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The spherical transform associated with the generalized
Gelfand pair (U(p, q),Hn), p + q = n

Silvina Campos and Linda Saal

Abstract. We denote by Hn the 2n + 1-dimensional Heisenberg group.
In this work, we study the spherical transform associated with the generalized
Gelfand pair (U(p, q)oHn, U(p, q)), p+ q = n , which is defined on the space of
Schwartz functions on Hn, and we characterize its image.

In order to do that, since the spectrum associated to this pair can be
identified with a subset Σ of the plane, we introduce a space Hn of functions
defined on R2 and we prove that a function defined on Σ lies in the image if
and only if it can be extended to a function in Hn .

In particular, the spherical transform of a Schwartz function f on Hn

admits a Schwartz extension on the plane if and only if its restriction to the
vertical axis lies in S(R).
Mathematics Subject Classification 2000: Primary 43A80; Secondary 22E25.
Key Words and Phrases: Heisenberg group, spherical transform.

1. Introduction

Let N be a connected and simply connected nilpotent Lie group and K a compact
subgroup of automorphisms of N .

Then (K o N,N), also denoted by (K,N), is called a Gelfand pair when
any of the following equivalent conditions hold:

(i) L1
K(N) = {f ∈ L1(G) : f(kx) = f(x),∀x ∈ N, k ∈ K} is a commutative
convolution algebra,

(ii) the algebra UK(N) of left invariant and K -invariant differential operators on
N is commutative,

(iii) for any irreducible unitary representation of the semidirect product K oN ,
the space of vectors fixed by K is at most one dimensional.

In this case, N is at most two step nilpotent(see [3]) and we denote by ∆(K,N)
the Gelfand spectrum of L1

K(N), which can be identified with the set of bounded
spherical functions.

For f ∈ L1
K(N), the Gelfand transform f̂ is given by

f̂(ϕ) =

∫
N

fϕ, ϕ ∈ ∆(K,N).
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Assume now that N is the Heisenberg group Hn and (K,Hn) is a Gelfand
pair. It was proved in [5] that the spectrum ∆(K,Hn) can be identified with a
subset of Rd+1 for some natural d , in the following way:

Theorem 1.1. Let {L1, ..., Ld, T} a set of generators of the algebra UK(Hn),
where T is the derivation in the central direction of Hn . The map E : ∆(K,Hn)→
R× (R+)d defined by

E(ϕ) = (iT̂ (ϕ), |L̂1(ϕ)|, ..., |L̂d(ϕ)|)

is a homeomorphism on its image, where L̂j(ϕ) and T̂ (ϕ) denote the eigenvalues
of Lj and T respectively associated with ϕ.

It was given in [2] the following characterization of the image of the spherical
transform associated with the Gelfand pair (K,Hn).

Let S(Hn) be the space of Schwartz functions on Hn and let SK(Hn) be
the subspace of K -invariant functions. Let

S(∆(K,Hn)) = {F : ∆(K,Hn)→ C : ∃ ϕ ∈ S(Rd+1), ϕ|∆(K,Hn) = F}.

It is equipped with the quotient topology induced by the topology of S(Rd+1).

Theorem 1.2. The Gelfand transform ∧ : SK(Hn) → S(∆(K,Hn)) is a topo-
logical isomorphism between SK(Hn) and S(∆(K,Hn)).

In successive works [10], [11] and [12] it was proved that Theorem 1.1 can
be generalized by selecting a suitable set of generators of UK(N) that yields an
embedding of ∆(K,N) in some Rd , for some natural number d , and Theorem 1.2
was extended to Gelfand pairs (K,N) where N is in the class of nilpotent Lie
groups that satisfy the so called Vinberg condition.

If K is no longer assumed to be compact, L1
K(N) is trivial and a pair

(K o N,K), also denoted by (K,N), is called a generalized Gelfand pair if for
any irreducible unitary representation of K oN , the space of distribution vectors
fixed by K is at most one dimensional.

It is known that (U(p, q), Hn) is a generalized Gelfand pair (see [8]), and it
is natural to introduce the notions of the spectrum and Gelfand transform for it
(see [13] and [15]).

In this paper we define the normalized Gelfand transform defined on
S(Hn), we characterize its image and obtain a similar result to Theorem 1.2.

In order to introduce the notion of spectrum associated with the pair

(U(p, q), Hn), we recall that if (K,Hn) is a Gelfand pair then every bounded
spherical function is of positive type (see [4]), in contrast with the semisimple case.

If P denotes the cone of the K -invariant functions of positive type, then
∆(K,Hn) is precisely the set of extremal points of P . If K is not compact it
is natural to define the spectrum ∆(K,Hn) associated with the pair (K,Hn) by
the set of K -invariant, of positive type, extremal distributions on Hn , which in
turn, are in correspondence with the spherical irreducible unitary representations
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of K o Hn . Moreover, every extremal distribution is spherical, that is, is an
eigendistribution of UK(Hn) (see [9]).

If K = U(p, q), the algebra UU(p,q)(Hn) is generated by

D =

p∑
j=0

(X2
j + Y 2

j )−
n∑

j=p+1

(X2
j + Y 2

j ) and T =
∂

∂t
,

where {X1, . . . , Xn, Y1, . . . , Yn, T} is the standard basis of the Heisenberg
Lie algebra, [Xi, Yj] = δi,j T and all other brackets are zero.

Also the spherical irreducible unitary representations of U(p, q) oHn were
determined in [21] and are parameterized by {πλ,k : λ 6= 0, k ∈ N} ∪ {πσ : σ ∈ R}
and the trivial representation. Also, in this case, the corresponding spherical
distributions are tempered (see [8]).

A family of spherical distributions were explicitly computed in [8], [13] and
[15], and they satisfy

iT (Sλ,k) = λ Sλ,k, −D(Sλ,k) = |λ|(2k + p− q) Sλ,k, (1.1)

iT (Sσ) = 0, −D(Sσ) = σ Sσ. (1.2)

Motivated by Theorem 1.1, the following result for the case U(p, q) has
been proved in [15].

Theorem 1.3. The map E : ∆(U(p, q), H(n)) \ {1} → R2 defined by

E(ϕ) = (iT̂ (ϕ),−D̂(ϕ))

is a homeomorphism onto its image, where D̂(ϕ) and T̂ (ϕ) denote the eigenvalues
of D and T associated with ϕ respectively.

So, from now on we will identify the spectrum associated with the general-
ized Gelfand pair (U(p, q), Hn) with

Σ = {(λ, (2k + p− q)|λ|) : λ 6= 0, k ∈ Z} ∪ {(0, σ) : σ ∈ R}

equipped with the relative topology of R2 .

To prove Theorem 1.3, the authors showed that

〈Sσ, f〉 = lim
(λ,(2k+p−q)|λ|)→(0,σ)

σ>0

|λ|n−1〈Sλ,k, f〉, (1.3)

〈Sσ, f〉 = lim
(λ,(2k+p−q)|λ|)→(0,σ)

σ<0

(−1)n−2|λ|n−1〈Sλ,k, f〉. (1.4)

This result gives rise to the following

Definition 1.4. Let f ∈ S(Hn). Then the normalized spherical transform of
f is the function F(f) defined on Σ by

F(f)(λ, |λ|(2k + p− q)) =

{
|λ|n−1〈Sλ,k, f〉, k ≥ 0,

(−1)n−2|λ|n−1〈Sλ,k, f〉, k < 0,
(1.5)
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and by
F(f)(0, σ) = 〈Sσ, f〉. (1.6)

Let Σ+ and Σ− the following subsets of Σ

Σ+ = {(λ, (2k + p− q)|λ|) : λ 6= 0, k ≥ −p+ 1} ∪ {(0, σ) : σ ≥ 0} (1.7)

and

Σ− = {(λ, (2k + p− q)|λ|) : λ 6= 0, k ≤ q − 1} ∪ {(0, σ) : σ ≤ 0}. (1.8)

In section 3 of this work we prove the following

Theorem 1.5. Let F be a function defined on Σ. If there exist ϕ, ψ ∈ S(R2)
such that

F |Σ+ = ϕ|Σ+ and F |Σ− = ψ|Σ− ,
then there exists f ∈ S(Hn) such that F = F(f).

Thus, we have a similar result to that shown by Veneruso in [19].

Corollary 1.6. If ϕ ∈ S(R2) then there exists f ∈ S(Hn) such that F(f) =
ϕ|Σ .

In order to characterize the image of the spherical transform, we introduce
the space Hn .

Definition 1.7. Let Hn be the space of functions defined on R2 of the form

ϕ(λ, s) = ϕ1(λ, s) +

q−1∏
k=−p+1

(s− (2k + p− q)|λ|) ϕ2(λ, s) H(s),

where ϕ1, ϕ2 ∈ S(R2) and H is the Heaviside function.

