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CURVATURE FLOWS FOR ALMOST-HERMITIAN LIE GROUPS

JORGE LAURET

Abstract. We study curvature flows in the locally homogeneous case (e.g.
compact quotients of Lie groups, solvmanifolds, nilmanifolds) in a unified way
by considering a generic flow under just a few natural conditions on the broad
class of almost-hermitian structures. As a main tool, we use an ODE system
defined on the variety of 2n-dimensional Lie algebras, called the bracket flow,
whose solutions differ from those to the original curvature flow by only pull-
back by time-dependent diffeomorphisms. The approach, which has already
been used to study the Ricci flow on homogeneous manifolds, is useful to better
visualize the possible pointed limits of solutions, under diverse rescalings, as
well as to address regularity issues. Immortal, ancient and self-similar solutions

arise naturally from the qualitative analysis of the bracket flow. The Chern-
Ricci flow and the symplectic curvature flow are considered in more detail.

1. Introduction

The idea of evolving geometric structures to study them, or their underlying
manifolds, is quite old. However, it has been the resolution by Perelman of the
Poincaré and Thurston Geometrization Conjectures by using Hamilton’s Ricci flow
which seems to have placed this approach among the most active topics in differ-
ential geometry in the last decade.

More recently, there have appeared in the literature many promising proposals
to adapt the Ricci flow machinery to complex and symplectic geometry, all of
which coincide with the Kähler-Ricci flow when the starting structure happens to
be Kähler. Among them, we have the following flows for hermitian metrics on a
fixed complex manifold: the hermitian curvature flow (see [ST2]), called pluriclosed
flow in the SKT case (see [ST1, ST3]), and the Chern-Ricci flow (see [TW]). On
the wider class of almost-hermitian manifolds, a large family of curvature flows
associated to the Chern connection was studied in [ST4], which includes the gradient
flow introduced in [V1]. The symplectic curvature flow introduced in [ST4] evolves
almost-Kähler manifolds and coincides with the anti-complexified Ricci flow studied
in [LeW] when the symplectic structure remains fixed (i.e. Chern-Ricci flat case).

All these flows are defined by evolution equations of the form

(1)

⎧⎨⎩
∂
∂tω = −2p,

∂
∂tg = −2q,

for a one-parameter family of almost-hermitian structures (ω(t), g(t), J(t)) on a
given differentiable manifold M , where p = p(ω, g) ∈ Λ2M is a 2-form and
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q = q(ω, g) ∈ S2M is a symmetric 2-tensor (both diffeomorphism invariant), which
are curvature tensors associated to some hermitian connection of the structure
(ω, g). In this paper, we call equation (6) the (p, q)-flow in order to study them in
a unified way in the (locally) homogeneous case. The compatibility of the solution
(ω(t), g(t)) is equivalent to

q1,1 = p1,1(·, J ·), ∀t,
and it follows from the formula ω = g(J ·, ·) that the evolution of J is given by

∂

∂t
J = −2J(P ac +Qac),

where P,Q ∈ End(TM) are defined by p = ω(P ·, ·), q = g(Q·, ·) and Aac :=
1
2 (A+ JAJ).

Starting with the pioneer article [IJ], the role of (locally) homogeneous manifolds
in Ricci flow theory has been important, not only in inspiring some conjectures
which ended up being true in the general case but also in providing counterexamples
to some others. We expect that Lie groups may provide an even more useful
framework in the evolution of almost-hermitian structures due to the lack of explicit
examples for many concepts and behaviors in complex and symplectic geometry.

Our aim in this paper is to study the (p, q)-flow evolution of compact almost-
hermitian manifolds (M,ω, g) whose universal cover is a Lie group G and such that
if π : G −→ M is the covering map, then π∗ω and π∗g are left-invariant. This
is in particular the case of invariant structures on a quotient M = G/Γ, where Γ
is a cocompact discrete subgroup of G (e.g. solvmanifolds and nilmanifolds). A
(p, q)-flow solution on M is therefore obtained by pulling down the corresponding
(p, q)-flow solution on the Lie group G, which by diffeomorphism invariance stays
left-invariant. Any (p, q)-flow therefore becomes an ODE for a pair (ω(t), g(t)),
where ω(t) is a non-degenerate 2-form on the Lie algebra g of G, g(t) is an inner
product on g, p = p(ω, g) ∈ Λ2g∗ and q = q(ω, g) ∈ S2g∗. Thus short-time existence
(forward and backward) and uniqueness of the solutions are always guaranteed.

Bracket flow. Given a left-invariant almost-hermitian structure (ω0, g0) on a sim-
ply connected Lie group G, one has that

(ω, g) = h∗(ω0, g0) := (ω0(h·, h·), g0(h·, h·))
is also almost-hermitian for any h ∈ GL(g), and conversely, any almost-hermitian
structure on g is of this form. Moreover, the corresponding Lie group isomorphism

h̃ : (G,ω, g) −→ (Gμ, ω0, g0), where μ = h · [·, ·] := h[h−1·, h−1·],
is an equivalence of almost-hermitian structures. Here [·, ·] denotes the Lie bracket
of the Lie algebra g, and so μ defines a new Lie algebra (isomorphic to (g, [·, ·]))
with the same underlying vector space g. We denote by Gμ the simply connected
Lie group with Lie algebra (g, μ). As in the case of Ricci flow (see [L3, L5]), this
parametrization of left-invariant almost-hermitian structures as points in the variety
L2n of 2n-dimensional Lie algebras suggests the following natural question: how
does a (p, q)-flow look on L2n?

We consider for a family μ(t) ∈ Λ2g∗ ⊗ g of brackets the following evolution
equation:

(2)
d

dt
μ = δμ(Pμ +Qac

μ ), μ(0) = [·, ·],
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where Pμ, Qμ ∈ End(g) are the curvature tensors corresponding to the almost-
hermitian manifold (Gμ, ω0, g0) and δμ : End(g) −→ Λ2g∗ ⊗ g is defined by

δμ(A) := μ(A·, ·) + μ(·, A·)−Aμ(·, ·) = − d

dt
|t=0e

tA · μ, ∀A ∈ End(g).

The variety L2n is invariant under equation (2), which will be called the (p, q)-
bracket flow, and our first result (see Section 5) shows that any (p, q)-flow is equiv-
alent, in a precise way, to its corresponding (p, q)-bracket flow.

Theorem 1.1. For a given simply connected almost-hermitian Lie group (G,ω0, g0)
with Lie algebra g, consider the families of almost-hermitian Lie groups

(G,ω(t), g(t)), (Gμ(t), ω0, g0),

where (ω(t), g(t)) is the solution to the (p, q)-flow starting at (ω0, g0) and μ(t) is
the (p, q)-bracket flow solution starting at the Lie bracket [·, ·] of g. Then there exist
Lie group isomorphisms h(t) : G −→ Gμ(t) such that

(ω(t), g(t)) = h(t)∗(ω0, g0) and μ(t) = h(t) · [·, ·], ∀t.

The following are direct consequences of the theorem:

• The maximal interval of time existence (T−, T+) is the same for both flows,
as it is also the behavior of any kind of curvature, and so regularity issues
can be addressed on the (p, q)-bracket flow.

• Assume that a normalization ckμ(tk) → λ, as tk → T±, and denote by
ϕk : G −→ Gckμ(tk) the isomorphism with derivative 1

ck
h(tk). It follows

from [L4, Corollary 6.20] that, after possibly passing to a subsequence, the

almost-hermitian manifolds
(
G, 1

c2k
ω(tk),

1
c2k
g(tk)

)
converge in the pointed

(or Cheeger-Gromov) sense to (Gλ, ω0, g0), as k → ∞. We note that Gλ

may be non-isomorphic, and even non-homeomorphic, to G.

Regularity. As a first application of the above theorem, we obtain the following
general regularity result (see Section 6).

Theorem 1.2. If a left-invariant (p, q)-flow solution (ω(t), g(t)) on a Lie group
has a finite-time singularity at T+ (resp. T−), then∫ T+

0

|P +Qac| dt = ∞
(
resp.

∫ 0

T−

|P +Qac| dt = ∞
)
.

This was proved for the pluriclosed flow on any compact manifold in [ST3, The-
orem 1.2] and may be considered as analogous to the result for the Ricci flow given
in [S]. We also compute the evolution of the Ricci and scalar curvatures of g(t)
along a (p, q)-solution (ω(t), g(t)), as well as the evolution of the norm of the Lie
bracket |μ(t)|. Note that if |μ(t)| were non-increasing, then the long-time existence
of the solution (i.e. T+ = ∞) would follow from a standard ODE argument. This is
precisely the technique applied in [EFV] to prove long-time existence for any pluri-
closed solution on a nilmanifold. An alternative way to prove long-time existence
on a solvmanifold is by showing that the scalar curvature R must blow up at a
finite-time singularity, as it is well-known that R ≤ 0 for any left-invariant metric
on a solvable Lie group (see [Lf] for an application of this argument in the Ricci
flow case).
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Solitons. In the general case, an almost-hermitian manifold (M,ω, g) will flow
self-similarly along the (p, q)-flow, in the sense that

(ω(t), g(t)) = (c(t)ϕ(t)∗ω0, c(t)ϕ(t)
∗g0),

for some c(t) > 0 and ϕ(t) ∈ Diff(M), if and only if⎧⎨⎩
p(ω, g) = cω + LXω,

q(ω, g) = cg + LXg,

for some c ∈ R and a complete vector field X on M . In analogy to the terminology
used in Ricci flow theory, we call such (ω, g) a soliton almost-hermitian structure.
On Lie groups, it is natural to consider a (p, q)-flow solution to be self-similar if
the diffeomorphisms ϕ(t) above are actually Lie group automorphisms. We prove
in Section 7 that this is equivalent to the following condition.

