bipi 1) o < oo (Ha)
[}

In Section 2 we obtaln a pointwise estimate that relates (M®|T.f|°(x))", for 0 < & < 1, with a fractional maximal
function of an appropriate power of f. This estimate is the fundamental key to obtain weighted inequalities for the
operator T,. These inequalities are developed in Section 3. We give first a Coifman type estimate for these operators
that allows us to get the adequate weighted [*-[? estimate for certaln weights in A(p. g). The results that we obtain
in Theorems 3.3 and 3.4 are the analogs of [2, Theorems 1 and 2] We also get the corresponding weighted BMO and
weal type estimates.

Throughout this paper ¢ and C will denote positive constants, not the same at each occurrence.
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2. Pointwise estimate

We denote by |x| ~ Rtheset {x e R" R < |x| < 2R} and for 1 < r < oo,

1 Tir
fr.x~R:(7 f|" x~R) .
In [1] the authors introduce the following definition.

Definition 2.1.
Civen 0 < o << n and 1 < 1 < oo, we say that k € H,, if there exist ¢ > 1 and C > 0 such that for all y € R and
R > clyl,

o

2_ (2R k(= ) = KO am < €

m-1

In Proposition 4.2 of the mentioned paper they prove that that if k; is as in (1) and {}; satisfies (H,) then k; € Hﬂ!qf.p.“

Theorem 2.2.

Let O < a < n and let T, be the infegral operator defined by [2). We suppose that for 1 < i < m, the matrices A; and
the functions {); satisfy hypotheses (H), (Hy) and (Ha). Ifs = 1 Is defined by 1/py + -+~ + 1/py + 1/s =1, then there
exists C > 0 such that for 0 < & <1 and f € LP(R", dx),

(M*|TarP00)" < Ciwsf{& 'x).

i1

FProof. Letf e [PR".dx), Ff = 0and 0 < & < 1. Asin [B] it can be proved that 7, is a bounded operator from
PR, dx) into L3(B®, dx), for 1 < p < njaand Vg =1p—ain so T,(f) € L,,R", dx) and MF(T.1)[x) is well defined

loc

forallx € R*. Letx € R” and let B = B(xg, R) be a ball that contains x, centered at xg with radius R, and T.f(xg) < oo
We write B = B(xg, 4R), and for 1 < < m we also set 8, = A 'B. Let f; = X yare, & @Nd Lt fo = — .
We choose o = T,fs(xg). By Jensen’s inequality and from the inequality

| — 1" < [t — o],

which holds for any positive £, 5, we get

,1 146
(®f8|[raﬂ§w)—aé|dy)

1/

(1 Jetar—tas)
< (jag [ i) + (g [1mo-alas) = 0

We consider first the case 0 < o < n.

1 1 il 2 1
- ﬁfgmwndy < @fg;féiwqy,znf[z)dzdy: gﬁj&f{zﬁf;m%ww.

If z € B, let
={yeB:ly-Azl<|ly—Az.1<r<m},

0
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then
[Iw.21dy < [ K 2ldg+-+ [ [k 214

For1<!{<mandj&eHN let
Bl={yeB:ly—AZ<|ly—Azl 1<r<m [y—Azl ~2/ 'R}

We observe that if y € B then |y —Az| < BR < 8R. By Hblder's inequality,

>

j;i|K[y,Z)|dy < ;LJK[Q,ZHG‘Q <C 3[||k1[. _A1Z)Xeff_||m... ||k - —Amz)Xeﬁ-”pm[Z ;R)nxs]_ @)
i- i -

!