We remark that

q−1∏
k=−p+1

(s− (2k + p− q)|λ|) =


s

n−4
2∏

k=0

(s2 − (n− 2− 2k)2λ2), if n is even

n−3
2∏

k=0

(s2 − (n− 2− 2k)2λ2), if n is odd.

So, the map (λ, s) 7→
q−1∏

k=−p+1

(s− (2k + p− q)|λ|) ϕ2(λ, s) is in S(R2).

As a consequence from Theorem 1.5 we have the following

Corollary 1.8. If ϕ ∈ Hn then there exists f ∈ S(Hn) such that F(f) = ϕ|Σ .

The main result of this paper is the following
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Theorem 1.9. A function F defined on the spectrum Σ is in the image of
the normalized spherical transform if and only if there exists ϕ ∈ Hn such that
F = ϕ|Σ .

We recall that the spectrum of the Gelfand pair (U(n), Hn) can be identified
with the set ∆(U(n), Hn) = {(λ, |λ| (2k + n)) : λ 6= 0, n ∈ N0} ∪ {(0, s) : s ∈ R}.
For f ∈ SU(n) (Hn) , we denote by f̂ its spherical transform, and by s → f̂ (0, s)

the restriction of f̂ to the vertical axis.

The proof of Theorem 1.9 follows the ideas developed in [1] where it was

proved that f̂ can be extended to a Schwartz function on R2 . In our case, the
fundamental difference is that for f ∈ S(Hn) the map

s 7→ F(f)(0, s), ∀s ∈ R

is of class Cn−2 at the origin (see Proposition 2.5 in Preliminaries) and therefore
it can be extended to a function in Hn , while for f ∈ SU(n)(Hn) the map

s 7→ f̂(0, s), ∀s ≥ 0,

can be extended to a function in S(R2).

With the same arguments we prove the following result.

Proposition 1.10. Let f ∈ S(Hn). If n is even and the map s 7→ F(f)(0, s)
lies in Cn−2+k(R) then there exists ϕ ∈ Hn , k times differentiable on R2 such
that F(f) = ϕ|Σ .

If n is odd and the map s 7→ F(f)(0, s) lies in Cn−1+k(R) then there exists
ϕ ∈ Hn , k times differentiable on R2 such that F(f) = ϕ|Σ .

The following result states a necessary and sufficient condition for the
spherical transform F (f) of a function f ∈ S (Hn) to admit a Schwartz extension
on R2. This result is similar to the case q = 0 that was studied by Astengo, Di
Blasio and Ricci in [1].

Theorem 1.11. Let f ∈ S(Hn). Then F(f) admits a Schwartz extension on
R2 if and only if the map σ 7→ F(f)(0, σ) is a Schwartz function on R.

Finally, in the last section of this work, we relate the differentiability of the
function s → F (f) (0, s) with the differentiability of some extension of F (f) in
Hn.

Proposition 1.12. Let f ∈ S(Hn). If the map s 7→ F(f)(0, s) lies in
Ck+n−2(R) then F(f) admits an extension in Hn of the form

ϕ(λ, s) = ϕ1(λ, s) + sk

(
q−1∏

k=−p+1

(s− (2k + p− q)|λ|)

)
ϕ2(λ, s)H(s).

So, ϕ ∈ Ck−1(R2) if n is odd or ϕ ∈ Ck(R2) if n is even.
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Theorem 1.13. Let f ∈ S(Hn). Let us suppose that F(f) admits an extension
ϕ such that satisfies:

(i) ϕ is a C∞ and rapidly decreasing function on {(λ, s) : s > 0},

(ii) is a C∞ and rapidly decreasing function on {(λ, s) : s < 0} and

(iii) is a Ck function on R2 .

Then, s 7→ F(f)(0, s) is a Ck+n−2 function on R if n is even and it is a Ck+n−1

function on R if n is odd. Even more, every extension ϕ of F(f) that satisfies
(i), (ii) and (iii) is as follows:

ϕ(λ, s) = ϕ1(λ, s) + sk+1

q−1∏
k=−p+1

2k+p−q 6=0

(s− (2k + p− q)|λ|) ϕ2(λ, s) H(s),

where ϕ1, ϕ2 ∈ S(R2), this is, ϕ ∈ Hn .

2. Preliminaries

Let n ≥ 2 and let p, q be natural numbers such that p + q = n . Let Hn be the
2n+ 1-dimensional Heisenberg group defined by Hn = Cn × R with law group

(z, t)(w, s) = (z + w, t+ s− 1

2
ImB(z, w))

where

B(z, w) =

p∑
j=1

zjw̄j −
n∑
p+1

zjw̄j.

Let U(p, q) = {g ∈ Gl(n,C) : B(gz, gw) = B(z, w) ∀(z, w) ∈ Cn}. Then, U(p, q)
acts by automorphisms on Hn via

g.(z, t) = (gz, t) for (z, t) ∈ Hn.

In order to introduce the definition of the spectrum associated with the
generalized Gelfand pair (U(p, q), Hn), we recall some definitions.

Definition 2.1. A distribution T on G = U(p, q) o Hn is of positive type if
the map

Θ : D(G)×D(G)→ C
(ϕ, ψ) 7→ T (ψ̃ ∗ ϕ)

is hermitian, continuous and it satisfies Θ(ϕ, ϕ) ≥ 0 for all ϕ ∈ D(G), where
ψ̃(g) = ψ(g−1).
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Let P be the cone the distributions of positive type, U(p, q)-biinvariant on
U(p, q) o Hn . We say that T ∈ P is extremal in P if and only if S ∈ P and
S − T ∈ P implies S = αT for some α ∈ R . For S, S ′ ∈ P we write S ∼ S ′ if
and only if S = αS ′ for some α > 0. Thus, ∼ is an equivalence relation on P .
For S ∈ P we put [S] for its equivalence class.

By general theory (see [7] and pag. 374 in [9]) one knows that there exists
a one to one correspondence between the set of equivalence classes of unitary
representations (π, V ) of U(p, q) o Hn that admits a cyclic distribution vector
fixed by U(p, q) (spherical representations), and the set of the equivalence classes
of the U(p, q)-biinvariant distributions of positive type.

More precisely, the correspondence is given by

Tπ(ϕ) = 〈ξπ, π(ϕ)ξπ〉,

where ξπ denotes the distribution vector and ϕ ∈ C∞(U(p, q) o Hn). One says
that Tπ is the reproducing distribution of the representation π .

We recall also that π is irreducible if and only if Tπ is extremal in P . As
usual, we identify the U(p, q)-biinvariant distributions on U(p, q) o Hn with the
U(p, q)-invariant distributions on Hn . A extremal distribution of P is spherical
(see [9]), but the reciprocal is not true as we can be see for the case (U(p, q), Hn).

Let E be the set of extremal points in P . Motivated by the results of the
compact case, we define

Definition 2.2. ∆(U(p, q), Hn) = E/ ∼ , equipped with the quotient of the
pointwise convergence topology of S ′(Hn).

Let
{πλ,k : λ 6= 0, k ∈ Z} ∪ {πσ : σ ∈ R} ∪ {π1}

the set of spherical irreducible unitary representations of U(p, q) o Hn that are
given in [21], and let

{Sλ,k : λ 6= 0, k ∈ Z} ∪ {Sσ : σ ∈ R} ∪ {1}

be the set of associated reproducing distributions. We recall that these distribu-
tions happen to be tempered.

Furthermore, we have

iT (Sλ,k) = λ Sλ,k, −D(Sλ,k) = |λ|(2k + p− q) Sλ,k, (2.1)

iT (Sσ) = 0, −D(Sσ) = σ Sσ, (2.2)

where D and T are given in the introduction.

Following [5], in [15] we consider the map E : ∆(U(p, q), Hn) → R2 given
by

E([ψ]) = (−D̂(ψ), iT̂ (ψ)),

where D̂(ψ) and T̂ (ψ) denote the eigenvalues of D and T associated with ψ
respectively. Let Σ denote the image of E . Equipped with the relative topology
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of R2 it is called the Heisenberg fan of the generalized Gelfand pair (U(p, q), Hn)
and it is given by

Σ = {(λ, (2k + p− q)|λ|) : λ 6= 0, k ∈ Z} ∪ {(0, σ) : σ ∈ R}.

Then the following has been proved

Theorem 2.3. (see [15]) The map E : ∆(U(p, q), H(n)) \ {1} → Σ is a home-
omorphism.

To prove the previous theorem the authors proved (1.3) and (1.4).

This result leads to introduce the normalized spherical transform as given in 1.4.

