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Optimal control of a delayed breast cancer stem cells
nonlinear model
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SUMMARY

In this article, we consider a nonlinear model, which is governed by an ordinary differential equations system
with time delays in state and control. The model is used in order to describe the growth of breast cancer cells
under therapy. We seek optimal therapies to minimize the number of cancer cells as well as the total quantity
of drug used in the treatment. In this way, we formulate an optimal control problem. We prove the existence
of an optimal therapy and use Pontryagin’s maximum principle in order to find optimality conditions, which
characterize such optimal therapy. At last, both numerical results and conclusion are presented. Copyright
© 2015 John Wiley & Sons, Ltd.
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1. INTRODUCTION

Breast cancer is a kind of cancer that develops from breast cells. This cancer has a heterogeneous
distribution of cell types. Cancer stem cells (CSCs) have been identified in primary breast cancer
tissues and cell lines. CSCs are defined as a small subset of cancer cells that possess own properties
of the normal stem cells such as self-renew and replenish the heterogeneous lineage of cancer cells
that comprise the tumor. A theory has suggested that stem cells cause relapse of patients and are
responsible for metastasis. An important question is how the proportion of CSC population can be
maintained at a relatively constant level in tumors [1–3]. CSC hypothesis suggests that CSCs possess
the ability to divide symmetrically to yield two identically immortal CSCs as well as asymmetrically
to simultaneously self-renew and yield one mortal non-stem cancer cell with finite replicative poten-
tial. It is believed that the proportion of CSCs remains constant, alternating between symmetric and
asymmetric division.

There are a large number of mathematical models to study the previous issues, but the most
important model with delayed state is presented in [3], which was corroborated with in vivo and in
vitro experiments.

We include a therapy effects (control) with time delays into the model proposed in [3]. Also, we
formulate an optimal control problem in order to minimize the number of breast cancer cells and
amount of drugs used in the treatment. Other authors have studied similar problem [4–9].

The organization of this article is as follows: In section 2, we present the model used in [3] and
incorporate the therapy effects on CSCs. In section 3, we apply Pontryagin’s maximum principle to
find optimal therapies. Section 4 is devoted to give some numerical result. At last, in section 5, we
provide the conclusions.
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2. MATHEMATICAL MODEL FOR BREAST CANCER DYNAMICS

We assume that breast cancer is constituted by three main types of cells: CSCs, progenitor cells
(PCs), and terminally differentiated cells (TDCs) [3]. When feedback control is not included, it
is formulated in the following system of ordinary differential equations for the dynamics of the
cell populations:

8̂̂̂
<
ˆ̂̂:

dC.t/
dt
D .p0 � q0/�0C.t/ � d0C.t/;

dP.t/
dt
D .1 � p0 C q0/�0C.t/C .p1 � q1/�1P.t/ � d1P.t/;

dT.t/
dt
D .1 � p0 C q0/�0P.t/ � d2T .t/;

.C.0/; P.0/; T .0// D .C0; P0; T0/;

(1)

where C.t/; P.t/; and T .t/ denote, respectively, the number of CSCs, PCs, and TDCs at time t [3].
We also denote p0 as the probability that a CSC is divided into a pair of CSCs, q0 as the probability
that a CSC is divided into a pair of PCs, p1 as the probability that a PC is divided into a pair of
PCs, and q1 as the probability that a PC is divided into a pair of TDCs, respectively. Therefore,
1� p0 � q0.1� p1 � q1/ denotes the probability that an asymmetric cell division takes place from
CSCs (PCs) to PCs (TDCs). Finally, .C0; P0; T0/ is the initial condition of system (1).

Parameters �0 and �1 are called synthesis rates, and it represent the growth rates of each cell
lineage. Parameters d0; d1; and d2 are the degradation rates of CSCs, PCs, and TDCs, respectively,
where d0 and d1 must be relatively small or negligible compared with d2 [3].