If p, < oo, then
i poy Hey
||f<e[‘—AeZ)Xe‘-||p = (f ) (| EEmﬂdi") )
iR i1 gefuzain | U]
. Moy . . [7)
< Tty = ﬂh?r(f |QE[U:||'O( du) < Cpirieep wiaey jelp peip ”QE”p(r
2= \Rzlu| <2 iR
where the last inequality follows since £} is homogeneous of degree zero. We observe that if py = co we also have
- = Azixedl,, < €27 R "5 o
For1<r<m, r#!( weobserve thatif y € € then |[y—Az| > |y—Az|>2/ "R Soif p, < oo then
e
O, (u)| A
k- —Az t = f (|
” ( )XGIHP, (g it pelaleaitiry | U]
< I 2 Kelge p2oedge ;'+kinfernIpr”Qr ||Pr
; (8)
< CRiriac poniqey jnlee poip ||Qr||p szimr g )

P

S Czjn."QrR n."L?rZ jrige Rn.fpr ”Qr ”,Or .
the last inequality follows since p. > g,. Again, if p. = co we get
||j<r[._ Arz)Xe‘. || < CRiviae g el ”anw_
I o

Then from (2], (7) and (8) we abtain

f K(y.2)|dy < C3_ ZUaR w1z jolo1 golet |0y |, - Z7w R @am 2 ivlom om0y | (2 TR)7
el n

- 3

< R oy @ lpa-

So,
mRa m m
< —ffzdz<C MoFA, ) < €5 Mo, A ).
_;Bwu_;[ﬁ ;.[)
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.
(On the other hand,

1
Kiy.z) = Kixg. 2)|f(2) dzd
| |LJ&U?’=1 §.-)°| (y.2) — Kixg. 2)|f(2) dzdy

1/

1
Il = ®L|Tafzy_?_af2x8|dy

1/

Zlf Ky, z)— Klxeg. 2)|fz) dzdy.
— |B| Jg J=,

where

- (U TE’:(] i {Z: |xg— Az| < |xg— Az, 1= r< m}.
i1

We estimate now |K(y,z) — K(xg, z)| for y € B and z € Z% It is easy to check that

K(y.2) — Kixe.2)| < ) [|‘| e 1lxs— A 12)||ly —A2) = kil — A2)| [ | oo 0 = Aca2)] | @)

r—i

where we define kg = k1 = 1.
For simplicity we estimate the first summand of [9), the other summands follow in analogous way. For j € M, let

D)= {z €2 [xg — Az| ~ Z*'R}. We use Halder's inequality to get

i

j;i“ﬁ y—A2) — ke — A2 [ | lely — A7) oz

=2
= Zf iy — A1 2) — ki (xg — Ag 2] | |_||k,[y—/-‘trz)|f[z) dz
=1 'D,E =2
<2 _Nlkaty =4 ) =l — A el [Tl — A D, e .-
j=1 r=2
MNow, if p; < oo,
og—Aap |
Y — AL
||ke[9'—Ae‘)X©§||p( = (j;)i_ [y — Az]oeita dz]
I
gy
< C[RZ;-) i (f |Qg[y—AgZ)|p‘dZ)
[2iR<ly Azl<2IR) (10)
Vgt
< C(IR) olackoin ( f |Qg[u)|9fdu)
{1<lol<8}

< CER) "Gy,

where the first inequality follows since |xg —Az|/2 < |y — Aiz| < 2|xe —Az|. If p; = 0o we also get
||k¢[g—Af.)X©E||W < C(2'R) ")k || oo

For r & (, we observe that if z € T then |xg—A.z| = [xg—A.z| 2 2*'R, s0 we decompose T = Us; (D), where
(D), ={z€ D e —Az| ~ 2R}

H:pr <00,

oo Tipe
ety =AY, = 2 U{@ Ikr[y—ArZJIPrdz]

L
J;.:Il’(.r

K+ s [,H:l
< C”Qr”pr Z [ZkR:I nige+nip, < C”Qr ”,Or [Z’IR:I r.'."q'r+n.",clrr
K+

B4
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where the geometric sums converge since p. > g,. If p. = oo,

||kr[y_’qr )X@ﬁ ||W = Z ||kr[y_’qr ‘:D{f'bf;:'k.r o < C\”Qr “w[Z}RJ nlar,

K+

MNow for { =1,
[ty = A ) = dabrs = A [, < C[Ualy —xe + ) = k() gz, (12)

Since nfpa+ -+ nfpy — (g2 + -+ -+ nige) = a—nfs — nfpy + nfgy, then (10, (11) and (12) imply

