The spherical transform associated with the generalized Gelfand pair $\left(U(p, q), H_{n}\right), p+q=n$

Silvina Campos and Linda Saal

Abstract

We denote by H_{n} the $2 n+1$-dimensional Heisenberg group. In this work, we study the spherical transform associated with the generalized Gelfand pair $\left(U(p, q) \rtimes H_{n}, U(p, q)\right), p+q=n$, which is defined on the space of Schwartz functions on H_{n}, and we characterize its image.

In order to do that, since the spectrum associated to this pair can be identified with a subset Σ of the plane, we introduce a space \mathcal{H}_{n} of functions defined on \mathbb{R}^{2} and we prove that a function defined on Σ lies in the image if and only if it can be extended to a function in \mathcal{H}_{n}.

In particular, the spherical transform of a Schwartz function f on H_{n} admits a Schwartz extension on the plane if and only if its restriction to the vertical axis lies in $\mathcal{S}(\mathbb{R})$. Mathematics Subject Classification 2000: Primary 43A80; Secondary 22E25. Key Words and Phrases: Heisenberg group, spherical transform.

1. Introduction

Let N be a connected and simply connected nilpotent Lie group and K a compact subgroup of automorphisms of N.

Then $(K \rtimes N, N)$, also denoted by (K, N), is called a Gelfand pair when any of the following equivalent conditions hold:
(i) $L_{K}^{1}(N)=\left\{f \in L^{1}(G): f(k x)=f(x), \forall x \in N, k \in K\right\}$ is a commutative convolution algebra,
(ii) the algebra $\mathcal{U}_{K}(N)$ of left invariant and K-invariant differential operators on N is commutative,
(iii) for any irreducible unitary representation of the semidirect product $K \rtimes N$, the space of vectors fixed by K is at most one dimensional.

In this case, N is at most two step nilpotent(see [3) and we denote by $\Delta(K, N)$ the Gelfand spectrum of $L_{K}^{1}(N)$, which can be identified with the set of bounded spherical functions.

For $f \in L_{K}^{1}(N)$, the Gelfand transform \widehat{f} is given by

$$
\widehat{f}(\varphi)=\int_{N} f \bar{\varphi}, \quad \varphi \in \Delta(K, N)
$$

Assume now that N is the Heisenberg group H_{n} and $\left(K, H_{n}\right)$ is a Gelfand pair. It was proved in [5] that the spectrum $\Delta\left(K, H_{n}\right)$ can be identified with a subset of \mathbb{R}^{d+1} for some natural d, in the following way:

Theorem 1.1. Let $\left\{L_{1}, \ldots, L_{d}, T\right\}$ a set of generators of the algebra $\mathcal{U}_{K}\left(H_{n}\right)$, where T is the derivation in the central direction of H_{n}. The map $E: \Delta\left(K, H_{n}\right) \rightarrow$ $\mathbb{R} \times\left(\mathbb{R}^{+}\right)^{d}$ defined by

$$
E(\varphi)=\left(i \hat{T}(\varphi),\left|\hat{L}_{1}(\varphi)\right|, \ldots,\left|\hat{L}_{d}(\varphi)\right|\right)
$$

is a homeomorphism on its image, where $\hat{L}_{j}(\varphi)$ and $\hat{T}(\varphi)$ denote the eigenvalues of L_{j} and T respectively associated with φ.

It was given in 2] the following characterization of the image of the spherical transform associated with the Gelfand pair $\left(K, H_{n}\right)$.

Let $\mathcal{S}\left(H_{n}\right)$ be the space of Schwartz functions on H_{n} and let $S_{K}\left(H_{n}\right)$ be the subspace of K-invariant functions. Let

$$
\mathcal{S}\left(\Delta\left(K, H_{n}\right)\right)=\left\{F: \Delta\left(K, H_{n}\right) \rightarrow \mathbb{C}: \exists \varphi \in \mathcal{S}\left(\mathbb{R}^{d+1}\right),\left.\varphi\right|_{\Delta\left(K, H_{n}\right)}=F\right\}
$$

It is equipped with the quotient topology induced by the topology of $\mathcal{S}\left(\mathbb{R}^{d+1}\right)$.
Theorem 1.2. The Gelfand transform ${ }^{\wedge}: \mathcal{S}_{K}\left(H_{n}\right) \rightarrow \mathcal{S}\left(\Delta\left(K, H_{n}\right)\right)$ is a topological isomorphism between $\mathcal{S}_{K}\left(H_{n}\right)$ and $\mathcal{S}\left(\Delta\left(K, H_{n}\right)\right)$.

In successive works [10], [11] and [12] it was proved that Theorem 1.1 can be generalized by selecting a suitable set of generators of $\mathcal{U}_{K}(N)$ that yields an embedding of $\Delta(K, N)$ in some \mathbb{R}^{d}, for some natural number d, and Theorem 1.2 was extended to Gelfand pairs (K, N) where N is in the class of nilpotent Lie groups that satisfy the so called Vinberg condition.

If K is no longer assumed to be compact, $L_{K}^{1}(N)$ is trivial and a pair $(K \rtimes N, K)$, also denoted by (K, N), is called a generalized Gelfand pair if for any irreducible unitary representation of $K \rtimes N$, the space of distribution vectors fixed by K is at most one dimensional.

It is known that $\left(U(p, q), H_{n}\right)$ is a generalized Gelfand pair (see [8]), and it is natural to introduce the notions of the spectrum and Gelfand transform for it (see [13] and [15]).

In this paper we define the normalized Gelfand transform defined on $\mathcal{S}\left(H_{n}\right)$, we characterize its image and obtain a similar result to Theorem 1.2,

In order to introduce the notion of spectrum associated with the pair
$\left(U(p, q), H_{n}\right)$, we recall that if $\left(K, H_{n}\right)$ is a Gelfand pair then every bounded spherical function is of positive type (see [4]), in contrast with the semisimple case.

If \mathcal{P} denotes the cone of the K-invariant functions of positive type, then $\Delta\left(K, H_{n}\right)$ is precisely the set of extremal points of \mathcal{P}. If K is not compact it is natural to define the spectrum $\Delta\left(K, H_{n}\right)$ associated with the pair $\left(K, H_{n}\right)$ by the set of K-invariant, of positive type, extremal distributions on H_{n}, which in turn, are in correspondence with the spherical irreducible unitary representations
of $K \rtimes H_{n}$. Moreover, every extremal distribution is spherical, that is, is an eigendistribution of $\mathcal{U}_{K}\left(H_{n}\right)$ (see [9]).

If $K=U(p, q)$, the algebra $\mathcal{U}_{U(p, q)}\left(H_{n}\right)$ is generated by

$$
\mathcal{D}=\sum_{j=0}^{p}\left(X_{j}^{2}+Y_{j}^{2}\right)-\sum_{j=p+1}^{n}\left(X_{j}^{2}+Y_{j}^{2}\right) \text { and } T=\frac{\partial}{\partial t},
$$

where $\left\{X_{1}, \ldots, X_{n}, Y_{1}, \ldots, Y_{n}, T\right\}$ is the standard basis of the Heisenberg Lie algebra, $\left[X_{i}, Y_{j}\right]=\delta_{i, j} T$ and all other brackets are zero.

Also the spherical irreducible unitary representations of $U(p, q) \rtimes H_{n}$ were determined in 21 and are parameterized by $\left\{\pi_{\lambda, k}: \lambda \neq 0, k \in \mathbb{N}\right\} \cup\left\{\pi_{\sigma}: \sigma \in \mathbb{R}\right\}$ and the trivial representation. Also, in this case, the corresponding spherical distributions are tempered (see [8]).