Cell division and other mechanisms allow stem cells to regulate its population. One of these
mechanisms is a Type-I feedback, which is proposed in [3]. According to this delayed feedback, the
TDCs can regulate the synthesis rates of CSCs and PCs. In this case, the dynamical system has the
following form:

8̂̂̂
<̂
ˆ̂̂̂:

dC.t/
dt
D .p0 � q0/

�0C.t/

1Cˇ0T 2.t��/
� d0C.t/;

dP.t/
dt
D .1 � p0 C q0/

�0C.t/

1Cˇ0T 2.t��/
C .p1 � q1/

�1P

1Cˇ1T 2.t��/
� d1P.t/;

dT.t/
dt
D .1 � p1 C q1/

�1P

1Cˇ1T 2.t��/
� d2T .t/;

.C.t/; P.t/; T .t// D .C0; P0; T0/;8t 2 Œ��; 0�:

(2)

In model (2), parameters �1 and �2 of model (1) have been replaced by a nonlinear decreasing Hill
functions of the TDC population with time delay, � , and strength parameters ˇ1 and ˇ2, respectively:

�0

1C ˇ0T 2.t � �/
and

�1

1C ˇ1T 2.t � �/
:

There is another type of feedback mechanism with time delays, which assume that the probability
of symmetric cell division is regulated by the population of TDCs. This feedback is known as Type-II
feedback and responds the following delay differential equations:

8̂̂̂
ˆ̂̂̂̂̂
ˆ̂̂<
ˆ̂̂̂̂̂
ˆ̂̂̂̂̂
:

dC.t/
dt
D

�
p0

1C�0
1
T 2.t��/

� q0
1C�0

2
T 2.t��/

�
�0C.t/ � d0C.t/;

dP.t/
dt
D

�
1 � p0

1C�0
1
T 2.t��/

C q0
1C�0

2
T 2.t��/

�
�0C.t/

C

�
p1

1C�1
1
T 2.t��/

� q1
1C�1

2
T 2.t��/

�
�1P.t/ � d1P.t/;

dT.t/
dt
D

�
1 � p1

1C�1
1
T 2.t��/

C q1
1C�1

2
T 2.t��/

�
�1P.t/ � d2T .t/;

.C.t/; P.t/; T .t// D .C0; P0; T0/;8t 2 Œ��; 0�:

(3)
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As can be noted from model (3), division probabilities are modeled by nonlinear decreasing Hill
functions controlled by TDC levels with time delay, � , and feedback strength parameters � W

p0

1C �01T
2.t � �/

;
q0

1C �02T
2.t � �/

;

p1

1C �11T
2.t � �/

and
p0

1C �21T
2.t � �/

:

When Type-I and Type-II feedback mechanisms are combined, then the governing system of
equations takes the form [3]:8̂̂̂

ˆ̂̂̂̂̂
ˆ̂̂̂̂̂
ˆ̂̂<
ˆ̂̂̂̂̂
ˆ̂̂̂̂̂
ˆ̂̂̂̂̂
:

dC.t/
dt
D

�
p0

1C �01T
2.t � �/

�
q0

1C �02T
2.t � �/

�
„ ƒ‚ …

G1.t��/

�0C.t/

1Cˇ0T 2.t��/„ ƒ‚ …
H1.t;t��/

�d0C.t/;

dP.t/
dt
D

�
1 � p0

1C�0
1
T 2.t��/

C q0
1C�0

2
T 2.t��/

�
�0C.t/

1Cˇ0T 2.t��/
C�

p1

1C �11T
2.t � �/

�
q1

1C �12T
2.t � �/

�
„ ƒ‚ …

G2.t��/

�1P.t/

1Cˇ1T 2.t��/„ ƒ‚ …
H2.t;t��/

�d1P.t/;

dT.t/
dt
D

�
1 � p1

1C�1
1
T 2.t��/

C q1
1C�1

2
T 2.t��/

�
�1P.t/

1Cˇ1T 2.t��/
� d2T .t/;

.C.t/; P.t/; T .t// D .C0; P0; T0/;8t 2 Œ��; 0�:

(4)