[ aty=a) = o= 4i2)| [ ity ~ A2 2) o2

=2

Tis
oo . 1
Z @R)a1 ote1 | (Ja(y — xg + ‘]—k1[‘))X|x|~z;‘+‘R||p1[2}R)° (Wj;)‘ #(z] dz]
— i

If\

1/

CM“fA % Z (2 R)"far alen ||(k1 — g+ ) — k1[‘))X|x|~2f'+‘R||p1 < OM, FIA, x),
=1

where the last inequality follows since ky € H, For !l # 1 we observe that

ey
||(k1[y—A1-:l—k1[Xg—A1 X‘D‘”p] Z || }'{1 y A'| }'{1[X3—A1 :I)X

[ﬂflm ||P1
i+

<O Y @R o QR | (Kaly — X6+ ) — () xigeaeei,, < CERIRITP o,

i+
where the last inequality follows since p1 > g1 and since ky € Hn.l’q;.m.‘ So as in the case [ =1 we obtain

i

f |kn [y — A1z} — k[ xg — A 2] | |_| [k (y — AZ)| f(2) dz < CM,.F(A, "x).

r=2

Then
< C) Maaf(A %)

i1
MNow we start with the case o = 0.

Ifp;=ocoforall 1 <i < m we decompose

Tib 106 16
e frsta-staf s (& ferina]"s (& [jati-sta] -1

To estimate | we observe that
|Tof ()] < Cf P —Avy] M= Agy| M fly) dy = CTF(x). (13)

In [11] we obtain that the operator T is of weak-type (1,1) with respect to the Lebesgue measure. Thus taking 0 < & < 1
and using Kolmogorov's inequality (see [7, Exercise 2.1.5, p. 91]) we get

c " ¢ i
I < fily) dy < ff dy < C) MIFA 'x).
<15 W1[yly_;|5| SULE ; (4 "x)

ISEa=)
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To estimate |l, we first use Jensen’s inequality and then proceed just as in the case 00 < o < n to get

< €Y MIAA "x),

i=1

and so the theorem follows in this case.

If p; < coforsome 1 < i< m by lensen's inequallity,

1
Tgﬂ d Tgf - d :l ||
<(|B|f' "‘”) (1 el aw) = 1+

As in [B] it can be proved that Ty is bounded on [F(R", dx) for 1 < p < oo, So, by Halder's inequality,

1 lie 1 Tig m
R P o P R
< (|B|fglrof1[y1| dy) < C(|B| angn dg) < c;%p,r[,q} %)

As before, to estimate |l we proceed as in the case O < a < n to get

<€) Moof(A X

i=1

If we chose p = s the theorem follows in this case. a

3. Weighted estimates

Chur next aim is to obtain welghted [P-[% estimates for the operator 7, and certain classes of weights. The fundamental
tool to get these results is the following theorem about a Coifman type inequality.

Theorem 3.1.
Let gssumptions of Theorem 2.2 on a, T, Ay, Ck and 5 hold. Let 0 < p < oo and w € A, sdatisfy (4). Then there exists

C = 0 such that for f € [=2[R", dx)
f | Taf ()P wix) dx < Cf | M s F (x| wix) dx
.4 L]

always holds if the leff hand side is finite.

Proof. Let w € A, then there exists r > 1 such that w € A.. For 0 < p < co we take 0 < & < 1, such that
1< r < pld, thus w € Ays. I |Tuf||sw < oo then also |[(Taf)||psw < oo. Under these conditions we can apply
[5, Theorem 2.20, p.410], and from Theorem 2.2 we get

f | Taf ()P wix) dx < f (MIT AP PP wix) dx < C | (ME(TaN(x) wix) dx
]Rn n

Tt

Re

.1 P
C mn(ZMa,sf[A( x] X dx < ch Moo () wiAX) dx < C | (Masf(x))P wix) dx,

where the last inequality follows since w satisfies [4). a

m
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Lemma 3.2.