A family of spherical distributions were explicitly computed in [8, [13] and [15], and they satisfy

$$
\begin{align*}
i T\left(S_{\lambda, k}\right) & =\lambda S_{\lambda, k}, & -\mathcal{D}\left(S_{\lambda, k}\right) & =|\lambda|(2 k+p-q) S_{\lambda, k}, \tag{1.1}\\
i T\left(S_{\sigma}\right) & =0, & -\mathcal{D}\left(S_{\sigma}\right) & =\sigma S_{\sigma} . \tag{1.2}
\end{align*}
$$

Motivated by Theorem 1.1, the following result for the case $U(p, q)$ has been proved in [15].

Theorem 1.3. The map $\mathcal{E}: \Delta(U(p, q), H(n)) \backslash\{1\} \rightarrow \mathbb{R}^{2}$ defined by

$$
\mathcal{E}(\varphi)=(i \hat{T}(\varphi),-\hat{\mathcal{D}}(\varphi))
$$

is a homeomorphism onto its image, where $\hat{\mathcal{D}}(\varphi)$ and $\hat{T}(\varphi)$ denote the eigenvalues of \mathcal{D} and T associated with φ respectively.

So, from now on we will identify the spectrum associated with the generalized Gelfand pair $\left(U(p, q), H_{n}\right)$ with

$$
\Sigma=\{(\lambda,(2 k+p-q)|\lambda|): \lambda \neq 0, k \in \mathbb{Z}\} \cup\{(0, \sigma): \sigma \in \mathbb{R}\}
$$

equipped with the relative topology of \mathbb{R}^{2}.
To prove Theorem 1.3, the authors showed that

$$
\begin{align*}
\left\langle S_{\sigma}, f\right\rangle & =\lim _{\substack{(\lambda,(2 k+p-q)|\lambda|) \rightarrow(0, \sigma) \\
\sigma>0}}|\lambda|^{n-1}\left\langle S_{\lambda, k}, f\right\rangle, \tag{1.3}\\
\left\langle S_{\sigma}, f\right\rangle & =\lim _{\substack{(\lambda,(2 k+p-q)|\lambda|) \rightarrow(0, \sigma) \\
\sigma<0}}(-1)^{n-2}|\lambda|^{n-1}\left\langle S_{\lambda, k}, f\right\rangle . \tag{1.4}
\end{align*}
$$

This result gives rise to the following
Definition 1.4. Let $f \in \mathcal{S}\left(H_{n}\right)$. Then the normalized spherical transform of f is the function $\mathcal{F}(f)$ defined on Σ by

$$
\mathcal{F}(f)(\lambda,|\lambda|(2 k+p-q))= \begin{cases}|\lambda|^{n-1}\left\langle S_{\lambda, k}, f\right\rangle, & k \geq 0 \tag{1.5}\\ (-1)^{n-2}|\lambda|^{n-1}\left\langle S_{\lambda, k}, f\right\rangle, & k<0\end{cases}
$$

and by

$$
\begin{equation*}
\mathcal{F}(f)(0, \sigma)=\left\langle S_{\sigma}, f\right\rangle \tag{1.6}
\end{equation*}
$$

Let Σ^{+}and Σ^{-}the following subsets of Σ

$$
\begin{equation*}
\Sigma^{+}=\{(\lambda,(2 k+p-q)|\lambda|): \lambda \neq 0, k \geq-p+1\} \cup\{(0, \sigma): \sigma \geq 0\} \tag{1.7}
\end{equation*}
$$

and

$$
\begin{equation*}
\Sigma^{-}=\{(\lambda,(2 k+p-q)|\lambda|): \lambda \neq 0, k \leq q-1\} \cup\{(0, \sigma): \sigma \leq 0\} \tag{1.8}
\end{equation*}
$$

In section 3 of this work we prove the following
Theorem 1.5. Let F be a function defined on Σ. If there exist $\varphi, \psi \in \mathcal{S}\left(\mathbb{R}^{2}\right)$ such that

$$
\left.F\right|_{\Sigma^{+}}=\left.\varphi\right|_{\Sigma^{+}} \quad \text { and }\left.\quad F\right|_{\Sigma^{-}}=\left.\psi\right|_{\Sigma^{-}},
$$

then there exists $f \in \mathcal{S}\left(H_{n}\right)$ such that $F=\mathcal{F}(f)$.
Thus, we have a similar result to that shown by Veneruso in [19.
Corollary 1.6. If $\varphi \in \mathcal{S}\left(\mathbb{R}^{2}\right)$ then there exists $f \in \mathcal{S}\left(H_{n}\right)$ such that $\mathcal{F}(f)=$ $\left.\varphi\right|_{\Sigma}$.

In order to characterize the image of the spherical transform, we introduce the space \mathcal{H}_{n}.

Definition 1.7. Let \mathcal{H}_{n} be the space of functions defined on \mathbb{R}^{2} of the form

$$
\varphi(\lambda, s)=\varphi_{1}(\lambda, s)+\prod_{k=-p+1}^{q-1}(s-(2 k+p-q)|\lambda|) \varphi_{2}(\lambda, s) H(s),
$$

where $\varphi_{1}, \varphi_{2} \in \mathcal{S}\left(\mathbb{R}^{2}\right)$ and H is the Heaviside function.
We remark that

$$
\prod_{k=-p+1}^{q-1}(s-(2 k+p-q)|\lambda|)= \begin{cases}s \prod_{k=0}^{\frac{n-4}{2}}\left(s^{2}-(n-2-2 k)^{2} \lambda^{2}\right), & \text { if } n \text { is even } \\ \prod_{k=0}^{2}\left(s^{2}-(n-2-2 k)^{2} \lambda^{2}\right), & \text { if } n \text { is odd. }\end{cases}
$$

So, the map $(\lambda, s) \mapsto \prod_{k=-p+1}^{q-1}(s-(2 k+p-q)|\lambda|) \varphi_{2}(\lambda, s)$ is in $\mathcal{S}\left(\mathbb{R}^{2}\right)$.
As a consequence from Theorem 1.5 we have the following
Corollary 1.8. If $\varphi \in \mathcal{H}_{n}$ then there exists $f \in \mathcal{S}\left(H_{n}\right)$ such that $\mathcal{F}(f)=\left.\varphi\right|_{\Sigma}$.
The main result of this paper is the following

Theorem 1.9. A function F defined on the spectrum Σ is in the image of the normalized spherical transform if and only if there exists $\varphi \in \mathcal{H}_{n}$ such that $F=\left.\varphi\right|_{\Sigma}$.

We recall that the spectrum of the Gelfand pair $\left(U(n), H_{n}\right)$ can be identified with the set $\Delta\left(U(n), H_{n}\right)=\left\{(\lambda,|\lambda|(2 k+n)): \lambda \neq 0, n \in \mathbb{N}_{0}\right\} \cup\{(0, s): s \in \mathbb{R}\}$. For $f \in \mathcal{S}_{U(n)}\left(H_{n}\right)$, we denote by \widehat{f} its spherical transform, and by $s \rightarrow \widehat{f}(0, s)$ the restriction of \widehat{f} to the vertical axis.