Definition 1.3. An almost-hermitian structure (ω, g) on a Lie algebra g is called
a (p, q)-soliton if for some c ∈ R and D ∈ Der(g),⎧⎨⎩

P (ω, g) = cI + 1
2 (D − JDtJ),

Q(ω, g) = cI + 1
2 (D +Dt).

Remark 1.4. This notion is stronger than the general soliton condition above (see
Remark 7.3). Nevertheless, if a homogeneous soliton almost-hermitian structure
(M,ω, g) is presented as M = G/K for the full symmetry group G, then one
can prove in much the same way as in [J2, Theorem 3.1] that there exists a one-
parameter family of equivariant diffeomorphisms φt ∈ Aut(G/K) (i.e. automor-
phisms of G taking K onto K) such that (ω(t), g(t)) = (c(t)φ∗

tω, c(t)φ
∗
t g) is a

solution to the (p, q)-flow starting at (ω, g).

We also show that the simpler condition

(3) P +Qac = cI +D,

suggested by the relationship between a (p, q)-flow and its (p, q)-bracket flow given
in Theorem 1.1, is actually enough to get a soliton. Moreover, the (p, q)-bracket
flow solution starting at a (p, q)-soliton for which (3) holds is simply given by
μ(t) = (−2ct + 1)−1/2[·, ·], and hence they are precisely the fixed points and only
possible limits, backward and forward, of any normalized (p, q)-bracket flow solution
c(t)μ(t). The absence of certain chaotic behavior for the (p, q)-bracket flow would
imply that any (p, q)-soliton is actually of this kind (see Section 7.1).

Chern-Ricci flow. In Section 8, we study the Chern-Ricci flow ∂
∂tω = −2p for

hermitian metrics on a fixed complex manifold (M,J) (CRF for short), where p
is the Chern-Ricci form. In the case of Lie groups, p depends only on J , and so
along a solution, p(t) ≡ p0. This implies that the CRF-solution starting at (ω0, g0)
is simply given by

ω(t) = ω0 − 2tp0,

which therefore exists as long as the hermitian map I − 2tP0 is positive. It follows
that the integral of the Chern scalar curvature trP must blow up at a finite-time
singularity and that trP (t) ≤ C

T+−t , for some constant C > 0. By using Theorem
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1.1, one obtains that the solution to the Chern-Ricci bracket flow d
dtμ = δμ(Pμ) is

given by

μ(t) = (I − 2tP0)
1/2 · [·, ·],

and as an application, we give a structural result for Chern-Ricci solitons. Concern-
ing convergence, we prove that the normalized Chern-Ricci bracket flow μ(t)/|μ(t)|
always converges, as t → T±, to a non-abelian Lie bracket λ± such that (Gλ± , ω0, g0)
is a Chern-Ricci soliton. A more detailed study on how the limit λ± is related to
the starting point is given in [LRV], where the existence problem for Chern-Ricci
solitons on 4-dimensional solvable Lie groups is also addressed.

Symplectic curvature flow. Another (p, q)-flow we consider in particular is the
symplectic curvature flow (SCF for short) for a one-parameter family (ω(t), g(t)) of
almost-Kähler structures introduced in [ST4]:

(4)

⎧⎨⎩
∂
∂tω = −2p,

∂
∂tg = −2p1,1(·, J ·)− 2Rc(2,0)+(0,2),

where p is the Chern-Ricci form of (ω, g) and Rc is the Ricci tensor of g (see Section
9). It is conjectured in [ST4] that a SCF-solution (ω(t), g(t)) withM compact exists
smoothly as long as the cohomology class [ω(t)] ∈ H2(M,R) belongs to the cone C
of all classes which can be represented by a symplectic form, which evolves by

[ω(t)] = −4tπc1(M,ω0) + [ω0].

In the case that c1(M,ω0) = 0, which in particular holds for invariant almost-
Kähler structures on compact quotients M = G/Γ of Lie groups, the solution is
therefore expected to be immortal, i.e. T+ = ∞. We confirm the conjecture for
the anti-complexified Ricci flow on any compact solvmanifold and also for some
explicit examples with p 	= 0 we give in detail for SCF, including some nilmanifolds
already studied in [P]. Formula (3) has shown to be very useful for SCF. In [LW],
a SCF-soliton on most of symplectic 4-dimensional Lie groups has been found, and
in [FC], on most 2- and 3-step symplectic nilpotent Lie groups of dimension 6.

2. Some notation

Let g be a real vector space. The following notation will be used for g, the tangent
space TpM at a point of a differentiable manifold, as well as for the underlying vector
space of a Lie algebra. We consider an almost-hermitian structure (ω, g, J) on g,
that is, a 2-form ω and an inner product g such that if

ω = g(J ·, ·),

then J2 = −I. The above formula is therefore equivalent to g = ω(·, J ·).
The transposes of a linear map A : g −→ g with respect to g and ω are respec-

tively given by

g(A·, ·) = g(·, At·), ω(A·, ·) = ω(·, Atω ·), Atω = −JAtJ,

and if p : g× g −→ R is a bilinear map, then the complexified (or J-invariant) and
anti-complexified (or anti-J-invariant) components are defined by

A = Ac +Aac, Ac := 1
2 (A− JAJ), Aac := 1

2 (A+ JAJ),
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and p = pc + pac, where

pc = p(1,1) := 1
2 (p(·, ·) + p(J ·, J ·)), pac = p(2,0)+(0,2) := 1

2 (p(·, ·)− p(J ·, J ·)).
Consider also a g-valued bilinear map μ : g×g −→ g. The natural ‘change of basis’
actions of GL(g) are defined by

h ·A := hAh−1, h · p := p(h−1·, h−1·), h · μ := hμ(h−1·, h−1·), ∀h ∈ GL(g),

and the corresponding representation π : End(g) −→ End((g∗)2 ⊗ g) is given by

(5) π(H)μ := Hμ(·, ·)− μ(H·, ·)− μ(·, H·), ∀H ∈ End(g).

3. Curvature flows for almost-hermitian manifolds

Let M be a differentiable manifold of dimension 2n. We consider for a one-
parameter family of almost-hermitian structures (ω(t), g(t), J(t)) onM an evolution
equation of the form

(6)

⎧⎨⎩
∂
∂tω = −2p,

∂
∂tg = −2q,

where p = p(ω, g) ∈ Λ2M is a 2-form and q = q(ω, g) ∈ S2M is a symmetric
2-tensor, which will usually be some kind of curvature tensors associated to each
structure (ω, g). Equation (6) will be called the (p, q)-flow.

It is natural to assume that p and q are invariant by diffeomorphisms:

p(ϕ∗ω, ϕ∗g) = ϕ∗p(ω, g), q(ϕ∗ω, ϕ∗g) = ϕ∗q(ω, g), ∀ϕ ∈ Diff(M).

Example 3.1. In [ST4], short-time existence, uniqueness and some regularity re-
sults have been proved in the compact case for a large family of (p, q)-flow equations
associated to the Chern connection. For any of such flows, if J0 is integrable, then
J(t) ≡ J0 and g(t) is a solution to the hermitian curvature flow studied in [ST2]. If
in addition g0 is Kähler (i.e. ω0 closed), then g(t) is the Kähler-Ricci flow solution.
In the presence of an SKT structure, this evolution equation is called the pluriclosed
flow and p becomes the (1, 1)-part of the Bismut-Ricci form (see [ST1,ST3,EFV]).
The hermitian curvature flow for almost-hermitian manifolds introduced in [V1]
also belongs to the family of (p, q)-flows studied in [ST4].

Example 3.2. The Chern-Ricci flow is another evolution equation for hermitian
manifolds (see Section 8). Here p is the Chern-Ricci form and J(t) ≡ J0; i.e. the
complex manifold is fixed. Existence and uniqueness of the solutions, as well as
some regularity and convergence results, have been obtained in [TW]. This flow
also coincides with the Kähler-Ricci flow when the starting hermitian structure is
Kähler.

Example 3.3. In the almost-Kähler case (i.e. ω closed), by taking p the Chern-
Ricci form of (ω, g) and q = pc(·, J ·) + Rcac, where Rc is the Ricci tensor of g,
equation (6) becomes the symplectic curvature flow introduced in [ST4] (see Section
9). In the case when p(ω, g) = 0 for all time t, the symplectic structure ω is fixed
and g(t) solves the anti-complexified Ricci flow studied in [LeW].

Let us now analyze under what conditions the evolution preserves compatibility.
If we take the corresponding operator type tensors P,Q ∈ End(TM) defined by

(7) p = ω(P ·, ·) = g(JP ·, ·), q = g(Q·, ·),
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then P tω = P (i.e. P t = −JPJ) and Qt = Q. It follows from the formula
ω = g(J ·, ·) that the evolution of J is given by

(8)
∂

∂t
J = −2R, where R = JP −QJ.

This implies that, provided the starting point (ω0, g0) is compatible, the compati-
bility condition J2 = −I holds for all time t if and only if RJ + JR = 0. It follows
that the compatibility of the solution (ω, g) for all time t is equivalent to

(9) P c = Qc, or equivalently, qc = pc(·, J ·), ∀t.

(Compare with [ST4, Lemma 4.2]). Indeed, if P c = Qc, then ∂
∂tJ

2 =

−4(P − Q)(J2 + I), and so J(t)2 ≡ −I by uniqueness of the solution starting
at J2

0 = −I. The converse follows from 0 = RJ + JR = 2(−P c +Qc).
It is therefore natural to assume that the pair (p, q) of curvature tensors defining

a (p, q)-flow evolution satisfies condition (9) for any almost-hermitian structure.
By using (9), the evolution of the almost-complex structure can be rewritten as

(10)
∂

∂t
J = −2J(P ac +Qac).