We consider a control, u.t/; in order to model the dynamics of the cancer cells under therapy.
Function u.t/ represents the drug doses administered at time t in such a way as to u D 0 corresponds
to no drug being applied, while u D 1 occurs with a full dose. The generalized model is given by
the following:8̂̂̂
ˆ̂<
ˆ̂̂̂̂:

dC.t/
dt
D G1.t � �/H1.t; t � �/ � d0C.t/ � e0u.t � �/C.t � �/;

dP.t/
dt
D .1 �G1.t � �//H1.t; t � �/CG2.t � �/H2.t; t � �/ � d1P.t/ � e1u.t � �/P.t � �/;

dT.t/
dt
D .1 �G2.t � �//H2.t; t � �/ � d2.T .t/ � e2u.t � �/T .t � �/;

.C.t/; P.t/; T .t// D .C0; P0; T0/; u.t/ D 0;8t 2 Œ��; 0�;
(5)

where e0; e1; and e2 are the drug sensitivities of the cancer cells CSCs, PCs, and TDCs, respectively.
We assume that u.t/ 2 Uad ; where

Uad D
®
u W u.t/ is measurable and 0 < u.t/ 6 1;8t 2 Œ0; Tf �

¯
;

and Tf <1 is the time horizon.
Figure 1 shows the free evolution of the cancer cells CSCs, PCs, and TDCs over a period of

100 days obtained from model (4) with the values of Table I, which are shown in the numerical
results section (i.e. section 4). Initial conditions are C.t/ D C0; P.t/ D P0; and T .t/ D T0;

8t 2 Œ��; 0�; where C0 D 105; P0 D 0; T0 D 0; and � D 2:

2.1. Existence of solutions of system (5)

In order to prove that system (5) has a solution, it is rewritten as follows:

PX.t/
:
D F.X.t/; X.t � �// D AX.t/CK.X.t/; X.t � �//; (6)
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Figure 1. Free dynamic of the cancer cells CSCs (blue), PCs (green), and TDCs (red). Parameters used are
listed in Table I. CSCs, cancer stem cells; PCs, progenitor cells; TDCs, terminally differentiated cells.

Table I. Tumor parameters.

p0 q0 p1 q1
�0
�1

d2
�1

d0
d2

d1
d2

�01 �02 �11 �12 ˇ0 ˇ1

0.5 0.2 0.1 0.5 0.5 0.05 0.1 0.5 10�11 2 � 10�12 4 � 10�10 5 � 10�11 8 � 10�12 4 � 10�12

where we have defined

X.t/
:
D

0
@C.t/P.t/

T .t/

1
A ; X.t � �/ :D

0
@C.t � �/P.t � �/
T .t � �/

1
A ;

A
:
D

0
@�.e0u.t � �/C d0/ 0 0

0 �.e1u.t � �/C d1/ 0

0 0 �.e2u.t � �/C d2/

1
A ;

and K.X.t/; X.t � �// is defined by the following function:0
BBBBBB@

�
p0

1C�0
1
T 2.t��/

� q0
1C�0

2
T 2.t��/

�
�0C.t/

1Cˇ0T 2.t��/�
1 � p0

1C�0
1
T 2.t��/

C q0
1C�0

2
T 2.t��/

�
�0C.t/

1Cˇ0T 2.t��/
C

�
p1

1C�1
1
T 2.t��/

� q1
1C�1

2
T 2.t��/

�
�1P.t/

1Cˇ1T 2.t��/�
1 � p1

1C�1
1
T 2.t��/

C q1
1C�1

2
T 2.t��/

�
�1P.t/

1Cˇ1T 2.t��/

1
CCCCCCA :

Theorem 2.1
There is a solution of system (5).

Proof 2.1
We use the following classical result: if F is uniformly Lipschitz continuous, then there is a solution
of system (5). The proof of this result can be found in standard ordinary differential equations with
delay textbooks [10–12]. Therefore, the plan is to show that F is uniformly Lipschitz continuous.