The proof of Theorem 1.9 follows the ideas developed in [1] where it was proved that \widehat{f} can be extended to a Schwartz function on \mathbb{R}^{2}. In our case, the fundamental difference is that for $f \in \mathcal{S}\left(H_{n}\right)$ the map

$$
s \mapsto \mathcal{F}(f)(0, s), \quad \forall s \in \mathbb{R}
$$

is of class C^{n-2} at the origin (see Proposition 2.5 in Preliminaries) and therefore it can be extended to a function in \mathcal{H}_{n}, while for $f \in \mathcal{S}_{U(n)}\left(H_{n}\right)$ the map

$$
s \mapsto \widehat{f}(0, s), \quad \forall s \geq 0,
$$

can be extended to a function in $\mathcal{S}\left(\mathbb{R}^{2}\right)$.
With the same arguments we prove the following result.
Proposition 1.10. Let $f \in \mathcal{S}\left(H_{n}\right)$. If n is even and the map $s \mapsto \mathcal{F}(f)(0, s)$ lies in $C^{n-2+k}(\mathbb{R})$ then there exists $\varphi \in \mathcal{H}_{n}, k$ times differentiable on \mathbb{R}^{2} such that $\mathcal{F}(f)=\left.\varphi\right|_{\Sigma}$.

If n is odd and the map $s \mapsto \mathcal{F}(f)(0, s)$ lies in $C^{n-1+k}(\mathbb{R})$ then there exists $\varphi \in \mathcal{H}_{n}, k$ times differentiable on \mathbb{R}^{2} such that $\mathcal{F}(f)=\left.\varphi\right|_{\Sigma}$.

The following result states a necessary and sufficient condition for the spherical transform $\mathcal{F}(f)$ of a function $f \in \mathcal{S}\left(H_{n}\right)$ to admit a Schwartz extension on \mathbb{R}^{2}. This result is similar to the case $q=0$ that was studied by Astengo, Di Blasio and Ricci in [1].

Theorem 1.11. Let $f \in \mathcal{S}\left(H_{n}\right)$. Then $\mathcal{F}(f)$ admits a Schwartz extension on \mathbb{R}^{2} if and only if the map $\sigma \mapsto \mathcal{F}(f)(0, \sigma)$ is a Schwartz function on \mathbb{R}.

Finally, in the last section of this work, we relate the differentiability of the function $s \rightarrow \mathcal{F}(f)(0, s)$ with the differentiability of some extension of $\mathcal{F}(f)$ in \mathcal{H}_{n}.

Proposition 1.12. Let $f \in \mathcal{S}\left(H_{n}\right)$. If the map $s \mapsto \mathcal{F}(f)(0, s)$ lies in $C^{k+n-2}(\mathbb{R})$ then $\mathcal{F}(f)$ admits an extension in \mathcal{H}_{n} of the form

$$
\varphi(\lambda, s)=\varphi_{1}(\lambda, s)+s^{k}\left(\prod_{k=-p+1}^{q-1}(s-(2 k+p-q)|\lambda|)\right) \varphi_{2}(\lambda, s) H(s)
$$

So, $\varphi \in C^{k-1}\left(\mathbb{R}^{2}\right)$ if n is odd or $\varphi \in C^{k}\left(\mathbb{R}^{2}\right)$ if n is even.

Theorem 1.13. Let $f \in \mathcal{S}\left(H_{n}\right)$. Let us suppose that $\mathcal{F}(f)$ admits an extension φ such that satisfies:
(i) φ is a C^{∞} and rapidly decreasing function on $\{(\lambda, s): s>0\}$,
(ii) is a C^{∞} and rapidly decreasing function on $\{(\lambda, s): s<0\}$ and
(iii) is a C^{k} function on \mathbb{R}^{2}.

Then, $s \mapsto \mathcal{F}(f)(0, s)$ is a C^{k+n-2} function on \mathbb{R} if n is even and it is a C^{k+n-1} function on \mathbb{R} if n is odd. Even more, every extension φ of $\mathcal{F}(f)$ that satisfies (i), (ii) and (iii) is as follows:

$$
\varphi(\lambda, s)=\varphi_{1}(\lambda, s)+s^{k+1} \prod_{\substack{k=-p+1 \\ 2 k+p-q \neq 0}}^{q-1}(s-(2 k+p-q)|\lambda|) \varphi_{2}(\lambda, s) H(s),
$$

where $\varphi_{1}, \varphi_{2} \in \mathcal{S}\left(\mathbb{R}^{2}\right)$, this is, $\varphi \in \mathcal{H}_{n}$.

2. Preliminaries

Let $n \geq 2$ and let p, q be natural numbers such that $p+q=n$. Let H_{n} be the $2 n+1$-dimensional Heisenberg group defined by $H_{n}=\mathbb{C}^{n} \times \mathbb{R}$ with law group

$$
(z, t)(w, s)=\left(z+w, t+s-\frac{1}{2} \operatorname{Im} B(z, w)\right)
$$

where

$$
B(z, w)=\sum_{j=1}^{p} z_{j} \bar{w}_{j}-\sum_{p+1}^{n} z_{j} \bar{w}_{j} .
$$

Let $U(p, q)=\left\{g \in G l(n, \mathbb{C}): B(g z, g w)=B(z, w) \forall(z, w) \in \mathbb{C}^{n}\right\}$. Then, $U(p, q)$ acts by automorphisms on H_{n} via

$$
g \cdot(z, t)=(g z, t) \text { for }(z, t) \in H_{n} .
$$

In order to introduce the definition of the spectrum associated with the generalized Gelfand pair $\left(U(p, q), H_{n}\right)$, we recall some definitions.

Definition 2.1. A distribution T on $G=U(p, q) \rtimes H_{n}$ is of positive type if the map

$$
\begin{aligned}
\Theta: \mathcal{D}(G) \times \mathcal{D}(G) & \rightarrow \mathbb{C} \\
(\varphi, \psi) & \mapsto T(\tilde{\psi} * \varphi)
\end{aligned}
$$

is hermitian, continuous and it satisfies $\Theta(\varphi, \varphi) \geq 0$ for all $\varphi \in \mathcal{D}(G)$, where $\tilde{\psi}(g)=\overline{\psi\left(g^{-1}\right)}$.

Let \mathcal{P} be the cone the distributions of positive type, $U(p, q)$-biinvariant on $U(p, q) \rtimes H_{n}$. We say that $T \in \mathcal{P}$ is extremal in \mathcal{P} if and only if $S \in \mathcal{P}$ and $S-T \in \mathcal{P}$ implies $S=\alpha T$ for some $\alpha \in \mathbb{R}$. For $S, S^{\prime} \in \mathcal{P}$ we write $S \sim S^{\prime}$ if and only if $S=\alpha S^{\prime}$ for some $\alpha>0$. Thus, \sim is an equivalence relation on \mathcal{P}. For $S \in \mathcal{P}$ we put $[S]$ for its equivalence class.

By general theory (see [7] and pag. 374 in [9]) one knows that there exists a one to one correspondence between the set of equivalence classes of unitary representations (π, V) of $U(p, q) \rtimes H_{n}$ that admits a cyclic distribution vector fixed by $U(p, q)$ (spherical representations), and the set of the equivalence classes of the $U(p, q)$-biinvariant distributions of positive type.

More precisely, the correspondence is given by

$$
T_{\pi}(\varphi)=\left\langle\xi_{\pi}, \pi(\varphi) \xi_{\pi}\right\rangle
$$

where ξ_{π} denotes the distribution vector and $\varphi \in C^{\infty}\left(U(p, q) \rtimes H_{n}\right)$. One says that T_{π} is the reproducing distribution of the representation π.