In the almost-Kähler case, we note that to have p closed is clearly enough to get
ω(t) closed for all t, provided ω0 is closed, by using that ∂

∂tdω = −2dp.

4. Curvature flows for Lie groups

Our aim in this paper is to study the (p, q)-flow evolution of compact almost-
hermitian manifolds (M,ω, g) whose universal cover is a Lie group G and such that
if π : G −→ M is the covering map, then π∗ω and π∗g are left-invariant. This
is in particular the case of invariant structures on a quotient M = G/Γ, where Γ
is a cocompact discrete subgroup of G (e.g. solvmanifolds and nilmanifolds). A
(p, q)-flow solution on M is therefore obtained by pulling down the corresponding
(p, q)-flow solution on the Lie group G, which by diffeomorphism invariance stays
left-invariant, and so it can be studied on the Lie algebra as an ODE.

Any almost-hermitian structure on a Lie group with Lie algebra g which is left-
invariant is determined by a compatible pair (ω, g), where ω is a non-degenerate
2-form on the vector space g and g is an inner product on g. Any (p, q)-flow (6) on
M or on the covering Lie group G therefore becomes an ODE system of the form

(11)

⎧⎨⎩
d
dtω = −2p,

d
dtg = −2q,

where p = p(ω, g) ∈ Λ2g∗, q = q(ω, g) ∈ S2g∗, since all the tensors involved are
determined by their value at the identity of the group. Thus short-time existence
(forward and backward) and uniqueness (among left-invariant ones) of the solutions
are always guaranteed.

We may consider a one-parameter family (ω(t), g(t)) starting at (ω0, g0) in terms
of a pair of operators (Ω(t), G(t)) in GL(g) as follows:⎧⎨⎩

ω(t) = ω0(Ω(t)·, ·), Ω(0) = I,

g(t) = g0(G(t)·, ·), G(0) = I,
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and thus the (p, q)-flow defined as in (11) for (ω, g) is equivalent to the ODE system

(12)

⎧⎨⎩
d
dtΩ = −2ΩP,

d
dtG = −2GQ,

where P,Q ∈ End(g) are defined as in (7). It is easy to see that for all t,

(13) J0Ω = GJ.

As there is only one of these compatible pairs (ω, g) on the vector space g, up to
the action of GL(g), we have that a solution to a (p, q)-flow (11) starting at (ω0, g0)
can always be written as

(ω(t), g(t)) = (h−1 · ω0, h
−1 · g0) = (ω0(h·, h·), g0(h·, h·)) ,

for some h = h(t) ∈ GL(g), or equivalently,

(14) Ω(t) = htω0h = −J0h
tJ0h, G(t) = hth,

where At will denote from now on the transpose of an operator A with respect to
g0. It follows that

(15) J(t) = h−1J0h, ∀t.
We note that h(t) is unique only up to left-multiplication by the unitary group

U(n) := Sp(ω0) ∩O(g0) = {ϕ ∈ GL(g) : ω0 = ω0(ϕ·, ϕ·), g0 = g0(ϕ·, ϕ·)},
and that h(t) can be taken to be differentiable on t (recall that dim g = 2n).

A good understanding of the evolution of such h(t) ∈ GL(g) may provide a useful
tool as the whole (p, q)-flow solution is determined by h(t).

Lemma 4.1. Let (ω(t), g(t)) be a (p, q)-flow solution starting at (ω0, g0). If h =
h(t) ∈ GL(g) is the solution to the ODE

d

dt
h = −h(P +Qac) = −h(P ac +Q), h(0) = I,

then (ω, g) = (h−1 · ω0, h
−1 · g0) for all t.

Remark 4.2. For simplicity, given a time-dependent function A = A(t), we will
sometimes write A′ instead of d

dtA.

Proof. We first note that the equality P+Qac = P ac+Q follows from (9). By using
(14) and that the transpose of P ac and Q with respect to g0 respectively satisfy
that (P ac)tG = −GP ac, QtG = GQ, we obtain

G′ =(ht)′h+ hth′ = −(P ac +Q)thth− hth(P ac +Q)

=− (P ac)tG−QtG−GP ac −GQ = −2GQ.

On the other hand, we use in addition (15), (9), (13) and P acJ = −JP ac to get

Ω′ =− J0(h
t)′J0h− J0h

tJ0h
′ = J0(P

ac +Q)thtJ0h+ J0h
tJ0h(P

ac +Q)

=J0(P
ac)tGJ + J0Q

tGJ + J0GJP ac + J0GJQ

=J0 (−GP acJ +GQJ +GJP ac +GJQ) = J0 (2GJP ac + 2GJQc)

=− 2Ω(P ac +Qc) = −2Ω(P ac + P c) = −2ΩP,

and thus (h−1 · ω0, h
−1 · g0) is a (p, q)-flow solution by (12). Since it also starts at

(ω0, g0), it must coincide with (ω, g) by uniqueness of the solution, concluding the
proof of the lemma. �
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An intriguing consequence of the above lemma is that only the value of P +Qac

determines the whole evolution. This will play a key role throughout the rest of
the paper, especially in the study of self-similar solutions.

5. Bracket flow

We present in this section a general approach to study any (p, q)-flow on a
Lie group. Our main tool is a dynamical system defined on the variety of 2n-
dimensional Lie algebras, a set which parameterizes the space of all left-invariant
almost-hermitian structures on all simply connected Lie groups of dimension 2n
(see [L1]). This evolution is called the bracket flow and is proved to be equivalent
in a precise sense to the (p, q)-flow. The approach is useful to better visualize
the possible pointed limits of (p, q)-flow solutions, under diverse rescalings, as well
as to address regularity issues. Immortal, ancient and self-similar solutions arise
naturally from the qualitative analysis of the bracket flow. This approach has been
used to study the Ricci flow on nilmanifolds in [L3] and on homogeneous manifolds
in [L5]. On the other hand, N. Enrietti, A. Fino and L. Vezzoni study in [EFV] the
pluriclosed flow for nilmanifolds and as an application of the bracket flow approach,
they prove long-time existence for any solution.

For Lie algebras, two almost-hermitian structures (g1, ω1, g1), (g2, ω2, g2) are
said to be equivalent if there exists a Lie algebra isomorphism ϕ : g1 −→ g2 such
that ω2 = ϕ · ω1 and g2 = ϕ · g1. This implies the usual equivalence between the
corresponding left-invariant almost-hermitian structures on the simply connected
Lie groups, and thus by the diffeomorphism invariance of p and q, we have that

(16) P (ω2, g2) = ϕP (ω1, g1)ϕ
−1, Q(ω2, g2) = ϕQ(ω1, g1)ϕ

−1.

The same holds for P c, P ac, Qc and Qac by using that J2 = ϕJ1ϕ
−1.

If (ω(t), g(t)) is a (p, q)-flow solution starting at (ω0, g0), then by Lemma 4.1 the
family h = h(t) ∈ GL(g) defined there satisfies that

h : ([·, ·], ω, g) −→ (μ, ω0, g0), where μ = μ(t) := h · [·, ·] = h[h−1·, h−1·],
is an equivalence of almost-hermitian structures for all t. Here [·, ·] denotes the
Lie bracket of the Lie algebra g and so μ defines a new Lie algebra with the same
underlying vector space g, which is isomorphic to (g, [·, ·]) for all t. The values of the
corresponding curvature tensors of this new family of almost-hermitian structures
(μ(t), ω0, g0) will be denoted by Pμ and Qμ, which by (16) satisfy

(17) Pμ = hPh−1, Qac
μ = hQach−1, ∀t,

where as always P = P (ω, g) and Q = Q(ω, g) for all t.
It is straightforward to check that d

dtμ = −δμ(h
′h−1) if μ = h · [·, ·], where

δμ : End(g) −→ Λ2g∗ ⊗ g is given by

(18) δμ(A) := μ(A·, ·) + μ(·, A·)−Aμ(·, ·), ∀A ∈ End(g).

Notice that δμ(A) = −π(A)μ = − d
dt |t=0e

tA · μ (see (5)). It follows from Lemma
4.1 and (17) that the one-parameter family of Lie brackets μ(t) evolves according
to the following ODE:

(19)
d

dt
μ = δμ(Pμ +Qac

μ ), μ(0) = [·, ·].

This equation will be called the (p, q)-bracket flow, and a natural question is if the
understanding of its qualitative behavior and dynamical properties may provide new
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insights into the study of some curvature flows for homogeneous almost-hermitian
structures and their self-similar solutions. Since d

dtμ is tangent to the GL(g)-orbit
of μ, by a standard ODE theory argument we obtain that μ(t) ∈ GL(g) · [·, ·] for all
t. Our next result shows that any (p, q)-flow is equivalent in a precise way to its
corresponding (p, q)-bracket flow.

For a given simply connected almost-hermitian Lie group (G,ω0, g0) with Lie al-
gebra g, let us consider the following two one-parameter families of almost-hermitian
Lie groups:

(20) (G,ω(t), g(t)), (Gμ(t), ω0, g0),

where (ω(t), g(t)) is the solution to the (p, q)-flow (11) starting at (ω0, g0) and μ(t)
is the (p, q)-bracket flow (19) starting at the Lie bracket [·, ·] of g. Here Gμ denotes
the simply connected Lie group with Lie algebra (g, μ).

Theorem 5.1. There exist time-dependent Lie group isomorphisms h(t) : G −→
Gμ(t) such that

(ω(t), g(t)) = h(t)∗(ω0, g0), ∀t,
which can be chosen such that their derivatives at the identity, also denoted by
h = h(t), are the solution to any of the following systems of ODE’s:

(i) d
dth = −h(P +Qac) = −h(P ac +Q), h(0) = I.

(ii) d
dth = −(Pμ +Qac

μ )h = −(P ac
μ +Qμ)h, h(0) = I.