It is obvious that AX.t/ is uniformly Lipschitz continuous, then we only need to prove that
K.X.t/; X.t � �// is uniformly Lipschitz continuous. In other words, we will prove that

jK.X1.t/; X
�
1 .t// �K.X2.t/; X

�
2 .t//j 6M

�
jX1.t/ �X2.t/j C jX

�
1 .t/ �X

�
2 .t/j

�
:
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For simplicity, we denote X1.t � �/ and X2.t � �/ by X �1 .t/ and X �2 .t/; respectively.
We begin by checking that the right-hand side of (2) is uniformly Lipschitz continuous. Therefore,

we rewrite (2) as follows:

PX D QAX.t/C QK.X.t/; X � .t//;

where

QA
:
D

0
@�d0 0 0

0 �d1 0

0 0 �d2

1
A

and QK.X.t/; X.t � �// is defined as follows:0
BB@

.p0 � q0/
�0C.t/

1Cˇ0T 2.t��/

.1 � p0 C q0/
�0C.t/

1Cˇ0T 2.t��/
C .p1 � q1/

�1P.t/

1Cˇ1T 2.t��/

.1 � p1 C q1/
�1P.t/

1Cˇ1T 2.t��/

1
CCA :

Once again, we only need to prove thatˇ̌
QK.X1.t/; X

�
1 .t// �

QK.X2.t/; X
�
2 .t//

ˇ̌
6M

�
jX1.t/ �X2.t/j C jX

�
1 .t/ �X

�
2 .t/j

�
:

If we denote QK.X1.t/; X �1 .t// � QK.X2.t/; X
�
2 .t// D .I1; I2; I3/

T ; thenˇ̌
QK.X1.t/; X

�
1 .t// �

QK.X2.t/; X
�
2 .t//

ˇ̌
D jI1j C jI2j C jI3j:

We observe that the first term,jI1j, is equal to

ˇ̌̌
ˇ
�
.p0 � q0/�0C1.t/

1C ˇ0T
2
1 .t � �/

�
�

�
.p0 � q0/�0C2.t/

1C ˇ0T
2
2 .t � �/

�ˇ̌̌
ˇ„ ƒ‚ …

jI1j

and in turn, it is equal toˇ̌̌
ˇD1C1.t/.1C ˇ0T 22 .t � �// �D1C2.t/.1C ˇ0T 21 .t � �//.1C ˇ0T

2
1 .t � �//.1C ˇ0T

2
2 .t � �//

ˇ̌̌
ˇ„ ƒ‚ …

j QI1j

;

where D1
:
D .p0 � q0/�0:

Now, we have that

j QI1j 6
ˇ̌
D1C1.t/.1C ˇ0T

2
2 .t � �// �D1C2.t/.1C ˇ0T

2
1 .t � �//

ˇ̌
6
ˇ̌
D1C1.t/CD1ˇ0C1.t/T

2
2 .t � �/ �D1C2.t/ �D1ˇ0C2.t/T

2
1 .t � �/

ˇ̌
6 jD1j jC1.t/ � C2.t/j C

ˇ̌
D1ˇ0C1.t/T

2
2 .t � �/ �D1ˇ0C1.t/T

2
1 .t � �/

ˇ̌
C
ˇ̌
D1ˇ0C1.t/T

2
1 .t � �/ �D1ˇ0C2.t/T

2
1 .t � �/

ˇ̌
6 jD1j jC1.t/ � C2.t/j C jD1ˇ0C1.t/j

ˇ̌
T 22 .t � �/ � T

2
1 .t � �/

ˇ̌
C
ˇ̌
D1ˇ0T

2
1 .t � �/

ˇ̌
jC1.t/ � C2.t/j

6 jD1j
�
1C jD1jjˇ0j

ˇ̌
T 21 .t � �/

ˇ̌�
jC1.t/ � C2.t/j

C jD1ˇ0C1.t/j jT2.t � �/C T1.t � �/j jT2.t � �/ � T1.t � �/j :
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However, from the right-hand side of (2), it is easy to prove that there is a finite non-negative constant
R <1 such that N.t/ < R;8t 2 Œ0; Tf �; where N.t/ D C.t/C P.t/C T .t/ and Tf <1 is the
time horizon. Then jT 21 .t � �/j < R