We recall some known facts in order to present explicitly the spherical
distributions Sλ,k for λ 6= 0, k ∈ Z and Sσ for σ ∈ R . Let H be the Heaviside
function (this is, H = χ(0,∞) ) and let

H = {ϕ : R 7→ C : ϕ(τ) = ϕ1(τ) + τn−1ϕ2(τ) H(τ), ϕ1, ϕ2 ∈ S(R)}. (2.3)

It was proved in [18] that H , equipped with a suitable topology, is a Fréchet
space. For p+ q = n , p, q ∈ N , in [18] there is also given a linear, continuous and
surjective map N : S(Rn) → H whose adjoint N ′ : H′ → S ′(Rn)O(p,q) is a linear
homeomorphism onto the space of the O(p, q)-invariant, tempered distributions
on Rn . Of course, this construction also works out as well to describe the space
S ′(Cn)U(p,q) , this is, there exists a linear, continuous and surjective map, still
denoted by N : S(Cn) → H whose adjoint map N ′ : H′ → S ′(Cn)U(p,q) is a
homeomorphism.

We introduce new coordinates in Cn . Given u = (u1, . . . , up, up+1, . . . , un) ∈
Cn let ρ = |u1|2 + · · ·+ |un|2 and τ = |u1|2 + · · ·+ |up|2 − (|up+1|2 + · · ·+ |un|2).
It is clear that

‖(u1, . . . , up)‖ = (
ρ+ τ

2
)1/2, ‖(up+1, . . . , un)‖ = (

ρ− τ
2

)1/2,

and let also

w1=(
ρ+ τ

2
)−1/2(u1, . . . , up)∈S2p−1, w2=(

ρ− τ
2

)−1/2(up+1, . . . , un)∈S2q−1.

We denote by H# the space of the functions ϕ defined on R2 of the form

ϕ(τ, t) = ϕ1(τ, t) + τn−1ϕ2(τ, t) H(τ), ϕ1, ϕ2 ∈ S(R2), (2.4)

where H is the Heaviside function. A straightforward adaptation of the Tengstrand
map in [18] shows that the map N : S(Hn)→ H# defined by

Nf(τ, t) =

∫
ρ>|τ |

∫
S2p−1×S2q−1

f((
ρ+ τ

2
)1/2ωu, (

ρ− τ
2

)1/2ωv, t)dωudωv(ρ+ τ)p−1(ρ− τ)q−1dρ,

(2.5)
is linear, continuous and surjective, and its adjoint map N ′ : (H#)′ → S ′(Hn)U(p,q)

is a homeomorphism.
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Remark 2.4. We observe that, unlike the case where K is compact, the nor-
malized spherical transform is defined for all Schwartz functions on Hn . Moreover,
since it was proved in [15] that F(f) = F(g) if and only if Nf = Ng , we may
assume that it is defined on H# .

On the other hand, we recall the definition of the Laguerre polynomials

L(0)
m (τ) =

m∑
j=0

(
m

j

)
(−1)j

τ j

j!
, Lα+1

m−1(τ) = − d

dτ
Lαm(τ),

for m,α ∈ N0 , according to [17]. Therefore, Lαm(0) =
(
α+m
m

)
.

Then, the distributions Sλ,k calculated in [13] are given by

Sλ,k = Fλ,k ⊗ e−iλt,

with Fλ,k ∈ S ′(Cn) defined by

〈Fλ,k, f(·, t)〉 = 〈(L(0)
k−q+n−1H)n−1, τ 7→ 2|λ|−1e−τ/2Nf(2|λ|−1τ, t)〉, for k ≥ 0, λ 6= 0

and by

〈Fλ,k, f(·, t)〉 = 〈(L(0)
−k−p+n−1H)n−1, τ 7→ 2|λ|−1e−τ/2Nf(−2|λ|−1τ, t)〉, for k < 0, λ 6= 0.

Therefore,

〈Sλ,k, f〉= 〈(L
(0)
k−q+n−1H)n−1,τ 7→ 2|λ|−1e−τ/2Nf(2|λ|−1τ, λ̂)〉 for k ≥ 0, λ 6= 0, (2.6)

and

〈Sλ,k, f〉=〈(L
(0)
−k−p+n−1H)n−1,τ 7→2|λ|−1e−τ/2Nf(−2|λ|−1τ,λ̂)〉 for k < 0, λ 6= 0, (2.7)

where Nf(τ, λ̂) denotes the Fourier transform of Nf(τ, ·) in λ .

Moreover, the distributions Sσ calculated in [14] are given by

〈Sσ, f〉 = (−1)n−1

∫
R

∫ ∞
0

J0((στ)1/2)(Nf(·, t))(n−1)(τ) dτ dt (2.8)

for σ ≥ 0 and by

〈Sσ, f〉 = (−1)n−2

∫
R

∫ ∞
0

J0((−στ)1/2)(Nf(·, t))(n−1)(−τ) dτ dt (2.9)

for σ < 0, where Jm(τ) = ( τ
2
)m
∑∞

k=0
(−1)k

k!(k+m)!
( τ

2
)2k is the Bessel function of order

m of the first kind.

Proposition 2.5. Let f ∈ S(Hn). Then the map σ 7→ F(f)(0, σ) lies in the
Tensgtrand space H defined by (2.3).
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Proof. For f ∈ S(Hn) we can see in [15] and [7] that

〈Sσ, f〉 =

∫
B(u,u)=−σ

∫
Hn

eiReB(u,z)f(z, t)dz dt dµσ(u),

where dµσ is the measure such that Nf(σ, t) =
∫
B(z,z)=τ

f(z, t)dµσ(z).

Given u = (u1, . . . , up., up+1, . . . , un) ∈ Cn , we have that

{u ∈ Cn : B(u, u) = −σ}

= {((ρ− σ
2

)1/2w1, (
ρ+ σ

2
)1/2w2) : w1 ∈ S2p−1, w2 ∈ S2q−1, ρ ≥ |σ|}.

An easy computation shows that∫
B(u,u)=−σ

∫
Hn

eiRe(u,z)f(z, t)dz dt dµσ(u)

=

∫
ρ>|σ|

∫
S2p−1×S2q−1

f̃((
ρ− σ

2
)1/2w1, (

ρ+ σ

2
)1/2w2, 0)(ρ− σ)p−1(ρ+ σ)q−1dw1dw2dρ

= Nf̃(σ, 0̂)

where the last equality is a consequence of (2.5) with

f̃(u, 0) =

∫
Hn

eiReB(u,z)f(z, t)dz dt.

We know that Nf̃ ∈ H# , then by (2.4) the proof is complete.

As a consequence of Theorem 3.1 proved in [14] and by definition of the
normalized spherical transform we obtain the following result:

Theorem 2.6. For f ∈ S(Hn) and k ∈ Z, the derivatives ∂j(F(f)(λ, k))/∂λj

exist for all j ∈ N and λ 6= 0. Moreover, for each j,N ∈ N0 there exists a positive
constant c independent of λ and k such that∣∣∣∣∂j(F(f)(λ, k))

∂λj

∣∣∣∣ ≤ c

(
|k|n−1 +

1

|λ|n−1

)
1

|λ|N+j(|k|+ 1)N
. (2.10)

Definition 2.7. For m : (R \ {0}) × Z → C and (λ, k) ∈ (R \ {0}) × Z we
define

m∗(λ, k) =

{
m(λ, k), if k ≥ 0,

(−1)n−2m(λ, k), if k < 0.

m∗∗(λ, k) =

{
m(λ, k), if k < 0,

(−1)n−2m(λ, k), if k ≥ 0.

Let

E(m)(λ, k) =
n−1∑
l=0

(−1)l
(
n− 1

l

)
m(λ, k − l),

Ẽ(m)(λ, k) =
n−1∑
l=0

(−1)l
(
n− 1

l

)
m(λ, k + l),
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Let ∆1 = {(λ, (2k + 1)|λ|) : λ ∈ R \ {0}, k ∈ N0} . Then, by Theorem 1.1
proved in [14] and Veneruso’s result in [19] we have the following

Theorem 2.8. We assume that p, q ≥ 1 with p+ q = n. Then, for a function
m : (R \ {0}) × Z → C there exists f ∈ S(Hn) such that m(λ, k) = 〈Sλ,k, f〉 if
and only if m satisfies the following conditions:

(i) for all N ∈ N there exists cN such that

|m(λ, k)| ≤ cN

(
|k|n−1 +

1

|λ|n−1

)
1

|λ|N(|k|+ 1)N
, k ∈ Z, (2.11)

(ii) the functions defined on ∆1 by

(λ, (2k+ 1)|λ|) 7→ E(m∗)(λ, k+q), (λ, (2k+ 1)|λ|) 7→ Ẽ(m∗∗)(λ,−k−p) (2.12)

admit Schwartz extensions on R2 .

3. The spaces Hn

Our aim here is to prove that the restriction to Σ of a function in Hn is in the
image of the normalized spherical transform. As a consequence we obtain a similar
result to the one showed by Veneruso in [19], which states that the restriction to
the spectrum ∆(U(n), Hn) of a Schwartz function on R2 is in the image of the
spherical transform associated to the Gelfand pair (U(n), Hn).