The following conditions also hold for all t:

(iii) (ω(t), g(t)) = (h−1 · ω0, h
−1 · g0).

(iv) μ(t) = h · [·, ·].

Proof. It has been shown above that part (i) implies all the other statements in
the theorem by using Lemma 4.1. Recall that any Lie algebra isomorphism can
be lifted to a Lie group isomorphism between the respective simply connected Lie
groups. Let us then assume that part (ii) holds, and so h(t) is defined on the same
time interval as μ(t). It follows that μ(t) = h(t) · [·, ·] for all t as they both solve
the same ODE (19) and start at [·, ·], and so part (iv) holds. Thus h determines an
equivalence between ([·, ·], ω̃ := h−1 · ω0, g̃ := h−1 · g0) and (μ, ω0, g0). This implies

that the corresponding curvature tensors satisfy Pμ = hP̃h−1 and Qac
μ = hQ̃ach−1,

and consequently h′ = −h(P̃ + Q̃ac), from which follows that (ω̃(t), g̃(t)) is also a
(p, q)-flow solution starting at (ω0, g0) by using Lemma 4.1. By uniqueness of the
solution, parts (i) and (iii) follow, concluding the proof of the theorem. �

It is worth pointing out the following useful facts which are direct consequences
of the theorem:

• The (p, q)-flow (ω(t), g(t)) and the (p, q)-bracket flow μ(t) differ only by
pull-back by time-dependent diffeomorphisms.

• They are equivalent in the following sense: each one can be obtained from
the other by solving the corresponding ODE in part (i) or (ii) and applying
either part (iv) or (iii) accordingly.

• The maximal interval of time where a solution exists is therefore the same
for both flows, and so regularity issues can be directly addressed on the
(p, q)-bracket flow.
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• At each time t, the almost-hermitian manifolds in (20) are equivalent, so
that the behavior of any class of curvature and of any other invariant along
(ω(t), g(t)) can be studied along the (p, q)-bracket flow.

5.1. Pointed convergence. If some sequence μ(tk) (or a suitable normalization
ckμ(tk)) converges to a Lie bracket λ as tk → ∞, then we can apply the results
given in [L4, Section 6.4] to get convergence of the almost-hermitian manifolds
(G,ω(tk), g(tk)) → (Gλ, ω0, g0) relative to the pointed (or Cheeger-Gromov) topol-
ogy.

More precisely, assume that a normalization ckμ(tk) → λ, as k → ∞, with
tk → T±, where (T−, T+) denotes the maximal interval of time existence. By
Theorem 5.1, if ϕk : G −→ Gckμ(tk) is the isomorphism with derivative 1

ck
h(tk),

then

ϕ∗
k(ω0, g0) =

(
1
c2k
ω(tk),

1
c2k
g(tk)

)
.

It now follows from [L4, Corollary 6.20] that, after possibly passing to a sub-

sequence, the almost-hermitian manifolds
(
G, 1

c2k
ω(tk),

1
c2k
g(tk)

)
converge in the

pointed sense to (Gλ, ω0, g0), as k → ∞. This means that there exist

• a sequence of open subsets Ωk ⊂ Gλ which eventually contains every com-
pact subset of Gλ,

• a sequence of embeddings φk : Ωk −→ G,

such that 1
c2k
φ∗
kω(tk) → ω0 and 1

c2k
φ∗
kg(tk) → g0 smoothly, as k → ∞, on every

compact subset of Gλ. Note that the points play no role in the pointed convergence
by homogeneity. By using charts with relatively compact domains which cover Gλ,
smooth convergence can be defined as the partial derivatives ∂α(ωk)ij , ∂α(gk)ij
of the coordinates (ωk)ij , (gk)ij , respectively, converging to ∂α(ω0)ij and ∂α(g0)ij
uniformly, as k → ∞, for every chart and every multiindex α.

It is not necessary to pass to a subsequence in the nilpotent, or more generally,
in the completely solvable case (i.e. when all the eigenvalues of adX are real for
any X ∈ g).

We note that one can obtain at most one limit up to scaling by considering
different normalizations of the bracket flow. More precisely, assume that c(t)μ(t) →
λ 	= 0, as t → T±. Then the limit λ̃ of any other converging normalization a(t)μ(t)

necessarily satisfies λ̃ = cλ for some c ∈ R (see [LfL, Proposition 4.1(iii)]). Recall
that the above observation only concerns solutions which are not chaotic, in the
sense that the ω-limit is a single point.

6. Regularity

In the presence of any geometric flow, a natural question is what is the simplest
quantity that, as long as it remains bounded, prevents the formation of a singu-
larity? Many regularity results of this kind have been obtained for the hermitian
curvature flow (see [ST2]), the pluriclosed flow (see [ST3]), the Chern-Ricci flow
(see [TW]) and the symplectic curvature flow (see [ST4]). In this section, as an
application of the (p, q)-bracket flow approach developed in Section 5, we obtain
some regularity results for a general (p, q)-flow on a Lie group.

In addition to diffeomorphism invariance, in what follows, we shall assume that
p and q are also scaling invariants:

p(cω, cg) = p(ω, g), q(cω, cg) = q(ω, g), ∀c ∈ R
∗.
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This condition actually holds for most of the curvature tensors considered in dif-
ferent evolution equations in the literature, including all the ones mentioned in
Examples 3.1, 3.2 and 3.3, and it is equivalent to

(21) P (cω, cg) = 1
cP (ω, g), Q(cω, cg) = 1

cQ(ω, g), ∀c ∈ R
∗.

By using that for any c 	= 0,

1
c I : (μ, 1

c2ω0,
1
c2 g0) −→ (cμ, ω0, g0)

is an equivalence of almost-hermitian structures and (21), we obtain that the oper-
ators defined in (17) satisfy

(22) Pcμ +Qac
cμ = c2(Pμ +Qac

μ ), ∀c ∈ R.

Let (T−, T+) denote the maximal interval of time existence for the (p, q)-bracket
flow solution μ(t) (see (19)), or equivalently, of the (p, q)-flow solution (ω(t), g(t))
starting at a left-invariant almost-hermitian structure (g, ω0, g0), with −∞ ≤ T− <
0 < T+ ≤ ∞.

The norm |μ| of a Lie bracket will be defined in terms of the canonical inner
product on Λ2g∗ ⊗ g given by

(23) 〈μ, λ〉 :=
∑

g0(μ(ei, ej), λ(ei, ej)) =
∑

μk
ijλ

k
ij ,

where {ei} is any orthonormal basis of (g, g0) and the structural constants are de-
fined by μ(ei, ej) =

∑
μk
ijek. A natural inner product on End(g) is also determined

by g0 by 〈A,B〉 := trABt.
The proof of the following proposition is strongly based on the arguments used

by R. Lafuente in [Lf] to prove that the scalar curvature controls the formation of
singularities of homogeneous Ricci flows.

Proposition 6.1. If T+ is finite (resp. T−), then

(i) |μ(t)| ≥ C
(T+−t)1/2

, ∀t ∈ [0, T+) (resp. |μ(t)| ≥ C
(t−T−)1/2

, ∀t ∈ (T−, 0]), for

some positive constant C depending only on n;

(ii)
∫ T+

0
|Pμ +Qac

μ | dt = ∞ (resp.
∫ 0

T−
|Pμ +Qac

μ | dt = ∞).

Proof. Assume that T+ < ∞ (the proof for −∞ < T− is completely analogous). It
follows from (22) that

(24)

∣∣∣∣ ddtμ
∣∣∣∣ ≤ C1|Pμ +Qac

μ ||μ| ≤ C2|μ|3, ∀t,

for some constants C1, C2 > 0 depending only on n. This implies that d
dt |μ|2 ≤

2C2|μ|4, and so for any t0 ∈ [0, T+),

|μ(t)|2 ≤ 1

−2C2(t− t0) + |μ(t0)|−2
, ∀t ∈ [t0, T+).

Thus T+ ≥ t0+
|μ(t0)|−2

2C2
since |μ(t)| must blow up at a singularity, from which part

(i) follows.
By using (24) one also obtains that

d

dt
|μ|2 ≤ 2C1|Pμ +Qac

μ ||μ|2, ∀t,
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and therefore part (ii) follows from

2C1

∫ s

0

|Pμ +Qac
μ | dt ≥ log |μ(s)|2 − log |μ0|2, ∀s ∈ [0, T+),

concluding the proof of the proposition. �

The following corollary follows from Theorem 5.1.

Corollary 6.2. If a left-invariant (p, q)-flow solution (ω(t), g(t)) on a Lie group
has a finite singularity at T+ (resp. T−), then∫ T+

0

|P +Qac| dt = ∞
(
resp.

∫ 0

T−

|P +Qac| dt = ∞
)
.

This was proved for the pluriclosed flow of any compact manifold in [ST3, The-
orem 1.2] and may be considered as analogous to N. Sesum’s result on the Ricci
flow (see [S]).

Remark 6.3. It follows from the triangular inequality that the integral of at least
one of |P |, |Qac| must blow up in a finite-time singularity. Actually, as P and Qac

are orthogonal (indeed, 〈P,Qac〉 = 〈 12 (P +P t), Qac〉 = 〈P c, Qac〉 = 0), one has that

|P +Qac| =
(
|P |2 + |Qac|2

)1/2
.

We now compute the evolution of the Ricci and scalar curvatures of g(t) along
a (p, q)-solution (ω(t), g(t)).