2 and jT2.t � �/C T1.t � �/j < 2R: Therefore,

jI1j D j QI1j 6M1 .jC1.t/ � C2.t/j C jT1.t � �/ � T2.t � �/j/ ;

where M1
:
D max

®
jD1j

�
1C jD1jjˇ0j

ˇ̌
R2
ˇ̌�
j; jD1ˇ0jR

3
¯
:

Similarly, we have the following inequalities:

jI2j 6M2 .jC1.t/ � C2.t/j C jT1.t � �/ � T2.t � �/j/ ;

and

jI3j 6M3 .jC1.t/ � C2.t/j C jT1.t � �/ � T2.t � �/j/ :

LetM be the max ¹M1;M2;M3º : Then, jI1jCjI2jCjI3j6M .jC1.t/�C2.t/j C jT1.t/ � T2.t/j/ ;
and the right-hand side of (2) is uniformly Lipschitz continuous.

Similar to the previous case, it is possible to prove that the right-hand side of (3) is uniformly
Lipschitz continuous.

The fact that the right-hand sides of (2) and (3) are uniformly Lipschitz continuous, it is used
in order to prove that K is also uniformly Lipschitz continuous (therefore, F will be uniformly
Lipschitz continuous). We begin by

K.X1.t/; X
�
1 .t// �K.X2.t/; X

�
2 .t// D .J1; J2; J3/

T :

Therefore,

jK.X1.t/; X
�
1 .t// �K.X2.t/; X

�
2 .t//j D jJ1j C jJ2j C jJ3j:

For the first term, jJ1j; we have

jJ1j 6 j
�

p0
1C�0

1
T 2
1
.t��/

� q0
1C�0

2
T 2
1
.t��/

�
�0C1.t/

1Cˇ0T
2
1
.t��/

�

�
p0

1C�0
1
T 2
1
.t��/

� q0
1C�0

2
T 2
1
.t��/

�
�0C1.t/

1Cˇ0T
2
1
.t��/
j

D j

�
p0

1C�0
1
T 2
1
.t��/

� q0
1C�0

2
T 2
1
.t��/

�
�0C1.t/

1Cˇ0T
2
1
.t��/

�

�
p0

1C�0
1
T 2
1
.t��/

� q0
1C�0

2
T 2
1
.t��/

�
�0C1.t/

1Cˇ0T
2
1
.t��/

C

�
p0

1C�0
1
T 2
2
.t��/

� q0
1C�0

2
T 2
2
.t��/

�
�0C2.t/

1Cˇ0T
2
1
.t��/

�

�
p0

1C�0
1
T 2
2
.t��/

� q0
1C�0

2
T 2
2
.t��/

�
�0C2.t/

1Cˇ0T
2
1
.t��/

C

�
p0

1C�0
1
T 2
2
.t��/

� q0
1C�0

2
T 2
2
.t��/

�
�0C1.t/

1Cˇ0T
2
1
.t��/

�

�
p0

1C�0
1
T 2
2
.t��/

� q0
1C�0

2
T 2
2
.t��/

�
�0C1.t/

1Cˇ0T
2
1
.t��/
j

6 j�0j

j1Cˇ0T
2
1
.t��/j

j

�
p0

1C�1T
2
1
.t��/

� q0
1C�2T

2
1
.t��/

�
C1.t/ �

�
p0

1C�1T
2
2
.t��/

� q0
1C�2T

2
2
.t��/

�
C2.t/j

Cj p0
1C�1T

2
2
.t��/

� q0
1C�2T

2
2
.t��/
jj �0
1Cˇ0T

2
1
.t��/

C1.t/ �
�0

1Cˇ0T
2
2
.t��/

C2.t/j

Cj �0
1Cˇ0T

2
1
.t��/
jj p0
1C�1T

2
2
.t��/

� q0
1C�2T

2
2
.t��/
jjC2.t/ � C1.t/j

6 j�0jM1.jC1.t/ � C2.t/j C jT1.t � �/ � T2.t � �/j/C .jp0j C jq0j/M2.jC1.t/ � C2.t/j