In fact, let Ω = {(λ, s)/λ 6= 0} . We start with some propositions that will
be used later.

Proposition 3.1. For ϕ ∈ S(R2) the function

Fϕ : Ω → R

(λ, s) 7→ ϕ(λ, s+ |λ|)− ϕ(λ, s− |λ|)
|λ|

, (3.1)

admits an extension in S(R2).

Proof. Note that for (λ, s) ∈ Ω,

Fϕ(λ, s) =
1

|λ|

∫ s+|λ|

s−|λ|

∂ϕ

∂u
(λ, u) du =

∫ 1

−1

∂ϕ

∂s
(λ, |λ|t+ s) dt,

where in the last equality we have used the change of variables u = |λ|t+ s .

It is easy to see that F̄ϕ defined by

F̄ϕ(λ, s) =

∫ 1

−1

∂ϕ

∂s
(λ, |λ|t+ s) dt, ∀(λ, s) ∈ R2,

is a continuous extension of Fϕ , since we can derive it under the integral symbol
by Dominated Convergence Theorem.

We will prove that F̄ϕ lies in S(R2).
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(i) For i, j ∈ N0 , it is easy to show that

∂i+jFϕ
∂λi∂sj

(λ, s)=

i∑
l=0

(
i

l

)∫ 1

−1

∂i+j+1ϕ

∂λi−l∂sj+l+1
(λ, |λ|t+ s)(sg(λ)t)l dt, ∀(λ, s) ∈ Ω.

Since if l is odd then
∫ 1

−1
tl dt = 0, given s0 ∈ R we have that

lim
(λ,s)→(0,s0)

(λ,s)∈Ω

∂i+jFϕ
∂λi∂sj

(λ, s) =
i∑
l=0
l even

(
i

l

)
∂i+j+1ϕ

∂λi−l∂sj+l+1
(0, s0)

∫ 1

−1

tl dt,

Then, F̄ϕ ∈ C∞(R2) since ϕ ∈ C∞(R2).

(ii) F̄ϕ is a rapidly decreasing function since so is ϕ .

Lemma 3.2. Let n ≥ 2. If ϕ ∈ S(R2) then there exists ϕn−2 ∈ S(R2) such
that

Fϕn−2(λ, s) =
1

|λ|n−1

n−1∑
l=0

(−1)l
(
n− 1

l

)
ϕ(λ, s+ |λ|(n− 1− 2l)), ∀(λ, s) ∈ Ω. (3.2)

Proof. For n = 2, it is clear that ϕ0 = ϕ satisfies the claim.

By inductive hypothesis, we suppose for n ≥ 2 that ϕ ∈ S(R2) implies that
there is ϕn−2 ∈ S(R2) such that (3.2) holds.

Then, for n+ 1 and ϕ ∈ S(R2) we have

n∑
l=0

(−1)l
(
n

l

)
ϕ(λ, s+ |λ|(n− 2l))

|λ|n
=

n−1∑
l=0

(−1)l
(
n− 1

l

)
Fϕ(λ, s+ |λ|(n− 1− 2l))

|λ|n−1
,

since

1

|λ|n−1

n−1∑
l=0

(−1)l
(
n− 1

l

)
Fϕ(λ, s+ |λ|(n− 1− 2l))

=
n−1∑
l=0

(−1)l
(
n− 1

l

)
[ϕ(λ, s+ |λ|(n−1−2l)+ |λ|)− ϕ(λ, s+|λ|(n−1−2l)−|λ|)]

|λ|n−1|λ|

=
1

|λ|n
n−1∑
l=0

(−1)l
(
n− 1

l

)
[ϕ(λ, s+ |λ|(n− 2l))− ϕ(λ, s+ |λ|(n− 2(l + 1)))]

=

n−1∑
l=0

(−1)l
(
n−1

l

)
ϕ(λ, s+ |λ|(n−2l))

|λ|n
+

n−1∑
l=0

(−1)l+1

(
n−1

l

)
ϕ(λ, s+ |λ|(n−2(l+1)))

|λ|n

=

n−1∑
l=0

(−1)l
(
n− 1

l

)
ϕ(λ, s+ |λ|(n− 2l))

|λ|n
+

n∑
l=1

(−1)l
(
n− 1

l − 1

)
ϕ(λ, s+ |λ|(n−2l))

|λ|n

=
1

|λ|n
n∑
l=0

(−1)l
(
n

l

)
ϕ(λ, s+ |λ|(n− 2l)),
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where in the last equality we have used
(
n−1
l

)
+
(
n−1
l−1

)
=
(
n
l

)
.

Due to Proposition 3.1 we know that Fϕ defined on Ω can be extended to
a function F̄ϕ ∈ S(R2) and, by inductive hypothesis, there is (F̄ϕ)n−2 ∈ S(R2)
such that

n−1∑
l=0

(−1)l
(
n− 1

l

)
Fϕ(λ, s+ |λ|(n−1−2l))

|λ|n−1
=

(F̄ϕ)n−2(λ, s+ |λ|)− (F̄ϕ)n−2(λ, s−|λ|)
|λ|

.

We take ϕn−1 = (F̄ϕ)n−2 and the Proposition follows.

Proof. (of Theorem 1.5) Let m be the map defined on (R \ {0})× Z by

m(λ, k) =


1

|λ|n−1F (λ, |λ|(2k + p− q)), k ≥ 0

(−1)n−2

|λ|n−1 F (λ, |λ|(2k + p− q)), k < 0.

We will prove that m satisfies the conditions (i) and (ii) of Theorem 2.8.
In fact, (i) follows from the fact that ϕ, ψ ∈ S(R2).

To show (ii), by Definition 2.7 we have that

E(m∗)(λ, k + q) =
n−1∑
l=0

(−1)l
(
n− 1

l

)
m∗(λ, k + q − l)

=

min{k+q,n−l}∑
l=0

(−1)l
(
n− 1

l

)
m(λ, k + q − l)

+
n−1∑

l=k+q+1

(−1)l
(
n− 1

l

)
(−1)n−2m(λ, k + q − l)

=
1

|λ|n−1

n−1∑
l=0

(−1)l
(
n− 1

l

)
F (λ, |λ|(2(k − l) + n))

=
1

|λ|n−1

n−1∑
l=0

(−1)l
(
n− 1

l

)
ϕ(λ, |λ|(2(k − l) + n)),

since 2(k− l) +n ≥ −n+ 2 if 0 ≤ k , 0 ≤ l ≤ n− 1, and F |Σ+ = ϕ|Σ+ . Therefore,
the first map of (2.12) agrees on ∆1 with the map defined by

(λ, s) 7→ Fϕn−2(λ, s), ∀(λ, s) ∈ Ω,

where ϕn−2 ∈ S(R2) is given by Lemma 3.2. Then, by Proposition 3.1, this map
admits an extension in S(R2).
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Similarly, for the second map in (2.12) we have that

Ẽ(m∗∗)(λ,−k − p) =
n−1∑
l=0

(−1)l
(
n− 1
l

)
m∗∗(λ,−k − p+ l)

=

min{k+p−1,n−1}∑
l=0

(−1)l
(
n− 1
l

)
m(λ,−k − p+ l)

+
n−1∑
l=k+p

(−1)l
(
n− 1
l

)
(−1)n−2m(λ,−k − p+ l)

= (−1)n−2 1

|λ|n−1

n−1∑
l=0

(−1)l
(
n− 1
l

)
F (λ, |λ|(−2(k − l)− n))

= (−1)n−2 1

|λ|n−1

n−1∑
l=0

(−1)l
(
n− 1
l

)
ψ(λ, |λ|(−2(k − l)− n)),

since −2(k−l)−n ≤ n−2 if 0 ≤ k , 0 ≤ l ≤ n−1 and by hypothesis F |Σ− = ψ|Σ− .

Therefore, Ẽ(m∗∗) agrees on ∆1 with the fucntion defined on Ω by

(λ, s) 7→ 1

|λ|n−1

n−1∑
l=0

(−1)l
(
n− 1
l

)
ψ̄(λ, s+ |λ|(n− 1− 2l)),

where ψ̄(λ, s) = (−1)n−2ψ(λ,−s). Since obviously ψ̄ ∈ S(R2), then by Lemma
3.2 and Proposition 3.1, this map can be extended by a function in S(R2).

Proof. (of Corollary 1.6) If ϕ ∈ S(R2) then F = ϕ|Σ satisfies the hypothesis
of the previous Theorem, so the Corollary follows.

Proof. (of Corollary 1.8) Given ϕ ∈ Hn there exist ϕ1, ϕ2 ∈ S(R2) such that

ϕ(λ, s) = ϕ1(λ, s) +

q−1∏
k=−p+1

(s− (2k + p− q)|λ|) ϕ2(λ, s) H(s).