According to [B, 7.38] (see also [L5, Section 2.3]), the Ricci operator Ricμ of
(Gμ, g) is given by

(25) Ricμ = Mμ − 1
2Bμ − S(adμ Hμ),

where

(26) 〈Mμ, E〉 = − 1
4 〈δμ(E), μ〉, ∀E ∈ End(g),

Bμ is the Killing form

g(BμX,Y ) = tr adμ X adμ Y , ∀X,Y ∈ g,

Hμ ∈ g is defined by

g(Hμ, X) = tr adμ X, ∀X ∈ g,

and

(27) S : End(g) −→ End(g), S(A) := 1
2 (A+At),

is the symmetric part of an operator. The scalar curvature is therefore given by

Rμ = − 1
4 |μ|

2 − 1
2 trBμ − |Hμ|2.

Proposition 6.4. Let μ(t) be a (p, q)-bracket flow solution.

(i) The Ricci operator Ric = Ricμ(t) evolves by

d

dt
Ric =− 1

2Δ(P +Qac)− 1
2 (B(P +Qac) + (P +Qac)tB)

− 2S(adμ S(P +Qac)(H))− S([adμ H,P +Qac]),

where Δ := S ◦ δtμδμ.
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(ii) The evolution of the scalar curvature R = Rμ(t) is given by

d

dt
R = 2〈P +Qac,Ric〉+ 2〈P +Qac, S(adμH)〉 − 2〈(P +Qac)H,H〉.

(iii) d
dt |μ|2 = −8〈P +Qac,M〉.

Proof. We use formulas (36), (37) and (38) from [L5] to prove part (i) as follows:

d

dt
Ric =

d

dt
M − 1

2

d

dt
B − d

dt
S(adμ H)

=dM |μδμ(P +Qac)− 1
2dB|μδμ(P +Qac)

− S
(
adδμ(P+Qac) Hμ + adμ dH|μδμ(P +Qac)

)
=− 1

2Δ(P +Qac)− 1
2 (B(P +Qac) + (P +Qac)tB)

− S
(
adμ (P +Qac)Hμ + [adμ Hμ, P +Qac] + adμ (P +Qac)tHμ

)
.

We now use part (i) to prove (ii):

d

dt
R =tr

d

dt
Ric = − 1

2 tr δ
t
μδμ(P +Qac)− trB(P +Qac)− 2 tr adμ S(P +Qac)(H)

=− 1
2 〈δμ(P +Qac), δμ(I)〉 − 〈P +Qac, B〉 − 2〈(P +Qac)(H), H〉

=2〈P +Qac,M〉 − 2〈P +Qac, 12B〉 − 2〈P +Qac, S(adμ H)〉
+ 2〈P +Qac, S(adμ H)〉 − 2〈(P +Qac)(H), H〉.

Finally, we prove part (iii):

d

dt
|μ|2 = 2〈 d

dt
μ, μ〉 = 2〈δμ(P +Qac), μ〉 = −8〈P +Qac,M〉,

concluding the proof of the proposition. �

Recall that only unimodular Lie groups can admit lattices, and since Gμ is
unimodular if and only if Hμ = 0, one obtains in this case much simpler evolutions
for Ric and R in parts (i) and (ii) of the above theorem, respectively.

7. Self-similar solutions

As the equivalence class of an almost-hermitian structure (ω0, g0) on a Lie algebra
g is Aut(g) · (ω0, g0), it is natural to consider a (p, q)-flow solution to be self-similar
if it stays in this orbit, up to scaling, for all time t. It follows from (16) that

P (h · ω, h · g) = hP (ω, g)h−1, Q(h · ω, h · g) = hQ(ω, g)h−1,

for any h ∈ Aut(g) (see (16)), and the same holds for the J-invariant and anti-J-
invariant components of P and Q. Condition (21) is also assumed to hold in this
section.

Lemma 7.1. Let (ω(t), g(t)) be the (p, q)-flow solution starting at (ω0, g0), and
consider c(t) > 0, ϕ(t) ∈ Aut(g), both differentiable on t, with c(0) = 1, ϕ(0) = I
and D := ϕ′(0) ∈ Der(g). Then the following conditions are equivalent.

(i) The solution has the form:⎧⎨⎩
ω(t) = c(t)ω0(ϕ(t)·, ϕ(t)·),

g(t) = c(t)g0(ϕ(t)·, ϕ(t)·).
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(ii) The starting curvature tensors satisfy⎧⎨⎩
c′(0)I + (D − J0D

tJ0) = −2P (ω0, g0),

c′(0)I + (D +Dt) = −2Q(ω0, g0).

(iii) The solution is precisely given by⎧⎨⎩
ω(t) = (c′(0)t+ 1)ω0(e

s(t)D·, es(t)D·),

g(t) = (c′(0)t+ 1)g0(e
s(t)D·, es(t)D·),

where s(t) := log(c′(0)t+1)
c′(0) if c′(0) 	= 0 and s(t) = t when c′(0) = 0.

Proof. It can be easily checked that part (i) is equivalent to

(28)

⎧⎨⎩
c′I + c

(
ϕ−1ϕ′ + (ϕ−1ϕ′)tω0

)
= −2P (ω0, g0), ∀t,

c′I + c
(
ϕ−1ϕ′ + (ϕ−1ϕ′)t

)
= −2Q(ω0, g0), ∀t,

from which part (ii) follows by just evaluating at t = 0.
We now assume (ii) and consider (ω, g) defined as in part (iii), that is, with

c(t) = c′(0)t + 1 and ϕ(t) = es(t)D. By using that ϕ−1ϕ′ = s′ϕ−1Dϕ = 1
cD, one

obtains that condition (28) holds for (ω, g), and so part (iii) follows. This concludes
the proof of the lemma, as part (i) follows trivially from (iii). �

The following definition is motivated by Lemma 7.1 and the terminology used in
Ricci flow theory.

Definition 7.2. An almost-hermitian structure (ω, g) on a Lie algebra g is called
a (p, q)-soliton if for some c ∈ R and D ∈ Der(g),⎧⎨⎩

P (ω, g) = cI + 1
2 (D − JDtJ),

Q(ω, g) = cI + 1
2 (D +Dt).

We call c the cosmological constant of the soliton.

If XD is the vector field on the Lie group defined by the one-parameter subgroup
of automorphisms ϕt with derivative etD ∈ Aut(g), that is, XD(x) = d

dt |0ϕt(x) for
any x ∈ G, then (ω, g) is a (p, q)-soliton if and only if⎧⎨⎩

p(ω, g) = cω + 1
2 (ω(D·, ·) + ω(·, D·)) = cω − 1

2LXD
ω,

q(ω, g) = cg + 1
2 (g(D·, ·) + g(·, D·)) = cg − 1

2LXD
g,

where LX denotes Lie derivative. The (p, q)-flow solution starting at a (p, q)-soliton
(ω, g) is therefore given by

(29)

⎧⎨⎩
ω(t) = (−2ct+ 1)es(t)D · ω,

g(t) = (−2ct+ 1)es(t)D · g,

where s(t) := log(−2ct+1)
−2c if c 	= 0 and s(t) = t when c = 0 (see Lemma 7.1). We

note that (ω, g) is defined as long as −2ct+ 1 > 0, thus obtaining

(30) (T−, T+) =

⎧⎨⎩
( 1
2c ,∞), c < 0,

(−∞, 1
2c ), c > 0,

(−∞,∞), c = 0.
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Remark 7.3. In the general case, an almost-hermitian manifold (M,ω, g) will flow
self-similarly according to the (p, q)-flow (6), in the sense that

(ω(t), g(t)) = (c(t)ϕ(t)∗ω0, c(t)ϕ(t)
∗g0),

for some c(t) > 0 and ϕ(t) ∈ Diff(M) if and only if⎧⎨⎩
p(ω, g) = cω + LXω,

q(ω, g) = cg + LXg,

where c = − 1
2c

′(0) and the family ψ(s) generated by the vector field X on M

satisfies that ϕ(t) = ψ(− 1
2s(t)). In analogy to the Ricci flow, this would be an

appropriate definition of soliton for a given (p, q)-flow on almost-hermitian mani-
folds. We note that this notion, when applied to left-invariant structures on Lie
groups, is weaker than Definition 7.2 (see Examples 8.3 and 9.1 for CRF and SCF,
respectively). However, if the full symmetry group G of a soliton almost-hermitian
structure (M,ω, g) (i.e. G the set of all isometries which also preserve ω) is tran-
sitive and K is the isotropy subgroup at some point of M , then M = G/K and
one can prove in much the same way as in [J2, Theorem 3.1] that there exists a
one-parameter family of equivariant diffeomorphisms φt ∈ Aut(G/K) (i.e. auto-
morphisms of G taking K onto K) such that (ω(t), g(t)) = (c(t)φ∗

t g, c(t)φ
∗
t g) is a

solution to the (p, q)-flow starting at (ω, g). In the Ricci flow case, these special ho-
mogeneous solitons are called semi-algebraic (see [J2,LfL] for further information).

If an almost-hermitian structure (ω, g) satisfies that

(31)

⎧⎨⎩
P = c1I +D1,

Qac = c2I +D2,

for some ci ∈ R, Di ∈ Der(g), then (ω, g) is a (p, q)-soliton with c = c1 + c2 and
D = D1+D2. This easily follows by using that −JDt

1J = Dtω
1 = D1, c2I+Dc

2 = 0,
Dt

2 = D2 and (9). However, the following apparently weaker condition, suggested
by the strong relationship between a (p, q)-flow and its (p, q)-bracket flow given in
Theorem 5.1, is actually enough to get a soliton.

Proposition 7.4. If an almost-hermitian structure (ω, g) satisfies that for some
c ∈ R and D ∈ Der(g),

(32) P +Qac = cI +D,

then (ω, g) is a (p, q)-soliton with the same c and D.

Proof. By taking the transpose of both sides in equality P +Qac = cI +D relative
to g and ω, we respectively obtain that

−JPJ +Qac = cI +Dt, P −Qac = cI − JDtJ.