We recall also that π is irreducible if and only if T_{π} is extremal in \mathcal{P}. As usual, we identify the $U(p, q)$-biinvariant distributions on $U(p, q) \rtimes H_{n}$ with the $U(p, q)$-invariant distributions on H_{n}. A extremal distribution of \mathcal{P} is spherical (see [9]), but the reciprocal is not true as we can be see for the case $\left(U(p, q), H_{n}\right)$.

Let E be the set of extremal points in \mathcal{P}. Motivated by the results of the compact case, we define

Definition 2.2. $\Delta\left(U(p, q), H_{n}\right)=E / \sim$, equipped with the quotient of the pointwise convergence topology of $\mathcal{S}^{\prime}\left(H_{n}\right)$.

Let

$$
\left\{\pi_{\lambda, k}: \lambda \neq 0, k \in \mathbb{Z}\right\} \cup\left\{\pi_{\sigma}: \sigma \in \mathbb{R}\right\} \cup\left\{\pi^{1}\right\}
$$

the set of spherical irreducible unitary representations of $U(p, q) \rtimes H_{n}$ that are given in [21], and let

$$
\left\{S_{\lambda, k}: \lambda \neq 0, k \in \mathbb{Z}\right\} \cup\left\{S_{\sigma}: \sigma \in \mathbb{R}\right\} \cup\{1\}
$$

be the set of associated reproducing distributions. We recall that these distributions happen to be tempered.

Furthermore, we have

$$
\begin{align*}
i T\left(S_{\lambda, k}\right) & =\lambda S_{\lambda, k}, & -\mathcal{D}\left(S_{\lambda, k}\right) & =|\lambda|(2 k+p-q) S_{\lambda, k}, \tag{2.1}\\
i T\left(S_{\sigma}\right) & =0, & -\mathcal{D}\left(S_{\sigma}\right) & =\sigma S_{\sigma}, \tag{2.2}
\end{align*}
$$

where \mathcal{D} and T are given in the introduction.
Following [5], in [15] we consider the map $\mathcal{E}: \Delta\left(U(p, q), H_{n}\right) \rightarrow \mathbb{R}^{2}$ given by

$$
\mathcal{E}([\psi])=(-\hat{\mathcal{D}}(\psi), i \hat{T}(\psi)),
$$

where $\hat{\mathcal{D}}(\psi)$ and $\hat{T}(\psi)$ denote the eigenvalues of \mathcal{D} and T associated with ψ respectively. Let Σ denote the image of \mathcal{E}. Equipped with the relative topology
of \mathbb{R}^{2} it is called the Heisenberg fan of the generalized Gelfand pair $\left(U(p, q), H_{n}\right)$ and it is given by

$$
\Sigma=\{(\lambda,(2 k+p-q)|\lambda|): \lambda \neq 0, k \in \mathbb{Z}\} \cup\{(0, \sigma): \sigma \in \mathbb{R}\} .
$$

Then the following has been proved
Theorem 2.3. (see [15]) The map $\mathcal{E}: \Delta(U(p, q), H(n)) \backslash\{1\} \rightarrow \Sigma$ is a homeomorphism.

To prove the previous theorem the authors proved (1.3) and (1.4).
This result leads to introduce the normalized spherical transform as given in 1.4 .
We recall some known facts in order to present explicitly the spherical distributions $S_{\lambda, k}$ for $\lambda \neq 0, k \in \mathbb{Z}$ and S_{σ} for $\sigma \in \mathbb{R}$. Let H be the Heaviside function (this is, $H=\chi_{(0, \infty)}$) and let

$$
\begin{equation*}
\mathcal{H}=\left\{\varphi: \mathbb{R} \mapsto \mathbb{C}: \varphi(\tau)=\varphi_{1}(\tau)+\tau^{n-1} \varphi_{2}(\tau) H(\tau), \quad \varphi_{1}, \varphi_{2} \in \mathcal{S}(\mathbb{R})\right\} \tag{2.3}
\end{equation*}
$$

It was proved in [18] that \mathcal{H}, equipped with a suitable topology, is a Fréchet space. For $p+q=n, p, q \in \mathbb{N}$, in [18] there is also given a linear, continuous and surjective map $N: \mathcal{S}\left(\mathbb{R}^{n}\right) \rightarrow \mathcal{H}$ whose adjoint $N^{\prime}: \mathcal{H}^{\prime} \rightarrow \mathcal{S}^{\prime}\left(\mathbb{R}^{n}\right)^{O(p, q)}$ is a linear homeomorphism onto the space of the $O(p, q)$-invariant, tempered distributions on \mathbb{R}^{n}. Of course, this construction also works out as well to describe the space $\mathcal{S}^{\prime}\left(\mathbb{C}^{n}\right)^{U(p, q)}$, this is, there exists a linear, continuous and surjective map, still denoted by $N: \mathcal{S}\left(\mathbb{C}^{n}\right) \rightarrow \mathcal{H}$ whose adjoint map $N^{\prime}: \mathcal{H}^{\prime} \rightarrow \mathcal{S}^{\prime}\left(\mathbb{C}^{n}\right)^{U(p, q)}$ is a homeomorphism.

We introduce new coordinates in \mathbb{C}^{n}. Given $u=\left(u_{1}, \ldots, u_{p}, u_{p+1}, \ldots, u_{n}\right) \in$ \mathbb{C}^{n} let $\rho=\left|u_{1}\right|^{2}+\cdots+\left|u_{n}\right|^{2}$ and $\tau=\left|u_{1}\right|^{2}+\cdots+\left|u_{p}\right|^{2}-\left(\left|u_{p+1}\right|^{2}+\cdots+\left|u_{n}\right|^{2}\right)$. It is clear that

$$
\left\|\left(u_{1}, \ldots, u_{p}\right)\right\|=\left(\frac{\rho+\tau}{2}\right)^{1 / 2}, \quad\left\|\left(u_{p+1}, \ldots, u_{n}\right)\right\|=\left(\frac{\rho-\tau}{2}\right)^{1 / 2}
$$

and let also

$$
w_{1}=\left(\frac{\rho+\tau}{2}\right)^{-1 / 2}\left(u_{1}, \ldots, u_{p}\right) \in S^{2 p-1}, w_{2}=\left(\frac{\rho-\tau}{2}\right)^{-1 / 2}\left(u_{p+1}, \ldots, u_{n}\right) \in S^{2 q-1} .
$$

We denote by $\mathcal{H}^{\#}$ the space of the functions φ defined on \mathbb{R}^{2} of the form

$$
\begin{equation*}
\varphi(\tau, t)=\varphi_{1}(\tau, t)+\tau^{n-1} \varphi_{2}(\tau, t) H(\tau), \quad \varphi_{1}, \varphi_{2} \in \mathcal{S}\left(\mathbb{R}^{2}\right) \tag{2.4}
\end{equation*}
$$

where H is the Heaviside function. A straightforward adaptation of the Tengstrand map in 18 shows that the map $N: \mathcal{S}\left(H_{n}\right) \rightarrow \mathcal{H}^{\#}$ defined by

$$
\begin{equation*}
N f(\tau, t)=\int_{\rho>|\tau|} \int_{S^{2 p-1} \times S^{2 q-1}} f\left(\left(\frac{\rho+\tau}{2}\right)^{1 / 2} \omega_{u},\left(\frac{\rho-\tau}{2}\right)^{1 / 2} \omega_{v}, t\right) d \omega_{u} d \omega_{v}(\rho+\tau)^{p-1}(\rho-\tau)^{q-1} d \rho \tag{2.5}
\end{equation*}
$$

is linear, continuous and surjective, and its adjoint map $N^{\prime}:\left(\mathcal{H}^{\#}\right)^{\prime} \rightarrow \mathcal{S}^{\prime}\left(H_{n}\right)^{U(p, q)}$ is a homeomorphism.