Let ϕ2 be the map defined by

ϕ2(λ, s) = ϕ1(λ, s) +

q−1∏
k=−p+1

(s− (2k + p− q)|λ|) ϕ2(λ, s).

So, ϕ2|Σ+ =ϕ|Σ+ and ϕ1|Σ−=ϕ|Σ− since
q−1∏

k=−p+1

(s− (2k + p− q)|λ|) ϕ2(λ, s) = 0 for

all (λ, s) ∈ Σ+ ∩ Σ− . Then, by Theorem 1.5 this Corollary follows.

4. Characterization of the image of the normalized spherical
transform

It is clear that we cannot hope that given any function f ∈ S(Hn) its normalized
spherical transform F(f) can be extended to a function in S(R2) (see Proposition
2.5 in Preliminaries). In this section we will prove that for f ∈ S(Hn) we can
extend F(f) to a function in Hn .
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Definition 4.1. Let φ ∈ S(R) such that φ(λ) = 1 if |λ|<1 and φ(λ) = 0 if |λ|≥
2.

Lemma 4.2. Given f ∈ S(Hn), let θ1, θ2 ∈ S(R) such that

F(f)(0, s) = θ1(s) + sn−1 θ2(s) H(s), ∀s ∈ R.

Then, the map

ϕ(λ, s) = θ1(s) φ(λ) +

q−1∏
k=−p+1

(s− (2k + p− q)|λ|) θ2(s) φ(λ) H(s)

is in Hn and ϕ(0, s) = F(f)(0, s) for all s ∈ R.

Proof. It is immediate.

The following two propositions allow us to develop the normalized spher-
ical transform F (f) in a Taylor expansion similar to Geller’s lemma proved by
Astengo, Di Blasio and Ricci in [1].

Proposition 4.3. If f ∈ S(Hn) satisfies F(f)(0, s) = 0 if s ∈ R then, there
exists h ∈ S(Hn) such that

F(f)(λ, |λ|(2k + p− q)) = λ F(h)(λ, |λ|(2k + p− q)), ∀λ 6= 0, k ∈ Z.

Proof. By hypothesis and the definition of Sσ , see (2.8) and (2.9), we have
that

0 = 〈Sσ, f〉 = (−1)n−1

∫ ∞
0

J0((στ)1/2)(Nf)n−1(τ, 0̂) dτ, ∀σ ≥ 0, (4.1)

0 = 〈Sσ, f〉 = (−1)n−2

∫ ∞
0

J0((−στ)1/2)(Nf)n−1(−τ, 0̂) dτ, ∀σ < 0. (4.2)

Let f1 ∈ SU(1)(H1) defined by f1(z, t) = (Nf)n−1(|z|2, t) for all (z, t) ∈ C × R .

Let us denote by f̂1 the spherical transform of f1 associated with the Gelfand pair
(U(1), H1). We will show that f̂1(0, σ) = 0 for all σ ≥ 0, so f1(x, 0̂) = 0 for all
x ∈ R2 (see [1] pag. 789).

In fact, for σ ≥ 0 we have

f̂1(0, σ) =

∫
C
J0(σ|z|)f1(z, 0̂) dz

=

∫
C
J0(σ|z|)(Nf)n−1(|z|2, 0̂) dz

= 2π

∫ ∞
0

J0(σr)(Nf)n−1(r2, 0̂)r dr

= π

∫ ∞
0

J0(στ 1/2)(Nf)n−1(τ, 0̂) dτ

= (−1)n−1π〈Sσ2 , f〉
= 0
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where in the last equality we have used (4.1). Then (Nf)n−1(|z|2, 0̂) = 0 for all
z ∈ C , that is,

(Nf)n−1(τ, 0̂) = 0 ∀τ ≥ 0. (4.3)

Now, let f2 ∈ SU(1)(H1) defined by f2(z, t) = (Nf)n−1(−|z|2, t) for all (z, t) ∈
C× R . In the similar way, for σ > 0 we have that

f̂2(0, σ) =

∫
C
J0(σ|z|)f2(z, 0̂) dz

=

∫
C
J0(σ|z|)(Nf)n−1(−|z|2, 0̂) dz

= 2π

∫ ∞
0

J0(σr)(Nf)n−1(−r2, 0̂)r dr

= π

∫ ∞
0

J0((−(−σ2)τ)1/2)(Nf)n−1(−τ, 0̂) dτ

= (−1)n−2π〈S−σ2 , Nf〉
= 0,

where we have used (4.2). Then (Nf)n−1(−|z|2, 0̂) = 0 for all z ∈ C , that is,

(Nf)n−1(τ, 0̂) = 0 ∀τ ≤ 0. (4.4)

By (4.3) and (4.4) we obtain (Nf)n−1(τ, 0̂) = 0 for all τ ∈ R . So, Nf(τ, 0̂) is a
polynomial of degree n− 2 in τ and moreover it is a rapidly decreasing function,
therefore Nf(τ, 0̂) = 0 for all τ ∈ R , that is,∫ ∞

−∞
Nf(τ, t) dt = 0. (4.5)

Let ϕ be defined on R2 by

ϕ(τ, x) =

∫ x

−∞
Nf(τ, t) dt. (4.6)

It is clear that x 7→ ϕ(τ, x) is in C∞(R) and it is not difficult to see that also, it
is a rapidly decreasing function by using (4.5) and that the map t 7→ Nf(τ, t) is
in S(R).

By (4.6) we obtain

Nf(τ, x̂) = (
∂ϕ

∂x
)(τ, x̂) = ix ϕ(τ, x̂) = x iϕ(τ, x̂).

Moreover, as the map N : S(Hn) → H# is surjective there is h ∈ S(Hn) such
that Nh = iϕ , then

Nf(τ, λ̂) = λ Nh(τ, λ̂), ∀(τ, λ) ∈ R2.

Finally,

〈Sλ,k, f〉 = 〈Fλ,k, Nf(·, λ̂)〉 = 〈Fλ,k, λ Nh(·, λ̂)〉 = λ 〈Sλ,k, h〉,

implies F(f)(λ, (2k+p−q)|λ|)=λ F(h)(λ, (2k+p−q)|λ|) for all λ 6= 0, k ∈ Z .
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Proposition 4.4. Let N ∈ N. Given f ∈ S(Hn) there exist fj ∈ S(Hn) for
all j = 0, 1, . . . , N and ϕj ∈ Hn for all j = 0, 1, . . . , N − 1 such that

F(f)(λ, |λ|(2k+p−q)) =
N−1∑
j=0

λjϕj(λ, |λ|(2k+p−q))+λNF(fN )(λ, |λ|(2k+p−q)), (4.7)

where ϕj is the function of Lemma 4.2 associated to fj .

Proof. Let φ be as in Definition 4.1 and f ∈ S(Hn). We will do the proof by
induction on N .

Let θ1, θ2 ∈ S(R) such that F(f)(0, s) = θ1(s) + sn−1θ2(s) H(s), and let

ϕ0(λ, s) = θ1(s) φ(λ) +

q−1∏
k=−p+1

(s− (2k + p− q)|λ|) θ2(s) φ(λ) H(s).

Then, by Theorem 1.8 there exists f0 ∈ S(Hn) such that F(f0) = ϕ0|Σ . So,

F(f − f0)(0, s) = F(f)(0, s)− ϕ0(0, s) = 0, ∀s ∈ R.

By Proposition 4.3, there exists f1 ∈ S(Hn) such that

F(f − f0)(λ, |λ|(2k + p− q)) = λ F(f1)(λ, |λ|(2k + p− q)).

Therefore,

F(f)(λ, |λ|(2k + p− q)) = F(f0)(λ, |λ|(2k+p−q)) + λ F(f1)(λ, |λ|(2k+p−q))
= ϕ0(λ, |λ|(2k + p− q)) + λ F(f1)(λ, |λ|(2k + p− q)).

Now, we suppose that for N ≥ 1 there exist fj ∈ S(Hn) for all j = 0, . . . , N
and ϕj ∈ Hn for all j = 0, . . . , N − 1 such that

F(f)(λ, |λ|(2k+p−q)) =
N−1∑
j=0

λjϕj(λ, |λ|(2k+p−q))+λNF(fN )(λ, |λ|(2k+p−q)). (4.8)

Then, for the first part of this proof with fN instead of f , there exist ϕN ∈ Hn

and fN+1 ∈ S(Hn) such that

F(fN )(λ, |λ|(2k+p− q)) = ϕN (λ, |λ|(2k+p− q))+λ F(fN+1)(λ, |λ|(2k+p− q)). (4.9)

So by (4.8) and (4.9) we get (4.7) for N + 1.

The following Definition 4.5, Proposition 4.6 and Corollary 4.7 are straight-
forward adaptations of Lemma 3.1 proved by A., Di B. and R. in [1].