The formulas for P and Q in Definition 7.2 now follow by averaging these two
equations with the one above and using (9), concluding the proof. �
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7.1. Bracket flow evolution of solitons. We now study how (p, q)-solitons evolve
according to the (p, q)-bracket flow. We refer to [LfL, Section 4] for an analysis of
the same question in the case of the Ricci flow, where a more detailed treatment is
given to all of the claims made below.

It is easy to check that the (p, q)-bracket flow solution starting at a (p, q)-soliton
for which condition (32) holds stays in a straight line; it is simply given by

μ(t) = (−2ct+ 1)−1/2[·, ·].
This property actually characterizes the class of solitons defined by (32). Moreover,
it also easily follows that they are precisely the fixed points of any (possibly nor-
malized) (p, q)-bracket flow, and consequently, the only possible limits, backward
and forward, of any normalized (p, q)-bracket flow solution a(t)μ(t). This fact and
the equivalence between the (p, q)-flow and its (p, q)-bracket flow (see Theorem 5.1)
suggest that solitons satisfying (32) might exhaust the class of all (p, q)-solitons (up
to equivalence).

The converse of Proposition 7.4 might fail. Indeed, if (ω, g) is a (p, q)-soliton for
the pair (c,D), then it is straightforward to prove that

(33) P +Qac = cI +D −A, where A := 1
2

(
D −Dt

)c
.

Note that A is a skew-hermitian map which is not necessarily a derivation. In this
general case, the (p, q)-bracket flow evolves by

μ(t) = (−2ct+ 1)−1/2es(t)A · [·, ·].
Indeed, according to Theorem 5.1, we must solve

d

dt
h = −h(P +Qac) = −(−2ct+ 1)−1h

(
cI +D − es(t)DAe−s(t)D

)
(see (29) and (21)), which gives h(t) = (−2ct + 1)1/2

(
es(t)Ae−s(t)D

)
, and so the

formula for μ(t) follows.
We note that the normalized solution λ(t) := μ(t)/|μ(t)| and all the limits of

subsequences λ(tk) are in the compact orbit U(n) · [·, ·], up to scaling (recall that
A ∈ u(n)). On the other hand, by Kronecker’s theorem, there exists a sequence
tk, with tk → ∞, such that etkA → I. This implies that λ(t0 + tk) −→

k→∞
λ(t0) for

any t0 ∈ R and thus the whole normalized solution is contained in its ω-limit. The
absence of this kind of chaotic behavior for the (p, q)-bracket flow would imply that
A is a derivation of g, and consequently, condition (32) would necessarily hold for
any (p, q)-soliton. This is analogous to the question in the Ricci flow case whether
every semi-algebraic soliton is algebraic (see [LfL]), which has been resolved, in the
affirmative, by M. Jablonski in [J3].

8. Chern-Ricci flow

Let (M,J) be a complex manifold. Given a hermitian metric g, the Ricci flow
starting at g may not preserve the hermitian condition since the Ricci tensor is
not in general a (1, 1)-tensor beyond the Kähler case. A natural (1, 1)-tensor to
consider instead is the Chern-Ricci tensor p(·, J ·), where p is the Chern-Ricci form
(see Appendix 10), and one obtains the so-called Chern-Ricci flow (or CRF for
short):

(34)
∂

∂t
ω = −2p, or equivalently,

∂

∂t
g = −2p(·, J ·),
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where as always ω = g(J ·, ·) is the fundamental form. We refer to [TW] and the
references therein for further information on this evolution equation.

A solution to (34) preserves the compatibility condition by (9) (recall that p = pc

and q = p(·, J ·)), and it follows from (10) that

(35) J(t) ≡ J0.

In other words, the complex manifold remains fixed along the flow, and thus the
hermitian condition is also preserved. If ω is Kähler, then p is precisely the Ricci
form and CRF becomes the Kähler-Ricci flow.

We note that the corresponding Chern-Ricci operators satisfy P = Q (see (7))
and, in particular, P = P t = P c is a symmetric and hermitian map with respect
to (g, J).

Let us now consider the CRF on Lie groups. In this case, the Chern-Ricci form
is given by p = − 1

2 trJ ad [·, ·] + 1
2 tr ad J [·, ·] (see (45)). Since p depends only on J ,

we obtain from (35) that along a solution to (34), p(t) ≡ p0. This implies that the
CRF-solution starting at (ω0, g0) is simply given by

(36) ω(t) = ω0 − 2tp0, or equivalently, g(t) = g0 − 2tp0(·, J ·).

Therefore,

ω(t) = ω0((I − 2tP0)·, ·),
and so the solution exists as long as the hermitian map I − 2tP0 is positive. It
follows that the maximal interval of time existence (T−, T+) of ω(t) is given by

(37) T+ =

⎧⎨⎩
∞, if P0 ≤ 0,

1/(2p+), otherwise,
T− =

⎧⎨⎩
−∞, if P0 ≥ 0,

1/(2p−), otherwise,

where p+ is the maximum positive eigenvalue of the Chern-Ricci operator P0 of ω0

and p− is the minimum negative eigenvalue (recall that p0 = ω0(P0·, ·)).
It is easy to see that

P (t) = (I − 2tP0)
−1P0,

from which it follows that the family h(t) ∈ GL(g) defined in Lemma 4.1 is given by
h(t) = (I − 2tP0)

1/2. By Theorem 5.1(iv), the solution to the Chern-Ricci bracket
flow d

dtμ = δμ(Pμ) is given by

μ(t) = (I − 2tP0)
1/2 · [·, ·],

and hence relative to any orthonormal basis {e1, . . . , e2n} of eigenvectors of P0, say
with eigenvalues {p1, . . . , p2n}, the structure coefficients of μ(t) are given by

(38) μk
ij(t) =

(
1− 2tpk

(1− 2tpi)(1− 2tpj)

)1/2

ckij ,

where ckij are the structure coefficients of the Lie bracket [·, ·] of g (i.e. [ei, ej ] =∑
ckijek).
This implies that the normalized solution μ(t)/|μ(t)| always converges, as t →

T±, toward a Lie bracket λ such that (Gλ, ω0, g0) is a Chern-Ricci soliton (see
Section 7.1).
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The evolution of the Chern scalar curvature trP is also easy to understand.
Indeed,

trP (t) =

2n∑
i=1

pi
1− 2tpi

,
d

dt
trP (t) =

2n∑
i=1

2p2i
(1− 2tpi)2

≥ 0,

and hence trP (t) is strictly increasing unless P (t) ≡ 0 (i.e. ω(t) ≡ ω0). Moreover,
trP must blow up in finite time singularities: if T+ < ∞ (resp. T− > −∞), then∫ T+

0

trP (t) dt = ∞
(
resp.

∫ 0

T−

trP (t) dt = −∞
)
.

This improves in the case of CRF the regularity result given in Corollary 6.2 for a
general (p, q)-flow. We also note that nevertheless,

trP (t) ≤ C

T+ − t
,

for some constant C > 0, which is the claim of a well-known general conjecture for
the Kähler-Ricci flow (see e.g. [SW, Conjecture 7.7].

From Definition 7.2 and the fact that P = Q, we obtain that (ω, g) is a Chern-
Ricci soliton if and only if its Chern-Ricci operator satisfies

(39) P = cI + 1
2 (D +Dt), for some c ∈ R, D = Dc ∈ Der(g).

It follows from (30) and (37) that either P ≤ 0 (c ≤ 0) or P ≥ 0 (c ≥ 0) for any
Chern-Ricci soliton; in particular, c = 0 if and only if (ω, g) is Chern-Ricci flat. We
next show that much more can be said about P for Chern-Ricci solitons.

Proposition 8.1. If a left-invariant hermitian structure (ω, g) on a Lie group is a
Chern-Ricci soliton with cosmological constant c ∈ R, then its Chern-Ricci operator
P can have only 0 and c as eigenvalues.

Proof. According to (29), the evolution is given by ω(t) = (−2ct+ 1)es(t)D · ω, but
since (36) must also hold, it is straightforward to obtain that

e−2s(t)P = I − 2tP, ∀t.

This implies that e−2s(t)pi = 1 − 2tpi for any eigenvalue pi of P , from which we
obtain that cpi − p2i = 0 by taking second derivatives. �

The following structural results for Chern-Ricci solitons, which are in particular
valid for Kähler-Ricci solitons, may provide a starting point for approaching the
classification problem.

Proposition 8.2. Let (G,ω, g) be a hermitian Lie group with Lie algebra g and
Chern-Ricci operator P 	= 0. Then the following conditions are equivalent.

(i) ω is a Chern-Ricci soliton with cosmological constant c.
(ii) P = cI +D, for some D ∈ Der(g).
(iii) The eigenvalues of P are all either equal to 0 or c, the kernel k = KerP is an

abelian ideal of g and its orthogonal complement k⊥ (i.e. the c-eigenspace
of P ) is a Lie subalgebra of g (in particular, g is the semidirect product
g = k⊥ � k and c is non-zero).
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Proof. As μ(t)/|μ(t)| always converges as t → T±, the Chern-Ricci bracket flow
never develops the chaotic behavior described at the end of Section 7.1, and so any
Chern-Ricci soliton must satisfy (32). This shows that part (ii) follows from (i)
(the converse is trivial).

If we assume (ii), then the spectrum of P is contained in {0, c} by Proposition
8.1. The rest of part (iii) easily follows by using that P − cI ∈ Der(g). Conversely,
if (iii) holds, then P − cI is clearly a derivation of g, and so part (ii) follows. �

Example 8.3. The direct product G = G1 ×G2 of a hermitian Lie group G1 with
Chern-Ricci operator P1 = c1I +D1 	= 0, c1 ∈ R, D1 ∈ Der(g1) and a Chern-Ricci
flat hermitian nonabelian solvable Lie group G2 (i.e. P2 = 0) is a soliton in the
more general sense as in Remark 7.3 by defining the diffeomorphisms ϕ(t) to be
es(t)D1 on G1 and the identity on G2. However, G is not a Chern-Ricci soliton as
in (39). Indeed, if P = cI + 1

2 (D +Dt) for some c ∈ R and D ∈ Der(g), then D|g2

is normal and so its transpose is also a derivation, which implies that c = 0 as g2

is non-abelian. This implies that P1 = 1
2 (D|g1

+ (D|g1
)t) and hence P1 = 0 by

Proposition 8.2, a contradiction.