Remark 2.4. We observe that, unlike the case where K is compact, the normalized spherical transform is defined for all Schwartz functions on H_{n}. Moreover, since it was proved in [15] that $\mathcal{F}(f)=\mathcal{F}(g)$ if and only if $N f=N g$, we may assume that it is defined on $\mathcal{H}^{\#}$.

On the other hand, we recall the definition of the Laguerre polynomials

$$
L_{m}^{(0)}(\tau)=\sum_{j=0}^{m}\binom{m}{j}(-1)^{j} \frac{\tau^{j}}{j!}, \quad L_{m-1}^{\alpha+1}(\tau)=-\frac{d}{d \tau} L_{m}^{\alpha}(\tau),
$$

for $m, \alpha \in \mathbb{N}_{0}$, according to [17]. Therefore, $L_{m}^{\alpha}(0)=\binom{\alpha+m}{m}$.
Then, the distributions $S_{\lambda, k}$ calculated in [13] are given by

$$
S_{\lambda, k}=F_{\lambda, k} \otimes e^{-i \lambda t}
$$

with $F_{\lambda, k} \in \mathcal{S}^{\prime}\left(\mathbb{C}^{n}\right)$ defined by

$$
\left.\left\langle F_{\lambda, k}, f(\cdot, t)\right\rangle=\left.\left\langle\left(L_{k-q+n-1}^{(0)} H\right)^{n-1}, \tau \mapsto 2\right| \lambda\right|^{-1} e^{-\tau / 2} N f\left(2|\lambda|^{-1} \tau, t\right)\right\rangle \text {, for } k \geq 0, \lambda \neq 0
$$

and by
$\left.\left\langle F_{\lambda, k}, f(\cdot, t)\right\rangle=\left.\left\langle\left(L_{-k-p+n-1}^{(0)} H\right)^{n-1}, \tau \mapsto 2\right| \lambda\right|^{-1} e^{-\tau / 2} N f\left(-2|\lambda|^{-1} \tau, t\right)\right\rangle$, for $k<0, \lambda \neq 0$.
Therefore,

$$
\begin{equation*}
\left.\left\langle S_{\lambda, k}, f\right\rangle=\left.\left\langle\left(L_{k-q+n-1}^{(0)} H\right)^{n-1}, \tau \mapsto 2\right| \lambda\right|^{-1} e^{-\tau / 2} N f\left(2|\lambda|^{-1} \tau, \hat{\lambda}\right)\right\rangle \text { for } k \geq 0, \lambda \neq 0, \tag{2.6}
\end{equation*}
$$

and

$$
\begin{equation*}
\left.\left\langle S_{\lambda, k}, f\right\rangle=\left.\left\langle\left(L_{-k-p+n-1}^{(0)} H\right)^{n-1}, \tau \mapsto 2\right| \lambda\right|^{-1} e^{-\tau / 2} N f\left(-2|\lambda|^{-1} \tau, \hat{\lambda}\right)\right\rangle \text { for } k<0, \lambda \neq 0, \tag{2.7}
\end{equation*}
$$

where $N f(\tau, \hat{\lambda})$ denotes the Fourier transform of $N f(\tau, \cdot)$ in λ.
Moreover, the distributions S_{σ} calculated in [14] are given by

$$
\begin{equation*}
\left\langle S_{\sigma}, f\right\rangle=(-1)^{n-1} \int_{\mathbb{R}} \int_{0}^{\infty} J_{0}\left((\sigma \tau)^{1 / 2}\right)(N f(\cdot, t))^{(n-1)}(\tau) d \tau d t \tag{2.8}
\end{equation*}
$$

for $\sigma \geq 0$ and by

$$
\begin{equation*}
\left\langle S_{\sigma}, f\right\rangle=(-1)^{n-2} \int_{\mathbb{R}} \int_{0}^{\infty} J_{0}\left((-\sigma \tau)^{1 / 2}\right)(N f(\cdot, t))^{(n-1)}(-\tau) d \tau d t \tag{2.9}
\end{equation*}
$$

for $\sigma<0$, where $J_{m}(\tau)=\left(\frac{\tau}{2}\right)^{m} \sum_{k=0}^{\infty} \frac{(-1)^{k}}{k!(k+m)!}\left(\frac{\tau}{2}\right)^{2 k}$ is the Bessel function of order m of the first kind.

Proposition 2.5. Let $f \in \mathcal{S}\left(H_{n}\right)$. Then the map $\sigma \mapsto \mathcal{F}(f)(0, \sigma)$ lies in the Tensgtrand space \mathcal{H} defined by (2.3).

Proof. For $f \in \mathcal{S}\left(H_{n}\right)$ we can see in [15] and [7] that

$$
\left\langle S_{\sigma}, f\right\rangle=\int_{B(u, u)=-\sigma} \int_{H_{n}} e^{i \operatorname{ReB}(u, z)} f(z, t) d z d t d \mu_{\sigma}(u),
$$

where $d \mu_{\sigma}$ is the measure such that $N f(\sigma, t)=\int_{B(z, z)=\tau} f(z, t) d \mu_{\sigma}(z)$.
Given $u=\left(u_{1}, \ldots, u_{p}, u_{p+1}, \ldots, u_{n}\right) \in \mathbb{C}^{n}$, we have that

$$
\begin{aligned}
& \left\{u \in \mathbb{C}^{n}: B(u, u)=-\sigma\right\} \\
& \quad=\left\{\left(\left(\frac{\rho-\sigma}{2}\right)^{1 / 2} w_{1},\left(\frac{\rho+\sigma}{2}\right)^{1 / 2} w_{2}\right): w_{1} \in S^{2 p-1}, w_{2} \in S^{2 q-1}, \rho \geq|\sigma|\right\}
\end{aligned}
$$

An easy computation shows that

$$
\begin{aligned}
& \int_{B(u, u)=-\sigma} \int_{H_{n}} e^{i \operatorname{Re}(u, z)} f(z, t) d z d t d \mu_{\sigma}(u) \\
& =\int_{\rho>|\sigma|} \int_{S^{2 p-1} \times S^{2 q-1}}^{2} \tilde{f}\left(\left(\frac{\rho-\sigma}{1 / 2} w_{1},\left(\frac{\rho+\sigma}{2}\right)^{1 / 2} w_{2}, 0\right)(\rho-\sigma)^{p-1}(\rho+\sigma)^{q-1} d w_{1} d w_{2} d \rho\right. \\
& =N \tilde{f}(\sigma, \hat{0})
\end{aligned}
$$

where the last equality is a consequence of (2.5) with

$$
\tilde{f}(u, 0)=\int_{H_{n}} e^{i \operatorname{Re} B(u, z)} f(z, t) d z d t
$$

We know that $N \tilde{f} \in \mathcal{H}^{\#}$, then by (2.4) the proof is complete.
As a consequence of Theorem 3.1 proved in [14] and by definition of the normalized spherical transform we obtain the following result:

Theorem 2.6. For $f \in \mathcal{S}\left(H_{n}\right)$ and $k \in \mathbb{Z}$, the derivatives $\partial^{j}(\mathcal{F}(f)(\lambda, k)) / \partial \lambda^{j}$ exist for all $j \in \mathbb{N}$ and $\lambda \neq 0$. Moreover, for each $j, N \in \mathbb{N}_{0}$ there exists a positive constant c independent of λ and k such that

$$
\begin{equation*}
\left|\frac{\partial^{j}(\mathcal{F}(f)(\lambda, k))}{\partial \lambda^{j}}\right| \leq c\left(|k|^{n-1}+\frac{1}{|\lambda|^{n-1}}\right) \frac{1}{|\lambda|^{N+j}(|k|+1)^{N}} . \tag{2.10}
\end{equation*}
$$