Definition 4.5. For a function h defined on Σ, let E(h) be the function defined
on R2 by

E(h)(λ, s) =


∑
k∈Z

h(λ, |λ|(2k + p− q))ω( s−|λ|(2k+p−q)
|λ| ), λ 6= 0,

0, λ = 0,
(4.10)

where ω is a function in C∞c (R) such that ω(t)=1 if |t|≤ 1
2

and ω(t) = 0 if |t|≥ 3
4
.
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Proposition 4.6. For N ∈ N let f ∈ S(Hn) satisfying

F(fj)(0, s) = 0 ∀s ∈ R, ∀j = 0, ..., 2N.

Then, the function E(F(f)) as in (4.10) lies in CN(R2) and

(i) E(F(f))(λ, |λ|(2k + p− q)) = F(f)(λ, |λ|(2k + p− q)) ∀λ 6= 0, k ∈ Z.

(ii) ∂iE(F(f))
∂λi

(0, s) = 0 ∀s ∈ R, 0 ≤ i ≤ N .

(iii) For any i, j,M ∈ N0 there exists a positive constant CM,N such that

sup
(λ,s)∈R2

∣∣∣∣(λ2 + s2)M
∂i+jE(F(f))

∂λi∂sj
(λ, s)

∣∣∣∣ ≤ CM,N , ∀i+ j ≤ N.

Proof. It follows the same lines as in the proof of Lemma 3.1 in [1]. But here,
we have to use Theorems 2.6 and 2.8 in [14].

As a consequence of this Proposition we have the following (see Proposition
7.5 in [2])

Corollary 4.7. We suppose that f belongs to S(Hn) satisfies

F(fj)(0, s) = 0, ∀s ∈ R, ∀j ∈ N0.

Then, the map E(F(f)) defined by (4.10) is in C∞(R2) and

(i) E(F(f))(λ, |λ|(2k + p− q)) = F(f)(λ, |λ|(2k + p− q)) ∀λ 6= 0, k ∈ Z,

(ii) ∂iE(F(f))
∂λi

(0, s) = 0 ∀s ∈ R, ∀i ∈ N0 ,

(iii) E(F(f)) ∈ S(R2).

From now on, our purpose is to remove the restrictive conditionF(fj)(0,s)=0

for all s ∈ R , j ∈ N0 .

Lemma 4.8. Let {θj(s) = θ1,j(s) + sn−1θ2,j(s) H(s)}∞j=0 be a sequence of
functions as in (2.3). Then, there exists a sequence {νj}∞j=0 of positive numbers

greater than 1 such that the function G defined on R2 by

G(λ, s)=
∞∑
j=0

λj

j!
θ1,j(s) ω(νjλ) +

q−1∏
k=−p+1

(s− (2k + p− q)|λ|)
∞∑
j=0

λj

j!
θ2,j(s) ω(νjλ) H(s),

lies in Hn .

Proof. Let ω be as in Definition 4.5. To prove Lemma 4.8, it is enough to
show that for an appropriate sequence {νj} of positive numbers, if

fj(λ, s) :=
θ1,j(s)

j!
λjω(νjλ), gj(λ, s) :=

θ2,j(s)

j!
λjω(νjλ),
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then f =
∑∞

j=0 fj and g =
∑∞

j=0 gj are in S(R2).

To see this, we will take a sequence {νj}∞j=0 such that

sup
(λ,s)∈R2

∣∣∣∣sk ∂i+lfj∂si∂λl
(λ, s)

∣∣∣∣ ≤ 1

2j
and sup

(λ,s)∈R2

∣∣∣∣sk ∂i+lgj∂si∂λl
(λ, s)

∣∣∣∣ ≤ 1

2j
(4.11)

for all 0 ≤ i, l, k ≤ j . Since in this case, given k′, k,N ∈ N0 we obtain∣∣∣∣λk′sk ∂i+lfj∂si∂λl
(λ, s)

∣∣∣∣ ≤ 1

2j
|λ|k′ , ∀j ≥ max{N, k},∀i+ l = N.

Moreover, fj(s, λ) = 0 for all (λ, s) ∈ R2 such that |λ| ≥ 1. Then,

sup
(λ,s)∈R2

∣∣∣∣λk′sk ∂i+lfj∂si∂λl
(λ, s)

∣∣∣∣ ≤ M̄∑
j=0

sup
(λ,s)∈R2

∣∣∣∣λk′sk ∂i+lfj∂si∂λl
(λ, s)

∣∣∣∣+
∞∑

j=M̄+1

1

2j
≤ Ck,k′,N .

Consider (4.11). By the Leibniz’s rule we obtain

∂i+lfj
∂si∂λl

(λ, s) =
∂iθ1,j

∂si
(s)

∂l(λjω(νjλ))

∂λl

=
∂iθ1,j

∂si
(s)

l∑
r=0

(
l

r

)
j!

(j − r)!
λj−rνl−rj ωl−r(νjλ)

=
∂iθ1,j

∂si
(s)

1

νj−lj

l∑
r=0

(
l

r

)
j!

(j − r)!
(λνj)

j−rωl−r(νjλ).

Then, since ω(r)(νjλ) = 0 for |νjλ| < 1, we may find positive constants cj and dj
such that ∣∣∣∣sk ∂i+lfj∂si∂λl

∣∣∣∣ ≤ cj
νjj!

∣∣∣∣sk ∂iθ1,j

∂si

∣∣∣∣ ≤ cj
νj

j∑
k,i=0

∥∥∥∥sk ∂iθ1,j

∂si

∥∥∥∥
∞∣∣∣∣sk ∂i+lgj∂si∂λl

∣∣∣∣ ≤ dj
νjj!

∣∣∣∣sk ∂iθ2,j

∂si

∣∣∣∣ ≤ dj
νj

j∑
k,i=0

∥∥∥∥sk ∂iθ2,j

∂si

∥∥∥∥
∞
.

Then, we take νj ≥ 1 such that

νj ≥ max

{
2jcj

j∑
k,i=0

∥∥∥∥sk ∂iθ1,j

∂si

∥∥∥∥
∞
, 2jdj

j∑
k,i=0

∥∥∥∥sk ∂iθ2,j

∂si

∥∥∥∥
∞

}
.

Thus, the series
∑∞

j=0 fj(λ, s) and
∑∞

j=0 gj(λ, s) lie in S(R2) and G
satisfies the claim.

Corollary 4.9. Let {bj(s)}∞j=0 be a sequence of functions in S(R). Then, there
exists a sequence {νj}∞j=0 of numbers greater than 1, such that the map H defined
by

H(λ, s) =
∞∑
j=0

λj bj(s)
ω(νjλ)

j!

is a Schwartz function on R2 .
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For g ∈ S(Hn), let {gj}∞j=0 be the sequence of functions in S(Hn) associated
to g given by Proposition 4.4.

Proposition 4.10. Let f ∈ S(Hn). Then, there exist G ∈ Hn and g ∈ S(Hn)
such that

(i) G|Σ = F(g) and,

(ii) F(fj)(0, s)−F(gj)(0, s) = 0 for all s ∈ R, j ∈ N0.

Proof. The sequence of functions

{j! F(fj)(0, s)}∞j=0 = {θ1,j(s) + sn−1θ2,j(s) H(s)}∞j=0

satisfies the hypothesis of Lemma 4.8, hence there exists a sequence {νj}∞j=0 of
positive numbers greater than 1 such that

G(λ, s)=
∞∑
j=0

λjθ1,j(s)ω(νjλ) +H(s)

q−1∏
k̄=−p+1

(s−(2k̄+p−q)|λ|)
∞∑
j=0

λjθ2,j(s)ω(νjλ) (4.12)

lies in Hn . Then, by Theorem 1.8 there exists g ∈ S(Hn) such that

F(g) = G|Σ. (4.13)

Moreover, given N ∈ N , by Proposition 4.4 there exist gj ∈ S(Hn) and

ψj(λ, s) = θ1,j(s)φ(λ) +H(s)

(
q−1∏

k=−p+1

(s− (2k + p− q)|λ|)

)
θ2,j(s)φ(λ)

such that

F(g)(λ,(2k+p−q)|λ|)=
N∑
j=0

λjψj(λ,(2k+p−q)+λN+1F(gN+1)(λ,(2k+p−q), (4.14)

for λ 6= 0 and k ∈ Z . Then, by (4.12), (4.13) and (4.14) we have

∞∑
j=0

λjθ1,j((2k+p−q)|λ|) ω(νjλ) +H(s)

q−1∏
k̄=−p+1

2|λ|(k−k̄)

∞∑
j=0

λjθ2,j((2k+p−q)|λ|) ω(νjλ)

=
N∑
j=0

λj ψj(λ,(2k+p−q)|λ|) + λN+1F(gN+1)(λ,(2k+p−q)|λ|), ∀λ 6= 0, k ∈ Z.