CjT1.t � �/ � T2.t � �/j/C j�0j.jp0j C jq0j/.jC1.t/ � C2.t/j C jT1.t � �/ � T2.t � �/j/

D QM1..jC1.t/ � C2.t/j C jT1.t � �/ � T2.t � �/j//;

where 0 < M1;M2 < 1; and QM1 D max¹j�0jM1; .jp0j C jq0j/M2; j�0j.jp0j C jq0j/º: It is also
possible to prove that

jJ2j 6 QM2 .jC1.t/ � C2.t/j C jT1.t � �/ � T2.t � �/j/ ;
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and

jJ3j 6 QM3 .jC1.t/ � C2.t/j C jT1.t � �/ � T2.t � �/j/ :

Thus, K is uniformly Lipschitz continuous and completes the proof of the theorem. �

3. FORMULATION OF THE OPTIMAL CONTROL PROBLEM

It is important in order to minimize the number of cancer cells by using a minimal amount of drugs
in the treatment. Then, we formulate the following functional

J.u/ D

Z Tf

0

®
w1C.t/C w2P.t/C w3T .t/C

1
2
w4u

2.t/
¯
dt: (7)

We arrive at the optimal control problem that follows

min
u2Uad

J.u/; (8)

subject tosystem (5), where Tf is the fixed terminal time,

Uad D ¹u W 0 6 u.t/ 6 1;8t 2 Œ0; Tf �; and u is Lebesgue measurableº:

Theorem 3.1
There is an optimal control, u� 2 Uad ; of the problem (8) subject to system (5).

Proof 3.1
A proof of the earlier theorem can be made by checking the following items: (i) Uad is closed and
convex; (ii) the integrand of J.u/; L.C; P; T; u/, is convex on u; (iii) there are constants c1; c2 > 0;
and � > 1 such that c2 C c1

�
juj2

��=2 6 L.C;P; T; u/; (iv) the right-hand side of the state system
is bounded by a linear function in the state and control variables; and (v) the set of controls and
corresponding state variables are nonempty [13].

It is easy to prove that the properties (i)–(v) are valid. �

We have proved that there is an optimal control, u�; of the problem (8) subject to system (5).
We will derive a necessary condition for u� by using the Pontryagin’s maximum principle with
delays, and in order to simplify notation, we will not write the superscripts � for the optimal control,
trajectory, and so on.

We begin by defining the Hamiltonian, H; as follows:

H.C;P; T; �1; �2; �3; u/ D w1C.t/C w2P.t/C w3T .t/C
1
2
w4u

2.t/C �1.t/ PC.t/

C �2.t/ PP .t/C �3.t/ PT .t/;
(9)

where �1; �2; and �3 are adjoint functions, which satisfy the following differential equations

P�1.t/ D �
@H.t/

@C.t/
� �Œ0;Tf ���.t/

@H.t C �/

@C.t � �/
; (10)

P�2.t/ D �
@H.t/

@P.t/
� �Œ0;Tf ���.t/

@H.t C �/

@P.t � �/
; (11)

P�3.t/ D �
@H.t/

@T .t/
� �Œ0;Tf ���.t/

@H.t C �/

@T .t � �/
; (12)

with the conditions �1.Tf / D �2.Tf / D �3.Tf / D 0: We use Hamiltonian (9) and system (5) to
calculate the functions P�1.t/; P�2.t/; and P�3.t/:
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Now, in order to characterize the optimal control, u, we use the following optimality condition [4]:

@H

@u
C �Œ0;Tf ���.t/

@H.t C �/

@u.t � �/
D 0: (13)

From (13), we find that the optimal control is

u.t/ D �Œ0;Tf ���.t/

 
�1.t C �/ Qd0C.t/C �2.t C �/ Qd1P.t/C �3.t C �/ Qd2T .t/

w4

!
:

At last, it is easy to prove that optimal control has the following form:

u.t/ D max
°

min
°
�1.tC�/ Qd0C.t/C�2.tC�/ Qd1P.t/C�3.tC�/ Qd2T.t/

w4
�Œ0;Tf ���.t/; 1

±
; 0
±
: (14)

Next, in the context of two numerical examples, we use the Newton method to solve (5), (10),
(11), and (12) with initial and terminal conditions .C.0/; P.0/; T .0// D .C0; P0; T0/ and �1.Tf / D
�2.Tf / D �3.Tf / D 0; respectively. Optimal control u.t/ is equal to the right-side hand side
of (14).