Definition 2.7. For $m:(\mathbb{R} \backslash\{0\}) \times \mathbb{Z} \rightarrow \mathbb{C}$ and $(\lambda, k) \in(\mathbb{R} \backslash\{0\}) \times \mathbb{Z}$ we define

$$
\begin{aligned}
& m^{*}(\lambda, k)= \begin{cases}m(\lambda, k), & \text { if } k \geq 0, \\
(-1)^{n-2} m(\lambda, k), & \text { if } k<0\end{cases} \\
& m^{* *}(\lambda, k)= \begin{cases}m(\lambda, k), & \text { if } k<0, \\
(-1)^{n-2} m(\lambda, k), & \text { if } k \geq 0\end{cases}
\end{aligned}
$$

Let

$$
\begin{aligned}
& E(m)(\lambda, k)=\sum_{l=0}^{n-1}(-1)^{l}\binom{n-1}{l} m(\lambda, k-l), \\
& \tilde{E}(m)(\lambda, k)=\sum_{l=0}^{n-1}(-1)^{l}\binom{n-1}{l} m(\lambda, k+l),
\end{aligned}
$$

Let $\Delta_{1}=\left\{(\lambda,(2 k+1)|\lambda|): \lambda \in \mathbb{R} \backslash\{0\}, k \in \mathbb{N}_{0}\right\}$. Then, by Theorem 1.1 proved in [14] and Veneruso's result in [19] we have the following

Theorem 2.8. We assume that $p, q \geq 1$ with $p+q=n$. Then, for a function $m:(\mathbb{R} \backslash\{0\}) \times \mathbb{Z} \rightarrow \mathbb{C}$ there exists $f \in \mathcal{S}\left(H_{n}\right)$ such that $m(\lambda, k)=\left\langle S_{\lambda, k}, f\right\rangle$ if and only if m satisfies the following conditions:
(i) for all $N \in \mathbb{N}$ there exists c_{N} such that

$$
\begin{equation*}
|m(\lambda, k)| \leq c_{N}\left(|k|^{n-1}+\frac{1}{|\lambda|^{n-1}}\right) \frac{1}{|\lambda|^{N}(|k|+1)^{N}}, k \in \mathbb{Z} \tag{2.11}
\end{equation*}
$$

(ii) the functions defined on Δ_{1} by

$$
\begin{equation*}
(\lambda,(2 k+1)|\lambda|) \mapsto E\left(m^{*}\right)(\lambda, k+q),(\lambda,(2 k+1)|\lambda|) \mapsto \tilde{E}\left(m^{* *}\right)(\lambda,-k-p) \tag{2.12}
\end{equation*}
$$ admit Schwartz extensions on \mathbb{R}^{2}.

3. The spaces \mathcal{H}_{n}

Our aim here is to prove that the restriction to Σ of a function in \mathcal{H}_{n} is in the image of the normalized spherical transform. As a consequence we obtain a similar result to the one showed by Veneruso in [19], which states that the restriction to the spectrum $\Delta\left(U(n), H_{n}\right)$ of a Schwartz function on \mathbb{R}^{2} is in the image of the spherical transform associated to the Gelfand pair $\left(U(n), H_{n}\right)$.

In fact, let $\Omega=\{(\lambda, s) / \lambda \neq 0\}$. We start with some propositions that will be used later.

Proposition 3.1. For $\varphi \in \mathcal{S}\left(\mathbb{R}^{2}\right)$ the function

$$
\begin{align*}
F_{\varphi}: \Omega & \rightarrow \mathbb{R} \\
(\lambda, s) & \mapsto \frac{\varphi(\lambda, s+|\lambda|)-\varphi(\lambda, s-|\lambda|)}{|\lambda|} \tag{3.1}
\end{align*}
$$

admits an extension in $\mathcal{S}\left(\mathbb{R}^{2}\right)$.
Proof. Note that for $(\lambda, s) \in \Omega$,

$$
F_{\varphi}(\lambda, s)=\frac{1}{|\lambda|} \int_{s-|\lambda|}^{s+|\lambda|} \frac{\partial \varphi}{\partial u}(\lambda, u) d u=\int_{-1}^{1} \frac{\partial \varphi}{\partial s}(\lambda,|\lambda| t+s) d t
$$

where in the last equality we have used the change of variables $u=|\lambda| t+s$.
It is easy to see that \bar{F}_{φ} defined by

$$
\bar{F}_{\varphi}(\lambda, s)=\int_{-1}^{1} \frac{\partial \varphi}{\partial s}(\lambda,|\lambda| t+s) d t, \quad \forall(\lambda, s) \in \mathbb{R}^{2}
$$

is a continuous extension of F_{φ}, since we can derive it under the integral symbol by Dominated Convergence Theorem.

We will prove that \bar{F}_{φ} lies in $\mathcal{S}\left(\mathbb{R}^{2}\right)$.
(i) For $i, j \in \mathbb{N}_{0}$, it is easy to show that

$$
\frac{\partial^{i+j} F_{\varphi}}{\partial \lambda^{i} \partial s^{j}}(\lambda, s)=\sum_{l=0}^{i}\binom{i}{l} \int_{-1}^{1} \frac{\partial^{i+j+1} \varphi}{\partial \lambda^{i-l} \partial s^{j+l+1}}(\lambda,|\lambda| t+s)(s g(\lambda) t)^{l} d t, \quad \forall(\lambda, s) \in \Omega .
$$

Since if l is odd then $\int_{-1}^{1} t^{l} d t=0$, given $s_{0} \in \mathbb{R}$ we have that

$$
\lim _{\substack{(\lambda, s) \rightarrow\left(0, s_{0}\right) \\(\lambda, s) \in \Omega}} \frac{\partial^{i+j} F_{\varphi}}{\partial \lambda^{i} \partial s^{j}}(\lambda, s)=\sum_{\substack{l=0 \\ l \text { even }}}^{i}\binom{i}{l} \frac{\partial^{i+j+1} \varphi}{\partial \lambda^{i-l} \partial s^{j+l+1}}\left(0, s_{0}\right) \int_{-1}^{1} t^{l} d t
$$

Then, $\bar{F}_{\varphi} \in C^{\infty}\left(\mathbb{R}^{2}\right)$ since $\varphi \in C^{\infty}\left(\mathbb{R}^{2}\right)$.
(ii) \bar{F}_{φ} is a rapidly decreasing function since so is φ.

Lemma 3.2. Let $n \geq 2$. If $\varphi \in \mathcal{S}\left(\mathbb{R}^{2}\right)$ then there exists $\varphi_{n-2} \in \mathcal{S}\left(\mathbb{R}^{2}\right)$ such that

$$
\begin{equation*}
F_{\varphi_{n-2}}(\lambda, s)=\frac{1}{|\lambda|^{n-1}} \sum_{l=0}^{n-1}(-1)^{l}\binom{n-1}{l} \varphi(\lambda, s+|\lambda|(n-1-2 l)), \quad \forall(\lambda, s) \in \Omega . \tag{3.2}
\end{equation*}
$$

Proof. For $n=2$, it is clear that $\varphi_{0}=\varphi$ satisfies the claim.
By inductive hypothesis, we suppose for $n \geq 2$ that $\varphi \in \mathcal{S}\left(\mathbb{R}^{2}\right)$ implies that there is $\varphi_{n-2} \in \mathcal{S}\left(\mathbb{R}^{2}\right)$ such that (3.2) holds.