It is proved in [LRV] that P = 0 if G is nilpotent, and thus any invariant
hermitian structure on a compact nilmanifold is a fixed point for the CRF. It is
also studied in [LRV] how the limit λ± is related to the starting point, and the
existence problem for Chern-Ricci solitons on 4-dimensional solvable Lie groups.

9. Symplectic curvature flow

Let (M,ω, g, J) be an almost-Kähler manifold, i.e. an almost-hermitian manifold
such that dω = 0. With Kähler-Ricci flow as a motivation, it is natural to evolve the
symplectic structure ω in the direction of the Chern-Ricci form p (see Appendix
10), but since in general p 	= pc, one is forced to flow the metric g as well in
order to preserve compatibility. One may therefore consider the following (p, q)-
flow equation for a one-parameter family (ω(t), g(t)) of almost-Kähler structures:

(40)

⎧⎨⎩
∂
∂tω = −2p,

∂
∂tg = −2pc(·, J ·)− 2Rcac,

where p is the Chern-Ricci form of (ω, g) and Rc is the Ricci tensor of g. This
equation was introduced in [ST4] and is called the symplectic curvature flow (or
SCF for short). It is evident that SCF preserves the compatibility condition (9)
(note that Q = P c + Ricac) and the almost-Kähler condition (recall that dp = 0).
According to (10), SCF makes J evolve as follows:

∂

∂t
J = −2JP ac − 2J Ricac = −2JP ac + [Ric, J ],

where Ric denotes the Ricci operator of the metric g (i.e. Rc = g(Ric ·, ·)). We
note that if J0 is integrable, i.e. (ω0, g0) Kähler, then J = J0, Rcac = 0 and
pc(·, J ·) = Rc for all t, and so SCF becomes precisely the Kähler-Ricci flow for g(t).

Let (ω(t), g(t)) be a SCF-solution and assume that M is compact. In analogy
with the theorem of Tian-Zhang for the Kähler-Ricci flow (see [TZ]), it is conjec-
tured in [ST4] that (ω(t), g(t)) exists smoothly as long as the cohomology class
[ω(t)] ∈ H2(M,R) belongs to the cone C of all classes which can be represented by
a symplectic form.
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Since ω(t) is a deformation equivalence, all the corresponding time-dependent
symplectic (or complex) vector bundles are pairwise isomorphic, and thus the first
Chern class is constant in time: c1(M,ω(t)) ≡ c1(M,ω0). Recall that c1(M,ω) is
well defined as c1(M,J) for any compatible almost-complex structure J with the
same orientation. By using that [p] = 2πc1(M,ω), one obtains that the class evolves
by d

dt [ω] = −4πc1(M,ω0), and hence

[ω(t)] = −4tπc1(M,ω0) + [ω0].

The conjecture mentioned above is therefore equivalent to saying that the maximal
existence time T+ is given by

T+ = sup{t > 0 : [ω(t)] = −4tπc1(M,ω0) + [ω0] ∈ C}.

Assume now that c1(M,ω0) = 0. The solution is therefore expected to be immortal,
i.e. T+ = ∞. Furthermore, since [ω(t)] ≡ [ω0], it follows from the Moser Theorem
(see e.g. [CdS, Theorem 7.3] or [McS, Theorem 3.17]) that

ω(t) = ϕ(t)∗ω0, for some ϕ(t) ∈ Diff(M), ϕ(0) = id.

In other words, under the vanishing of the first Chern class, the symplectic manifold
(M,ω(t)) does not really change along a SCF-solution (ω(t), g(t)). This in particular
holds for invariant almost-Kähler structures on compact quotients M = G/Γ of Lie
groups, as the tangent bundle is in this case trivial and so c1(M) = 0.

Since Qac = Ricac for SCF, the bracket flow is given by

(41)
d

dt
μ = δμ(Pμ +Ricacμ ), μ(0) = [·, ·],

and the evolution of the scalar curvature and the square norm of the bracket, in
the unimodular case, are respectively given by

d

dt
R = 2〈P c,Ric〉+ 2|Ricac |2, d

dt
|μ|2 = −8〈P c +Ricac,M〉.

It follows from (45) that the Chern-Ricci form of the almost-Kähler structure
(μ, ω0, g0, J0) is given by

(42) p(X,Y ) = − 1
2 tr (J0 adμ μ(X,Y )) + 1

2 tr (adμ J0μ(X,Y )) , ∀X,Y ∈ g.

We note that the second term vanishes for unimodular Lie groups and that p = 0
in the 2-step nilpotent case.

According to Definition 7.2, we say that an almost-Kähler structure (ω, g) on a
Lie algebra g is a SCF-soliton if for some c ∈ R and D ∈ Der(g),

(43)

⎧⎨⎩
P = cI + 1

2 (D − JDtJ),

P c +Ricac = cI + 1
2 (D +Dt).

We note that a SCF-soliton (ω, g) is static (i.e. p = cω and Rcac = 0, and so they
evolve by (ω(t), g(t)) = (−2ct + 1)(ω, g)) if and only if D ∈ u(n) = sp(ω) ∩ so(g)
if and only if etD ∈ U(n) = Sp(ω) ∩ O(g) for all t. The sufficient condition for a
soliton given in (32) becomes

(44) P +Ricac = cI +D.
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By using this condition, a SCF-soliton on most of symplectic 4-dimensional
Lie groups has been found in [LW], where the SCF-evolution of solvable Lie al-
gebras with a codimension-one abelian ideal in any dimension is also studied.
E. Fernández-Culma [FC] found a SCF-soliton on most 2- and 3-step symplectic
nilpotent Lie groups of dimension 6.

Example 9.1. The direct product G = G1×G2 of an almost-Kähler nilpotent Lie
group G1 with P1 = 0 (e.g. 2-step nilpotent) and Ricac1 = c1I + D1 	= 0, c1 ∈ R,
D1 ∈ Der(g1), and a flat almost-Kähler nonabelian Lie group G2 (i.e. P2 = 0 and
Ricac2 = 0) is a soliton in the more general sense as in Remark 7.3 by defining
the diffeomorphisms ϕ(t) to be es(t)D1 on G1 and the identity on G2. However,
G is not a SCF-soliton as in (43). Indeed, if P c + Ricac = cI + 1

2 (D + Dt), for
some c ∈ R and D ∈ Der(g), then D|g2

is normal, and so its transpose is also a
derivation, which implies that c = 0 as g2 is non-abelian. It follows from (43) that
Ricac1 = ((D|g1

)t)ac and hence Ricac1 = 0, as Ric is orthogonal to any derivation by
[L3, Lemma 6.1(iii)], a contradiction.

9.1. Anti-complexified Ricci flow. In the case when p(ω, g) = 0 for all time t,
the SCF-solution (ω(t), g(t)) satisfies that ω(t) ≡ ω0 and g(t) is a solution to the
anti-complexified Ricci flow (acRF for short) studied in [LeW], defined by

∂

∂t
g = −2Rcac .

Thus SCF becomes in this case an evolution for compatible metrics on a fixed
symplectic manifold (M,ω0). This for instance happens on any 2-step nilmanifold.

Since P = 0 and Qac = Ricac along an acRF-solution, according to Proposition
6.4(ii), the evolution of the scalar curvature in the unimodular case is simply given
by

d

dt
R = 2|Ricac |2.

It follows from Corollary 6.2 that R must blow up in a finite-time singularity for
acRF. Indeed,∫ T+

0

|Ricac | dt ≤
∫ T+

0

1 + |Ricac |2
2

dt = 1
2T+ + 1

4 lim
t→T+

R − 1
4R0.

Proposition 9.2. If a left-invariant acRF-solution g(t) on a unimodular Lie group
has a finite-time singularity at T+ (resp. T−), then

lim
t→T+

R(g(t)) = ∞
(
resp. lim

t→T−
R(g(t)) = −∞

)
.

Long-time existence therefore follows for those Lie groups with the property that
any left-invariant metric has non-positive scalar curvature (see [BB]).

Corollary 9.3. Any left-invariant acRF-solution g(t) on a unimodular Lie group
covered by the euclidean space is immortal (i.e. T+ = ∞). In particular, this holds
for unimodular solvable Lie groups, and consequently for invariant acRF-solutions
on any compact solvmanifold.

Recall that a Lie group is covered by the euclidean space if and only if the
semisimple part of its Lie algebra is a sum of ideals all isomorphic to sl2(R).
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In the nilpotent case, the acRF has been studied in [L1], where besides the
uniqueness of acRF-solitons up to isometry and scaling, the following characteriza-
tions were given:

• g is an acRF-soliton.
• g minimizes the functional |Ricac |/|R| among all left-invariant metrics on
the given Lie group.

• Ricac(g) = cI +D for some c ∈ R, D ∈ Der(g).

In [FC], left-invariant acRF-solitons on all symplectic structures on 2- and 3-step
6-dimensional nilpotent Lie groups have been classified.

Concerning regularity and convergence, the following results can be proved in
much the same way as in [L3], where the Ricci flow on nilmanifolds was studied
(replace reference [19] by [L1] to get (6.1) and Theorem 6.2 for Ricac in [L3]). Let
g(t) be a left-invariant acRF-solution on a symplectic nilpotent Lie group (N,ω) of
dimension 2n. Then the following hold:

• g(t) is defined for t ∈ [0,∞), and there exists a constant Cn that only
depends on n such that |Rm(g(t))| ≤ Cn/t for all t ∈ (0,∞); in particular,
g(t) is a type-III solution.