Taking limits as (λ, |λ|(2k+ p− q)) goes to (0, s) on both sides of the last equality
we obtain F(f0)(0, s) = ψ0(0, s) = F(g0)(0, s) for all s ∈ R . Then,

F(f0)(0, |λ|(2k + p− q))ω(ν0λ)= F(g0)(0, |λ|(2k + p− q))φ(λ)= ψ0(λ, |λ|(2k + p− q))
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for all |λ| < 1
ν0

and

∞∑
j=1

λjθ1,j((2k+p−q)|λ|) ω(νjλ) +H(s)

q−1∏
k̄=−p+1

2|λ|(k−k̄)
∞∑
j=1

λjθ2,j((2k+p−q)|λ|) ω(νjλ)

=
N∑
j=1

λj ψj(λ,(2k+p−q)|λ|) + λN+1F(gN+1)(λ,(2k+p−q)|λ|), ∀|λ| < 1

ν0
, k ∈ Z.

Taking again limits as (λ, |λ|(2k+p−q)) goes to (0, s) on both sides of the equality
we obtain F(f1)(0, s) = ψ1(0, s) = F(g1)(0, s) . Then,

F(f1)(0, |λ|(2k+ p− q)) ω(ν1λ) = F(g1)(0, |λ|(2k+ p− q)) φ(λ) = ψ1(λ, |λ|(2k+ p− q))

for all |λ| < 1
ν1

and thus

∞∑
j=2

λjθ1,j((2k+p−q)|λ|) ω(νjλ) +H(s)

q−1∏
k̄=−p+1

2|λ|(k−k̄)
∞∑
j=2

λjθ2,j((2k+p−q)|λ|) ω(νjλ)

=

N∑
j=2

λj ψj(λ,(2k+p−q)|λ|) + λN+1F(gN+1)(λ,(2k+p−q)|λ|), ∀|λ| < 1

ν1
, k ∈ Z.

Iterating this argument we obtain F(fj)(0, s) = F(gj)(0, s) for all j = 0, . . . , N .

Since N is arbitrary we have that F(fj)(0, s) = F(gj)(0, s) for all j ∈
N0 .

Theorem 4.11. We suppose that f belongs to S(Hn). Then, there exists
ϕ ∈ Hn such that F(f) = ϕ|Σ .

Proof. Given f ∈ S(Hn), let G ∈ Hn and g ∈ S(Hn) as in Proposition 4.10.
Then h = f−g ∈ S(Hn) and it satisfies the hypothesis of Corollary 4.7. Therefore,
E(F(h)) ∈ S(R2). Let

ϕ = E(F(h)) +G.

Then ϕ ∈ Hn and ϕ|Σ = F(f).

Proof. (of Theorem 1.9) It follows immediately from Theorems 1.8 and 4.11.

Corollary 4.12. Given f ∈ S(Hn) there exist ϕ, ψ ∈ S(R2) such that F(f)|Σ+ =
ϕ|Σ+ and F(f)|Σ− = ψ|Σ− .

Proof. By Theorem 4.11 there exists ϕ̄ ∈ Hn such that F(f) = ϕ̄|Σ . Let
ϕ1, ϕ2 ∈ S(R2) such that

ϕ̄(λ, s) = ϕ1(λ, s) +

q−1∏
k=−p+1

(s− (2k + p− q)|λ|)ϕ2 H(s).

Then, ϕ defined by ϕ(λ, s) = ϕ1(λ, s) +
q−1∏

k=−p+1

(s − (2k + p − q)|λ|)ϕ2(λ, s) and

ψ = ϕ1 satisfy the claim.
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Corollary 4.13. Let F be a function defined on Σ. Then, F is in the image
of the normalized spherical transform if and only if there exist ϕ, ψ ∈ S(R2) such
that F |Σ+ = ϕ|Σ+ and F |Σ− = ϕ|Σ− .

Proof. It follows from Proposition 1.5 and the previous Corollary.

Corollary 4.14. Let F be a function defined on Σ. The following statements
are equivalent:

(i) there exists f ∈ S(Hn) such that F = F(f),

(ii) there exists ϕ ∈ Hn such that F = ϕ|Σ ,

(iii) there exist ϕ, ψ ∈ S(R2) such that F |Σ+ = ϕ|Σ+ and F |Σ− = ψ|Σ− .

Proof. It follows from Theorem 1.9 and Theorem 4.13.

Now, we look for a sufficient condition that F(f) must satisfy to admit an
extension in S(R2). We know that for any f in S(Hn) the map

s 7→ F(f)(0, s)

lies in Cn−2(R). Therefore we ask whether the fact that the map s→ F (f) (0, s)
lies in C∞(R) is sufficient for F (f) to admit extension in S (R2).

Theorem 4.15. Let f ∈ S(Hn) such that s 7→ F(f)(0, s) is in S(R). Then,
there exists ϕ ∈ S(R2) such that F(f) = ϕ|Σ .

Proof. By hypothesis the map s 7→ F(fj)(0, s) lies in S(R). Thus, H(λ, s) =
∞∑
j=0

λj F(fj)(0, s) ω(νjλ) lies in S(R2). Now we follow the lines of Proposi-

tion 4.10 and we obtain h ∈ S(Hn) such that F(h) = H|Σ and F(hj)(0, s) =
F(fj)(0, s) ∀s ∈ R, ∀j ∈ N0 .

Let g = f − h ∈ S(Hn) and let

ϕ = E(F(g)) +H.

Then, ϕ ∈ S(R2) and ϕ|Σ = F(f).

Proof. (of Theorem 1.11) It follows immediately from the previous theorem.
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5. Looking for an extension of F(f) with better differentiability
properties

In this section we will show that the functions of the space Hn which we used to
characterize the image of the spherical transform, are as smooth as we can expect.

Moreover, we will show that there is a close relation between the differen-
tiability of s → F (f) (0, s) , and the differentiability of some extension of F (f)
in Hn.

Proof. (of Proposition 1.12) Assume that s 7→ F(f)(0, s) lies in Ck+n−2(R).
So, we note that the functions fj associated to f according to Proposition 4.4
satisfy that the map s 7→ F(fj)(0, s) lies in Ck+n−2(R). Therefore, there are
θ1,j, θ2,j ∈ S(R) such that F(fj)(0, s) = θ1,j(s) + sk+n−1θ2,j(s) H(s).

Then, the map G defined by

G(λ, s) =

∞∑
j=0

λjθ1,j(s)ω(νjλ) + sk
q−1∏

k=−p+1

(s− (2k + p− q)|λ|)
∞∑
j=0

λjθ2,j(s)ω(νjλ) H(s),

lies in Hn . Moreover, such as we did in the proof of Proposition 4.10 we can see
that F(gj)(0, s) = F(fj)(0, s) for all s ∈ R . Then, the map ϕ = E(F(f − g)) +G
extends to F(f) and the Proposition follows.

In order to prove the main result of this section we need the following

Proposition 5.1. Let f ∈ S(Hn).

(i) If F(f)(λ, (2k + p− q)|λ|) = 0, ∀λ ∈ Rr {0}, 2k + p− q ≥ 0 then, F(f)|Σ+ ≡ 0.

(ii) If F(f)(λ, (2k+ p− q)|λ|) = 0, ∀λ ∈ Rr {0}, 2k+ p− q ≤ 0 then, F(f)|Σ− ≡ 0.

Proof.

(i) By Definition 2.7 we have that:

E(m∗)(λ, k + q) =
1

|λ|n−1

n−1∑
l=0

(
n−1
l

)
(−1)lF(f)(λ, |λ|(2(k − l) + n)).

We can suppose that n is odd and the proof is similar when n is even. Under the
initial hypothesis we have that

|λ|n−1E(m∗)(λ, k + q) =


n−1∑

l=n+1
2

+k

(−1)l
(
n−1
l

)
F(f)(λ, (2(k − l) + n)|λ|), 0 ≤ k ≤ n−3

2 ,

0, n−3
2 < k.

On the other hand, by using the Inversion formula ( Theorem 4.7 in [14])
we know that

Nf(τ, t) = (−1)n−1

∫
R

|λ|
2

∑
k≥0

E(m∗)(λ, k + q) L0
k(|λ|τ/2) e−|λ|τ/4e−iλt dλ
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for (τ, t) ∈ [0,∞)× R . So,

∂jNf

∂τ j
(0, λ̂) = (−1)n−1 |λ|j+1

2

(−1)j

4j

∑
k≥0

E(m∗)(λ, k + q)

j∑
l=0

(
j
l

)
(−2)l(L0

k)
(l)(0)

(5.1)

Then, by definition of F(f)(λ, (2k′ + p − q)|λ|) for −p < k′ < q , and using (5.1)
we get

F(f)(λ, (2k′+p− q)|λ|)=(−|λ|)n−1

2

n−2∑
j=0

1

4j
cj,k′

∑
k≥0

E(m∗)(λ, k+ q)

j∑
l=0

(
j
l

)
(−2)l(L0

k)
(l)(0),

and an easy computation shows that

tk(j) :=

j∑
l=0

(
j
l

)
(−1)l2l(L0

k)
(l)(0) = akt

k + · · ·+ a0 (5.2)

is a polynomial in the variable j of degree k where ak = 2k

k!
.