Then, for $n+1$ and $\varphi \in \mathcal{S}\left(\mathbb{R}^{2}\right)$ we have

$$
\sum_{l=0}^{n}(-1)^{l}\binom{n}{l} \frac{\varphi(\lambda, s+|\lambda|(n-2 l))}{|\lambda|^{n}}=\sum_{l=0}^{n-1}(-1)^{l}\binom{n-1}{l} \frac{F_{\varphi}(\lambda, s+|\lambda|(n-1-2 l))}{|\lambda|^{n-1}}
$$

since

$$
\begin{aligned}
& \frac{1}{|\lambda|^{n-1}} \sum_{l=0}^{n-1}(-1)^{l}\binom{n-1}{l} F_{\varphi}(\lambda, s+|\lambda|(n-1-2 l)) \\
& =\sum_{l=0}^{n-1}(-1)^{l}\binom{n-1}{l} \frac{[\varphi(\lambda, s+|\lambda|(n-1-2 l)+|\lambda|)-\varphi(\lambda, s+|\lambda|(n-1-2 l)-|\lambda|)]}{|\lambda|^{n-1}|\lambda|} \\
& =\frac{1}{|\lambda|^{n}} \sum_{l=0}^{n-1}(-1)^{l}\binom{n-1}{l}[\varphi(\lambda, s+|\lambda|(n-2 l))-\varphi(\lambda, s+|\lambda|(n-2(l+1)))] \\
& =\sum_{l=0}^{n-1}(-1)^{l}\binom{n-1}{l} \frac{\varphi(\lambda, s+|\lambda|(n-2 l))}{|\lambda|^{n}}+\sum_{l=0}^{n-1}(-1)^{l+1}\binom{n-1}{l} \frac{\varphi(\lambda, s+|\lambda|(n-2(l+1)))}{|\lambda|^{n}} \\
& =\sum_{l=0}^{n-1}(-1)^{l}\binom{n-1}{l} \frac{\varphi(\lambda, s+|\lambda|(n-2 l))}{|\lambda|^{n}}+\sum_{l=1}^{n}(-1)^{l}\binom{n-1}{l-1} \frac{\varphi(\lambda, s+|\lambda|(n-2 l))}{|\lambda|^{n}} \\
& =\frac{1}{|\lambda|^{n}} \sum_{l=0}^{n}(-1)^{l}\binom{n}{l} \varphi(\lambda, s+|\lambda|(n-2 l)),
\end{aligned}
$$

where in the last equality we have used $\binom{n-1}{l}+\binom{n-1}{l-1}=\binom{n}{l}$.
Due to Proposition 3.1 we know that F_{φ} defined on Ω can be extended to a function $\bar{F}_{\varphi} \in \mathcal{S}\left(\mathbb{R}^{2}\right)$ and, by inductive hypothesis, there is $\left(\bar{F}_{\varphi}\right)_{n-2} \in \mathcal{S}\left(\mathbb{R}^{2}\right)$ such that

$$
\sum_{l=0}^{n-1}(-1)^{l}\binom{n-1}{l} \frac{F_{\varphi}(\lambda, s+|\lambda|(n-1-2 l))}{|\lambda|^{n-1}}=\frac{\left(\bar{F}_{\varphi}\right)_{n-2}(\lambda, s+|\lambda|)-\left(\bar{F}_{\varphi}\right)_{n-2}(\lambda, s-|\lambda|)}{|\lambda|} .
$$

We take $\varphi_{n-1}=\left(\bar{F}_{\varphi}\right)_{n-2}$ and the Proposition follows.

Proof. (of Theorem 1.5 Let m be the map defined on $(\mathbb{R} \backslash\{0\}) \times \mathbb{Z}$ by

$$
m(\lambda, k)= \begin{cases}\frac{1}{|\lambda|^{n-1}} F(\lambda,|\lambda|(2 k+p-q)), & k \geq 0 \\ \frac{(-1)^{n-2}}{|\lambda|^{n-1}} F(\lambda,|\lambda|(2 k+p-q)), & k<0\end{cases}
$$

We will prove that m satisfies the conditions (i) and (ii) of Theorem 2.8. In fact, (i) follows from the fact that $\varphi, \psi \in \mathcal{S}\left(\mathbb{R}^{2}\right)$.

To show (ii), by Definition 2.7 we have that

$$
\begin{aligned}
E\left(m^{*}\right)(\lambda, k+q)= & \sum_{l=0}^{n-1}(-1)^{l}\binom{n-1}{l} m^{*}(\lambda, k+q-l) \\
= & \sum_{l=0}^{\min \{k+q, n-l\}}(-1)^{l}\binom{n-1}{l} m(\lambda, k+q-l) \\
& +\sum_{l=k+q+1}^{n-1}(-1)^{l}\binom{n-1}{l}(-1)^{n-2} m(\lambda, k+q-l) \\
= & \frac{1}{|\lambda|^{n-1}} \sum_{l=0}^{n-1}(-1)^{l}\binom{n-1}{l} F(\lambda,|\lambda|(2(k-l)+n)) \\
= & \frac{1}{|\lambda|^{n-1}} \sum_{l=0}^{n-1}(-1)^{l}\binom{n-1}{l} \varphi(\lambda,|\lambda|(2(k-l)+n)),
\end{aligned}
$$

since $2(k-l)+n \geq-n+2$ if $0 \leq k, 0 \leq l \leq n-1$, and $\left.F\right|_{\Sigma^{+}}=\left.\varphi\right|_{\Sigma^{+}}$. Therefore, the first map of 2.12 agrees on Δ_{1} with the map defined by

$$
(\lambda, s) \mapsto F_{\varphi_{n-2}}(\lambda, s), \quad \forall(\lambda, s) \in \Omega,
$$

where $\varphi_{n-2} \in \mathcal{S}\left(\mathbb{R}^{2}\right)$ is given by Lemma 3.2. Then, by Proposition 3.1, this map admits an extension in $\mathcal{S}\left(\mathbb{R}^{2}\right)$.

Similarly, for the second map in (2.12) we have that

$$
\begin{aligned}
\tilde{E}\left(m^{* *}\right)(\lambda,-k-p)= & \sum_{l=0}^{n-1}(-1)^{l}\binom{n-1}{l} m^{* *}(\lambda,-k-p+l) \\
= & \sum_{l=0}^{\min \{k+p-1, n-1\}}(-1)^{l}\binom{n-1}{l} m(\lambda,-k-p+l) \\
& +\sum_{l=k+p}^{n-1}(-1)^{l}\binom{n-1}{l}(-1)^{n-2} m(\lambda,-k-p+l) \\
= & (-1)^{n-2} \frac{1}{|\lambda|^{n-1}} \sum_{l=0}^{n-1}(-1)^{l}\binom{n-1}{l} F(\lambda,|\lambda|(-2(k-l)-n)) \\
= & (-1)^{n-2} \frac{1}{|\lambda|^{n-1}} \sum_{l=0}^{n-1}(-1)^{l}\binom{n-1}{l} \psi(\lambda,|\lambda|(-2(k-l)-n)),
\end{aligned}
$$

since $-2(k-l)-n \leq n-2$ if $0 \leq k, 0 \leq l \leq n-1$ and by hypothesis $\left.F\right|_{\Sigma^{-}}=\left.\psi\right|_{\Sigma^{-}}$.
Therefore, $\tilde{E}\left(m^{* *}\right)$ agrees on Δ_{1} with the fucntion defined on Ω by

$$
(\lambda, s) \mapsto \frac{1}{|\lambda|^{n-1}} \sum_{l=0}^{n-1}(-1)^{l}\binom{n-1}{l} \bar{\psi}(\lambda, s+|\lambda|(n-1-2 l)),
$$

where $\bar{\psi}(\lambda, s)=(-1)^{n-2} \psi(\lambda,-s)$. Since obviously $\bar{\psi} \in \mathcal{S}\left(\mathbb{R}^{2}\right)$, then by Lemma 3.2 and Proposition 3.1, this map can be extended by a function in $\mathcal{S}\left(\mathbb{R}^{2}\right)$.