Let assumptions of Theorem 2.2 on o, Ty, A, 0 and s hold Suppose w® € Alpfs, gfs) with 1 < p < nfa and /g =
1p —aln. Iff € =R, dx) then Ta(f) € LAR", wd).

FProof. The proof follows similar lines as the proof of [11, Lemma 2.2]. Since w® € Alp/s. g/s) then w? € A. with
r="14g/s-1(pls) = gin-(nfs — a).

Let M; = max {|A;] @ |¢] = 1} and let M = max g0 {M;}. Suppose suppf C B(0, R). If |x| » ZMR and y € suppf,
then for 1 < i< m,

y 1
o= Al 2 W= 1Ayl = = ol |A | 2 - Rav > 1
so by Halder's inequality,

|T.flx)] = Uiﬁ (X—f"hy)---km(X—Amy)f(y)dy‘ < flbe=AcDxae mizi g, Vo 6= A Dt awizpiy [, 171

Mo,
b =Ac D actzpenll,, = 2 [kebe—=AcDxge a2,
kel
< CY 2P Qg lp, < D2 2N Qg = Clx] "R Qg
kel kel
So,
I Taf(O] < Clef B 2Rt | - | Qallgg [Flls = ClxI™ )£l

Thus

| Taf(x)]? wi(x) dx

> f | Taf()|? w (%) dx

[x]=21R kel ¢~ 2 1R
< CZ f ||t # e () dxe < CZ[kaR)ta nigq W‘?(B(O, 2k+1MR))_
kemlxlr«z“MR ke

Since wt € A,, there exists T < r = gfn-(nfs—a) such that w? € Ay so wi(B(0, 2 "MR}} < C2* (see [5, Lemma 2.2])
so the last sum is finlte. To study

| Taf ()] Wi (x) dx,

[ <2 MR

we recall that in [6] the authors obtain the boundedness of T, from [P(R", dx) into LY(R", dx) for T < p < nfa and
Tg=1/p—afn, and so it is left to continue the proof as in [11]. O

We are now ready to prove the weighted boundedness result.

Theorem 3.3.

Let assumptions of Theorem 2.2 on a, T, A, Oy and s hold. Suppose w satisfies (4] and w* € Alp/s, q/s) withs < p <
nfa and /g = 1/p — afn. Then there exits C > 0 such that for f € [=(R", dx),

Tig e
(f |Taf[x)|‘?w‘?[x)dx) < C(f |f[x)|pwp[x)dx) .
]Rn ]Rn

Ba4
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FProof. Since w* € Alp/s.g/s) for 1/g = 1/p — aln then w? € A, C A, with r = g/n - (nfs — a). By Lemma 3.2 we
have that T,f € LY(R", w9). Moreover we recall that w® € A(p/s, g/s) implies that M, is bounded from LPE(R7, w?'s)
into L9 (R*, w9¢), so we apply Theorem 3.1 to obtain

lig g
(f | Taf(x)]F wi(x) dx) < (f (Macf ()T wi(x) dx)
.4 L]

Tig Tip
=C (f (Mias | F (1719w () dx) < C( | F(x)|F wP [x) dx) . O
.4 L]

By a standard duality argument we obtain the following theorem.

Theorem 3.4.
Let gssumptions of Theorem 2.2 on a, Ty, A C and s hold, Suppose w satisfies w (A ') < Cw "(x) foragll 1 <i<m
and w * € Alg'fs,p'/s) with 1 < p < nfa, Vg = 1p — ajn and g < s'. Then there exits C > 0 such that for

Fe =R, dx),
1 1
(f |Taf[x)|‘?w‘?[x]dx) qg C(f |f[x)|PWP[X)dX) p.
]Rn ]Rn

FProof. ‘We observe that the adjoint TF of the operator T, is the integral operator with kernel
Kiy) = kb= A Ty) e dop (0= A, y),

where for 1< i< m

- Q) QA
kix)= Ax]is — A

It is easy to check that ﬁf- satisfies (H;) and (H:) and also that iz e H,
gl pmer = 1. thus

rge; Torall T < < m We take g with

fTaf[x)g[x)dX:ff[x)T;g[x)dx.