Therefore,

|λ|n−1
∑
k≥0

E(m∗)(λ, k + q)

j∑
l=0

(
j
l

)
(−1)l2l(L0

k)
(l)(0)

=

n−3
2∑

k=0

n−1∑
l=n+1

2
+k

(−1)l
(
n− 1

l

)
F(f)(λ, (2(k − l) + n)|λ|) tk(j)

=

n−1
2∑
i=1

(
n−1∑
l=n−i

(−1)l
(
n− 1

l

)
ti−n+l(j)

)
F(f)(λ, (2i− n)|λ|)

=

n−1
2∑
i=1

Bi−1(j)F(f)(λ, (2i− n)|λ|)

where Bi−1(j) =
n−1∑
l=n−i

(−1)l
(
n−1
l

)
ti−n+l(j) is a polynomial in the variable j of

degree i− 1.

Thus, as 2k′ + p− q = 2(k′ + p)− n we set l = k′ + p and for 1 ≤ l ≤ n−1
2

we have that

F(f)(λ, (2l − n)|λ|) =
(−1)n−1

2

n−1
2∑

r=1

(
n−2∑
j=0

cj,l−p
4j

Br−1(j)

)
F(f)(λ, (2r − n)|λ|)

Let 1 ≤ r, l ≤ n−1
2

. An easy computation shows that for l < p we have

n−2∑
j=0

cj,l−p
jr

4j
=

0, l − 1 > r,
r∑

s=l−1

(−1)s s!
2s
as,r(L

0
−l+n−1)(n−2−s)(0), l − 1 ≤ r,

(5.3)
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and

n−2∑
j=0

cj,l−p
jr

4j
=


0, l − 1 > r,
n−2∑

i=n−l−1

(
r∑
s=1

i(i− 1)..(i− s+ 1)2−sas,r

)
(L0

l−1)(n−2−i)(0), l − 1 ≤ r,

(5.4)

for l ≥ p , where ar,r = 1.

Therefore, if r < l we have that
n−2∑
j=0

cj,l−p

4j
Br−1(j) = 0 then,

F(f)(λ, (2l − n)|λ|) =
(−1)n−2

2

n−1
2∑
r=l

(
n−2∑
j=0

cj,l−p
4j

Br−1(j)

)
F(f)(λ, (2r − n)|λ|)

hence for each λ ∈ R we have a homogenous linear system to solve whose associated
matrix is upper triangular. By definition of the polynomial Bl−1 and using (5.3)
and (5.4) the diagonal elements of this matrix are given by:

al,l =

{
(−1)n−2

2
− 1, l < p,

1
2
− 1, l ≥ p,

so, the only solution is the trivial.

(ii) Let ϕ ∈ S(R2) such that ϕ|Σ− = F(f)|Σ− and let ψ ∈ S(R2) defined
by ψ(λ, s) = ϕ(λ,−s) then there exist g ∈ S(Hn) such that F(g)|Σ+ = ψ|Σ+ . So,
F(g) satisfies the hypothesis of (i) then F(g)|Σ+ ≡ 0.

Proposition 5.2. Let ϕ ∈ C∞(R2) and let k1, k2, . . . , kn be integer numbers
non zero. If ϕ(λ, +

−ki|λ|) = 0 for all i = 1, . . . , n and λ ∈ R then, there exists
ψ ∈ C∞(R2) such that

ϕ(λ, s) =
n∏
i=1

(s2 − k2
i λ

2) ψ(λ, s), ∀(λ, s) ∈ R2.

Proof. We will do this proof by induction. In fact, let k ∈ Z r {0} such that
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ϕ(λ, +
−k|λ|) = 0 ∀λ ∈ R . Then ϕ(λ, +

−kλ) = 0,∀λ ∈ R and we have that

ϕ(λ, s)

s2 − (kλ)2

=
1

s+ kλ

ϕ(λ, s)− ϕ(λ, kλ)

s− kλ

=
1

s+ kλ

1

s− kλ

∫ s

kλ

∂ϕ

∂s
(λ, t) dt

=
1

s+ kλ

∫ 1

0

∂ϕ

∂s
(λ, kλ+ t(s− kλ)) dt

=
1

s+ kλ

∫ 1

0

∂ϕ

∂s
(λ, kλ+ t(s− kλ))− ∂ϕ

∂s
(λ,−s+ t(s− kλ)) dt

+
1

s+ kλ

∫ 1

0

∂ϕ

∂s
(λ,−s+ t(s− kλ)) dt

=
1

s+ kλ

∫ 1

0

∫ kλ+t(s−kλ)

−s+t(s−kλ)

∂2ϕ

∂s2
(λ, u)du dt+

1

s+ kλ

∫ 1

0

∂ϕ

∂s
(λ,−s+ t(s− kλ)) dt

=

∫ 1

0

∫ 1

0

∂2ϕ

∂s2
(λ,−s+ t(s− kλ) + u(s+ kλ)) du dt+

ϕ(λ,−kλ)− ϕ(λ,−s)
s+ kλ

=

∫ 1

0

∫ 1

0

∂2ϕ

∂s2
(λ,−s+ t(s− kλ) + u(s+ kλ)) du dt+

ϕ(λ, kλ)− ϕ(λ,−s)
s+ kλ

=

∫ 1

0

∫ 1

0

∂2ϕ

∂s2
(λ,−s+ t(s− kλ) + u(s+ kλ)) du dt+

∫ 1

0

∂ϕ

∂s
(λ,−s+ t(s+ kλ)) dt

= ψ(λ, s).

It is clear that ψ ∈ C∞(R2) since ϕ ∈ C∞(R2).

Let us suppose, by inductive hypothesis, that there exists ψ1 ∈ C∞(R2)
such that

ϕ(λ, s) =

j∏
i=1

(s2 − k2
i λ

2) ψ1(λ, s).

Then ψ1(λ, +
−kj+1|λ|) = 0 for all λ ∈ R . By the first part of this proof, there exists

ψ ∈ C∞(R2) such that

ψ1(λ, s) = (s2 − k2
j+1λ

2)ψ(λ, s)

Thus,

ϕ(λ, s) =

j+1∏
i=1

(s2 − k2
i λ

2) ψ(λ, s).

Corollary 5.3. Let ϕ ∈ C∞(R2) such that ϕ(λ, (2k+p−q)|λ|) = 0 ∀λ ∈ R and
for all k ∈ {−p+1, . . . , q−1} and 2k+p−q 6= 0. Then, there exists ψ ∈ C∞(R2)
such that

ϕ(λ, s) =

q−1∏
k=−p+1

2k+p−q 6=0

(s− (2k + p− q)|λ|) ψ(λ, s), ∀(λ, s) ∈ R2.
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Proof. (of Theorem 1.13) By the differentiability properties of ϕ it is not
difficult to show that there are ϕ1, ϕ2 ∈ S(R2) such that

ϕ(λ, s) = ϕ1(λ, s) + sk+1ϕ2(λ, s) H(s), ∀(λ, s) ∈ R2.

As ϕ|Σ and ϕ1|Σ lies in the image of the normalized spherical transform
then, the restriction to Σ of the maps defined on R2 by

(λ, s) 7→ sk+1ϕ2(λ, s) H(s)

and
(λ, s) 7→ sk+1ϕ2(λ, s) (1−H(s))

lies in the image of the normalized spherical transform. Moreover, by Proposition
5.1 we get

((2k + p− q)|λ|)k+1ϕ2(λ, (2k + p− q)|λ|) = 0

for all −p + 1 ≤ k ≤ q − 1 and λ ∈ R r {0} . Then, by the previous Corollary
there exists ψ ∈ C∞(R2) such that

ϕ2(λ, s) =

q−1∏
k=−p+1

2k+p−q 6=0

(s− (2k + p− q)|λ|) ψ(λ, s), ∀(λ, s) ∈ R2.

Finally,

ϕ(λ, s) = ϕ1(λ, s) + sk+1

q−1∏
k=−p+1

2k+p−q 6=0

(s− (2k + p− q)|λ|)ψ(λ, s) H(s)

for (λ, s) ∈ R2 , hence

F(f)(0, s) = ϕ(0, s) =

{
ϕ1(0, s) + sk+n−1 ψ(0, s) H(s), if n is even,

ϕ1(0, s) + sk+n ψ(0, s) H(s), if n is odd.

Thus, s 7→ F(f)(0, s) is k + n − 1 times differentiable at the origin if n is odd
and is k + n− 2 times differentiable at the origin if n is even.
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