4. NUMERICAL RESULTS

In this section, we discuss the numerical results of the problem (8), whose optimal control and
states are found from (5), (10), (11), (12), and (14). We use the Newton method in order to solve
(5)-(14) [14]. Initial conditions are given by C.t/ D C0; P.t/ D P0; T .t/ D T0; and u.t/ D 0;

8t 2 Œ��; 0�; where C0 D 105; P0 D 0; T0 D 0; and � D 2: We also assume that Tf D 20;

�1.t/ D �2.t/ D �3.t/ D 0;8t 2 ŒTf ; Tf C ��; w1 D w2 D w3 D 1; and w4 D 107: CSCs are
the most resistant to chemotherapeutic drugs, then we assume that e0 6 e1; e2 [3]. Table I contains
the tumor parameters.

Figure 2. Optimal states and controls. In (a), e0 D 0:3, e1 D 0:3, and e2 D 0:5: In (b), e0 D 0:2, e1 D 0:3,
and e2 D 0:5: Parameters used are listed in Table I. CSCs, cancer stem cells; PCs, progenitor cells; TDCs,

terminally differentiated cells.
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Figure 3. Optimal state and control with e0 D 0:1, e1 D 0:3, and e2 D 0:5: Parameters used are listed in
Table I. CSCs, cancer stem cells; PCs, progenitor cells; TDCs, terminally differentiated cells.

We consider the following cases: (i) e0 D 0:3; e1 D 0:3; e2 D 0:5I (ii) e0 D 0:2, e1 D 0:3;

e2 D 0:5; and (iii) e0 D 0:1; e1 D 0:3; e2 D 0:5. In each case, we have solved (4)–(14). Figures 2
and 3 show the dynamics of CSCs, PCs, and TDCs with optimal controls. It shows that the optimal
therapies reduce notably cancer cells. One very interesting thing to observe is that therapies are
supplied in decreasing doses.

In case (i), C.Tf / D P.Tf / D T .Tf / D 0: This means that the disease is cured. In case (ii), we
assume that CSCs are more resistant than the CSCs considered in case (i), therefore, the disease has
not been cured, and we have C.Tf / D 1:4160�104; P.Tf / D 8:0161; and T .Tf / D 3:1632�104:

Finally, in case (iii), C.Tf / D 1:0554�105; P.Tf / D 6:0612�104; and T .Tf / D 1:3735�105;
and therefore, although u.t/ � 1;8t 2 Œ0; Tf �; the disease progresses (Figure 3).

5. CONCLUSION

This paper proposes a delayed model (5) to study breast cancer stem cells growth under therapy.
In subsection 2.1, we have proved that model (5) has a solution. In order to minimize the number
of cancer cells and the amount of drug used over treatment, we have proposed the optimal control
problem (8), and the existence of an optimal control, u�; is proven. After, we have used the Pon-
tryagin’s maximum principle to encounter an explicit expression of the optimal therapy. Finally, we
have presented three numerical examples and Table I shows the parameters used into the model. All
of the examples show that the optimal therapies are supplied in decreasing doses.

APPENDIX A: EQUILIBRIUM POINTS AND STABILITY OF SYSTEM (4)

We begin by observing that there are only three possible equilibrium points of system (4). They
have the following form: (i) x� D .x�1 ; x

�
2 ; x
�
3 /; where x�1 D x

�
2 D x

�
3 D 0I (ii) y

� D .y�1 ; y
�
2 ; y

�
3 /;

where y�1 ¤ 0; y�2 ¤ 0 and y�3 ¤ 0I and (iii) ´� D .´�1 ; ´
�
2 ; ´
�
3/; where ´�1 D 0; ´�2 ¤ 0 and