Hence

PI.W_'DI .

1 7ufllquoe = sup ‘ f ) TEg () dx
Q )43

< N llpwe supll 7ag
q

Since g =1jp—afnand 1 < p < g < 5 then 1p' = 1/g' —afn and 5 < ¢ < nfa, so as in Theorem 3.3 we obtain

17l we = Clglywo =€ andso |Taf[lqus < Ol 0

We now obtain an estimate of the type (5) for the operator T, and for certain weights in the class A(nfa, co).

Theorem 3.5.
Let assumptions of Theorem 2.2 on a, T,, A, O and s hold. Suppose w® € A(nfas, oo) and satisfies (4), then there exits
C = 0 such that for f € LT [R", dx),

aln
17l < € ( [ttty dx) .

545
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Proof. ‘We observe that if

we = A

-~ ,oo) then  [WMasfllow < CllFW]lora- (14)
as
Indeed, by Holder's inequality we get

1 H 1 wla . n i el s{nfas)’
|B|1 asfn j;“[XH dXS |B|1 asfn (LH[X” ! er [X:IG'[X) (j;w {af ’I'[X:IG'[X)

Then, for x € B, since w® € A(n/{as), co) we get

1 . s S ale . 1 . Uinfaz)'s
W[X](WJ;H[XH dx) < (j;|f[x)| oy o [X)dx) [l e |12 (@LW tef ’l'[X:IG'[X)

aln
gC(f [ ()| wede () dx) .
]Rn

Vifnfas)

thus wix)M, f(x) < C||f w|ae, and (14) follows. Now, using Theorem 2.2 and (14), we get
m m aln
I 7ol = [[Wh* To |l < CZ”wMa,sf(Af . = CZ (f|f[A(. x) w[x)|”""dx)
i1 i1

m afn atn
= CZ (fhr[X)W[AfX”ﬂ.fadX) < C (f“[X)W[XHn'radX) ’

where the last inequality follows since w satisfies hypothesis (4). O

Finally we prove that 7, satisfies a welghted weak type (1, n/(n — «a)) estimate for certaln weights in A1, n/(n—a)).

Theorem 3.6.
Let the assumptions of Theorem 2.2 on o, T, A, and s hold. Suppose w® € A(1, nj(n —as)) and satisfies (4), then
there exists C = 0 such that for f € [Z°(R", d¥),

s
sup A[ws @ @) O | T, ()] > a3y 9 < (f|f[x)|sws[x) dx) .

Al

Proof. Given w £ A, there exists 8> 0 and C > 0 such that
w{x  MF(x) > 24 MPF(x) < yAb < O wix s MF(x) > A},
for any v > 0 (see [4 p.140)). Forg > 1, as in [11, Theorem 3.2, we obtain that

sup A [x s MFf(x) > A} < Csup Aw [ MFF(x) > yal,

AR AR

for some y > 0. We consider first the case s> 1. If w® € A(1, n/(n— as)) then wel? #5) = A So for g = snf(n —as),
we obtain

sup /\(ws””” | Taf| 6 > /\}){n @M o sup /\(ws””” S MTa ) > /\})[n asiten

AR =0
< Csup AW P MR T () > yad) "

AR

m [0 as)en
ngupA(ws””” as} {X:ZMQISJ([AE1X)>CV/\}] .
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where the last inequality follows from Theorem 2.2, with & = 1. Since w satisfies (4), it is easy to check that

Wl 9 L ML GFIA ) > AY < Gttt a M () > AT,

50
SU]J/\(WS””” asj{x: |Taf|[X:| >A}){n ashisn < CSUp /\(Wsn'r[” as"'{XlMalsf[X:l >/‘l}){n as)fen
AnD ARD e
< Csup (w1 S o M [fE(x) > 21T 9 < ¢ (f|f(x)|swx) dx) ,
Al

where the last inequality follows since w® € A(1, n/(n— as)), and since M, is of weak type (1, n/(n—as)). fs=1, 7,
is bounded by the operator T defined in (13) so we proceed as in the proof of [11, Theorem 3.2). O
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