• The functional |Ricac |/|R| is strictly decreasing along g(t) for all t unless
g0 is an acRF-soliton.

• The metrics g(t) converge in the pointed sense to a flat metric as t → ∞.
• The bracket flow d

dtμ = δμ(Ric
ac
μ ) is precisely the negative gradient flow

of the functional |Ricac |2, and consequently, μ/|μ| always converges to a
unique Lie bracket λ (no chaos). Moreover, it follows from [J1, Theorem
6.4] that λ is isomorphic to μ0 if and only if Gμ0

admits an acRF-soliton.
• If g0 is non-flat, then the metrics |R(g(t))|g(t) converge in the pointed sense
to a non-flat acRF-soliton g∞ as t → ∞. The metric g∞ is isometric to

a left-invariant metric on some nilpotent Lie group Ñ , though possibly
non-isomorphic to N .

9.2. Examples. In order to illustrate many of the aspects of the approach proposed
in the paper, we next give two simple examples in detail for SCF.

Example 9.4. Let μ = μa,b be the nilpotent Lie bracket on g = R
4 defined by

μ(e1, e2) = ae3, μ(e1, e3) = be4.

Consider g0, the canonical inner product, and

ω0 = e1 ∧ e4 + e2 ∧ e3, J0 =

[
0 −1
−1 0

0 1
1 0

]
,

where {ei} denotes the canonical basis of R4 and {ei} its dual basis.
It is easy to check that (μ, ω0, g0) is an almost-Kähler structure, with Chern-Ricci

form given by p = −ab
2 e1 ∧ e2, and

P = 1
2

[
0 0
0 0

ab 0
0 −ab

]
, Ricac = − 1

4

[
a2+2b2

2a2−b2

−2a2+b2

−a2−2b2

]
.

If exactly one of a, b vanishes, then (Gμ, ω0, g0) is the simply connected cover of the
Kodaira-Thurston manifold. This Lie group, which is isomorphic to R×H3, where
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H3 denotes the Heisenberg group, admits a unique almost-Kähler structure up to
equivalence and scaling, and so such structure is necessarily a (p, q)-soliton for any
(p, q)-flow. This can also be checked by using (44).

We can therefore assume that a, b > 0, up to equivalence. By using that the
space of derivations of μ is given by

Der(μ) =

{[
α 0 0 0
∗ β 0 0
∗ γ α+β 0
∗ ∗ bγ/a 2α+β

]
: α, β, γ ∈ R

}
,

it is not hard to show that μ is a SCF-soliton if and only if a = b. In that case,
condition (44) holds:

P +Ricac = − 5
4a

2I + 1
2a

2

[
1
0 2
1 0 3
0 −1 0 4

]
∈ RI +Der(μ).

Note that P is always a derivation, and so actually condition (31) does hold.
It is straightforward to see that this family is invariant under the bracket flow,

which is equivalent to the following ODE system for the variables a(t), b(t):⎧⎨⎩
a′ = − 5

4a
3,

b′ = − 5
4b

3.

This can be explicitly integrated as

a(t) =
(

5
2 t+

1
a2
0

)−1/2

, b(t) =
(

5
2 t+

1
b20

)−1/2

,

and thus all these SCF-solutions are immortal (i.e. T+ = ∞) and μ(t) → 0 as
t → ∞. It follows from Section 5.1 that the original SCF-solution (Gμ0

, ω(t), g(t))
converges to the Kähler euclidean space (R4, ω0, g0) in the pointed sense as t → ∞.
Moreover, since

lim
t→∞

μ(t)/|μ(t)| = λ := μ1/2,1/2, ∀a0, b0 > 0,

we obtain pointed convergence of the (normalized) SCF-solution (Gμ0
, c(t)ω(t),

c(t)g(t)) toward the SCF-soliton (Gλ, ω0, g0), where c(t) = |μ(t)|2.

The SCF-evolution of the structures in Example 9.4 have already been studied
in [P, Sections 3.1, 3.3] in the standard way.

Example 9.5. Let μ = μa,b be the (non-unimodular) solvable Lie bracket on
g = R

4 defined by

μ(e1, e2) = −ae2, μ(e1, e3) = 2ae3, μ(e1, e4) = ae4, μ(e2, e3) = be4,

and consider g0 the canonical inner product,

ω0 = e1 ∧ e3 + e2 ∧ e4, J0 =

[ −1 0
0 −1

1 0
0 1

]
.

The almost-Kähler structure (μ, ω0, g0) has p = −a(4a+ b)e1 ∧ e3 and

P = − 1
2a(4a+ b)

[
1
0
1
0

]
, Ricac = − 1

4 (4a
2 − b2)

[
1
−2

−1
2

]
.
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For any a, b 	= 0, μ is isomorphic to the Lie algebra d4,2, as denoted in [O, Proposi-
tion 2.1], and if in addition b = 2a, then (μa,2a, ω0, g0) is equivalent (up to scaling)
to the unique left-invariant strictly almost-Kähler structure on a 4-dimensional Lie
group having Ricac = 0 found in [F]. It is easy to see that this is the unique SCF-
soliton among this family for a, b 	= 0. Note that actually condition (31) does
hold:

P = −3a2I + 3a2
[
0
1
0
1

]
∈ RI +Der(μa,2a).

It is straightforward to show that this family is invariant under the bracket flow,
which is equivalent to the following ODE system for the variables a(t), b(t):⎧⎨⎩

a′ = (−9a2 + 1
4b

2 − 2ab)a,

b′ = (−3a2 − 5
4b

2 − 2ab)b.

By a standard qualitative analysis, we obtain as in the above example long-time ex-
istence for all these SCF-solutions and that (Gμ0

, ω(t), g(t)) converges to (R4, ω0, g0)
in the pointed sense as t → ∞. Furthermore,

lim
t→∞

μ(t)/|μ(t)| = λ := μ1,2/
√
20, ∀a0, b0 > 0,

and thus pointed convergence of (G, c(t)ω(t), c(t)g(t)) toward the SCF-soliton
(Gλ, ω0, g0) follows for c(t) = |μ(t)|2.

10. Appendix: Chern-Ricci form

Let (M,ω, g, J) be a 2n-dimensional almost-hermitian manifold. The Chern
connection is the unique connection ∇ on M which is hermitian (i.e. ∇ω = 0,
∇g = 0, ∇J = 0), and its torsion satisfies T 1,1 = 0. In terms of the Levi-Civita
connection D of g, the Chern connection is given by

g(∇XY, Z) = g(DXY, Z)− 1
2dω(JX, Y, Z)− g(X,N(Y, Z)),

where N(X,Y ) = [JX, JY ] − [X,Y ] − J [JX, Y ] − J [X, JY ] is the Nijenhuis ten-
sor (see e.g. [V2, (2.1)], [DV, (2.1)] and [TW, Section 2] for different equivalent
descriptions). We note that ∇ = D if and only if (M,ω, g, J) is Kähler. In the
almost-Kähler case, the above formula reduces to

∇XY = DXY + 1
2 (DXJ)JY.

The Chern-Ricci form p = p(ω, g) is defined by

p(X,Y ) =
n∑

i=1

g(R(X,Y )ei, Jei) =
√
−1

n∑
i=1

g(R(X,Y )Zi, Zi),

where R(X,Y ) = ∇[X,Y ] − [∇X ,∇Y ] is the curvature tensor of ∇ and

{e1, . . . , en, Je1, . . . , Jen}

is a local orthonormal frame for g with corresponding local unitary frame

Zi := (ei −
√
−1Jei)/

√
2, Zi := (ei +

√
−1Jei)/

√
2.
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The Chern-Ricci form is always closed and locally p = dθ, where θ is the 1-form
given by

θ(X) =
√
−1

n∑
i=1

g(∇XZi, Zi)

=− 1
2

n∑
i=1

g([X, ei], Jei)− g([X, Jei], ei) + g([JX, ei], ei) + g([JX, Jei], ei).

(See [V2, (3.3)].) If J is integrable, then p is a (1, 1)-form (see e.g. [TW, Section
2]), and in the Kähler case p equals the Ricci form Rc(J ·, ·).

By Chern-Weil theory [p] = 2πc1(M,J), where c1(M,J) ∈ H2(M,R) is the first
Chern class (see e.g. [M, Chapter 16] or [KN, Chapter 12] for further information).

The Chern-Ricci form p of a left-invariant almost-hermitian structure (ω, g, J)
on a Lie group with Lie algebra g is given by

(45) p(X,Y ) = − 1
2 tr J ad [X,Y ] + 1

2 tr ad J [X,Y ], ∀X,Y ∈ g.

(See [V2, Proposition 4.1] or [P].) Remarkably, p only depends on J . If P ∈ End(g)
is the Chern-Ricci operator, i.e. p = ω(P ·, ·), then by (45) P vanishes on the center
of g.

It follows from [V2, Proposition 4.2] that p vanishes under any of the following
conditions:

• J bi-invariant (i.e. [J ·, ·] = J [·, ·]).
• J anti-bi-invariant (i.e. [J ·, ·] = −J [·, ·]).
• J abelian (i.e. [J ·, J ·] = [·, ·]) and g unimodular.

It is proved in [LRV] that if J is integrable and g is nilpotent, then p = 0.
On the other hand, in the case when ω is closed, it is proved in [FC] that

P = adZ + (adZ)tω = adZ + J(adZ)tJ−1,

where Z ∈ g is defined by p(X,Y ) = ω(Z, [X,Y ]) for all X,Y ∈ g, and furthermore,
that P is a nilpotent operator if g is unimodular.
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