´�3 ¤ 0: It is clear that y� and ´� depend on the parameters of system (4). Therefore, finding an
analytic expression to y� and ´� involves a lengthy and cumbersome process. For example, in order
to find an analytic expression to y�; we should solve the following nonlinear system:8̂̂̂

ˆ̂̂<
ˆ̂̂̂̂̂
:

�
p0

1C�0
1
y2
3

� q0
1C�0

2
y2
3

�
�0y1

1Cˇ0y
2
3

� d0y1 D 0�
1 � p0

1C�0
1
y2
3

C q0
1C�0

2
y2
3

�
�0y1

1Cˇ0y
2
3

C

�
p1

1C�1
1
y3
� q1
1C�1

2
y3

�
�1y2
1Cˇ1y3

� d1y2 D 0�
1 � p1

1C�1
1
y3
C q1

1C�1
2
y3

�
�1y2
1Cˇ1y3

� d2y3 D 0:
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Figure A.4. Evolution of the system for a period of 2000 days. The system is stabilized in y� D .5:4920 �
103; 3:9198 � 104; 4:4160 � 105/: Parameters used are listed in Table I. CSCs, cancer stem cells; PCs,

progenitor cells; TDCs, terminally differentiated cells.

From the first equation, in order to find y3; we should solve the following cubic equation:

u3 C au2 C buC c D 0;

where

a D
�0

d0�
0
1�

0
2ˇ0

�
d0�

0
1�

0
2

�0
C
d0�

0
2ˇ0

�0
C
d0�

0
1ˇ0

�0

�
;

b D
�0

d0�
0
1�

0
2ˇ0

�
d0�

0
2

�0
C
d0�

0
1

�0
C
d0ˇ0

�0
� p0�

0
2 C q0�

0
1

�
;

c D
�0

d0�
0
1�

0
2ˇ0

�
d0

�0
C q0 � p0

�
;

and u D y23 : Then, we must use Cardano’s rule to find u: Next, we may find y3 D
p
u as a function

of parameters of system (4). Variables y1 and y2 are encountered from the other equations. It is an
evident that it is a very complex task.

Rather, considering the parameters of Table I, we found numerical approximations of y� and ´�:
Values obtained are the following:

y� D

0
@5:4920 � 1033:9198 � 104

4:4160 � 105

1
A

and

´� D

0
@ 0

5:7375 � 103

1:0687 � 105

1
A :

Initial conditions determine the point equilibrium towards which the system tends. Figure A.4 is
an extension of Figure 1 and shows that with parameters of Table I and initial conditions such as the
ones listed earlier, the equilibrium point of system (4) is exactly y�:
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Let us now study the type of stability of y�: So we consider the nonlinear functional differen-
tial equation

Px.t/ D F.x.t/; x.t � �//; (15)

where F W D � D �! Rn is continuously differentiable and D � Rn is open. If F.x0; x0/ D 0

for some x0 2 D; then x.t/ D x0; t 2 R is an equilibrium solution of (15). The linearized system
about x0 for (15) is

Px.t/ D Ax.t/C Bx.t � �/; (16)

where A D fxx.x0; x0/ and B D fyy.x0; x0/:
There is a theorem according to which if 	.�/ denotes the characteristic equation corresponding

to system (16) and suppose that

�
 D max
�.�/D0

R.�/ < 0;

then x0 is a locally asymptotically stable steady state of (15) [12].
In the context of system (4), with parameters of Table I, we found that �
 D �0:5110 < 0:

Now, applying previous theorem, numerical results suggest that y� could be a locally asymptotically
stable steady state of (4).

Let N.t/
:
D C.t/C P.t/C T .t/ and ymax

:
D maxt2Œ0;1�N.t/: The system tends to y�; where

y�1 C y
�
2 C y

�
3 < ymax; but first, the system reaches the maximum ymax (Figure A.4). Now, there

is an umbral yd < ymax (it is possible that yd < y�1 C y
�
2 C y

�
3 ), which the total cancer cells must

not exceed. This is because if N.t/ > yd ; the patient’s life is at risk. If therapy is performed, then it
is expected that N.t/ < yd :
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