Proof. (of Corollary 1.6) If $\varphi \in \mathcal{S}\left(\mathbb{R}^{2}\right)$ then $F=\left.\varphi\right|_{\Sigma}$ satisfies the hypothesis of the previous Theorem, so the Corollary follows.

Proof. (of Corollary 1.8) Given $\varphi \in \mathcal{H}_{n}$ there exist $\varphi_{1}, \varphi_{2} \in \mathcal{S}\left(\mathbb{R}^{2}\right)$ such that

$$
\varphi(\lambda, s)=\varphi_{1}(\lambda, s)+\prod_{k=-p+1}^{q-1}(s-(2 k+p-q)|\lambda|) \varphi_{2}(\lambda, s) H(s)
$$

Let $\bar{\varphi}_{2}$ be the map defined by

$$
\bar{\varphi}_{2}(\lambda, s)=\varphi_{1}(\lambda, s)+\prod_{k=-p+1}^{q-1}(s-(2 k+p-q)|\lambda|) \varphi_{2}(\lambda, s)
$$

So, $\left.\bar{\varphi}_{2}\right|_{\Sigma^{+}}=\left.\varphi\right|_{\Sigma^{+}}$and $\left.\varphi_{1}\right|_{\Sigma^{-}}=\left.\varphi\right|_{\Sigma^{-}}$since $\prod_{k=-p+1}^{q-1}(s-(2 k+p-q)|\lambda|) \varphi_{2}(\lambda, s)=0$ for all $(\lambda, s) \in \Sigma^{+} \cap \Sigma^{-}$. Then, by Theorem 1.5 this Corollary follows.

4. Characterization of the image of the normalized spherical transform

It is clear that we cannot hope that given any function $f \in \mathcal{S}\left(H_{n}\right)$ its normalized spherical transform $\mathcal{F}(f)$ can be extended to a function in $\mathcal{S}\left(\mathbb{R}^{2}\right)$ (see Proposition 2.5 in Preliminaries). In this section we will prove that for $f \in \mathcal{S}\left(H_{n}\right)$ we can extend $\mathcal{F}(f)$ to a function in \mathcal{H}_{n}.

Definition 4.1. Let $\phi \in \mathcal{S}(\mathbb{R})$ such that $\phi(\lambda)=1$ if $|\lambda|<1$ and $\phi(\lambda)=0$ if $|\lambda| \geq$ 2.

Lemma 4.2. Given $f \in \mathcal{S}\left(H_{n}\right)$, let $\theta_{1}, \theta_{2} \in \mathcal{S}(\mathbb{R})$ such that

$$
\mathcal{F}(f)(0, s)=\theta_{1}(s)+s^{n-1} \theta_{2}(s) H(s), \forall s \in \mathbb{R} .
$$

Then, the map

$$
\varphi(\lambda, s)=\theta_{1}(s) \phi(\lambda)+\prod_{k=-p+1}^{q-1}(s-(2 k+p-q)|\lambda|) \theta_{2}(s) \phi(\lambda) H(s)
$$

is in \mathcal{H}_{n} and $\varphi(0, s)=\mathcal{F}(f)(0, s)$ for all $s \in \mathbb{R}$.
Proof. It is immediate.
The following two propositions allow us to develop the normalized spherical transform $\mathcal{F}(f)$ in a Taylor expansion similar to Geller's lemma proved by Astengo, Di Blasio and Ricci in [1].

Proposition 4.3. If $f \in \mathcal{S}\left(H_{n}\right)$ satisfies $\mathcal{F}(f)(0, s)=0$ if $s \in \mathbb{R}$ then, there exists $h \in \mathcal{S}\left(H_{n}\right)$ such that

$$
\mathcal{F}(f)(\lambda,|\lambda|(2 k+p-q))=\lambda \mathcal{F}(h)(\lambda,|\lambda|(2 k+p-q)), \forall \lambda \neq 0, k \in \mathbb{Z} .
$$

Proof. By hypothesis and the definition of S_{σ}, see (2.8) and (2.9), we have that

$$
\begin{align*}
& 0=\left\langle S_{\sigma}, f\right\rangle=(-1)^{n-1} \int_{0}^{\infty} J_{0}\left((\sigma \tau)^{1 / 2}\right)(N f)^{n-1}(\tau, \hat{0}) d \tau, \forall \sigma \geq 0 \tag{4.1}\\
& 0=\left\langle S_{\sigma}, f\right\rangle=(-1)^{n-2} \int_{0}^{\infty} J_{0}\left((-\sigma \tau)^{1 / 2}\right)(N f)^{n-1}(-\tau, \hat{0}) d \tau, \forall \sigma<0 \tag{4.2}
\end{align*}
$$

Let $f_{1} \in \mathcal{S}_{U(1)}\left(H_{1}\right)$ defined by $f_{1}(z, t)=(N f)^{n-1}\left(|z|^{2}, t\right)$ for all $(z, t) \in \mathbb{C} \times \mathbb{R}$. Let us denote by \widehat{f}_{1} the spherical transform of f_{1} associated with the Gelfand pair $\left(U(1), H_{1}\right)$. We will show that $\widehat{f}_{1}(0, \sigma)=0$ for all $\sigma \geq 0$, so $f_{1}(x, \widehat{0})=0$ for all $x \in \mathbb{R}^{2}$ (see [1] pag. 789).

In fact, for $\sigma \geq 0$ we have

$$
\begin{aligned}
\widehat{f}_{1}(0, \sigma) & =\int_{\mathbb{C}} J_{0}(\sigma|z|) f_{1}(z, \widehat{0}) d z \\
& =\int_{\mathbb{C}} J_{0}(\sigma|z|)(N f)^{n-1}\left(|z|^{2}, \widehat{0}\right) d z \\
& =2 \pi \int_{0}^{\infty} J_{0}(\sigma r)(N f)^{n-1}\left(r^{2}, \widehat{0}\right) r d r \\
& =\pi \int_{0}^{\infty} J_{0}\left(\sigma \tau^{1 / 2}\right)(N f)^{n-1}(\tau, \widehat{0}) d \tau \\
& =(-1)^{n-1} \pi\left\langle S_{\sigma^{2}}, f\right\rangle \\
& =0
\end{aligned}
$$

where in the last equality we have used (4.1). Then $(N f)^{n-1}\left(|z|^{2}, \widehat{0}\right)=0$ for all $z \in \mathbb{C}$, that is,

$$
\begin{equation*}
(N f)^{n-1}(\tau, \widehat{0})=0 \quad \forall \tau \geq 0 \tag{4.3}
\end{equation*}
$$

Now, let $f_{2} \in \mathcal{S}_{U(1)}\left(H_{1}\right)$ defined by $f_{2}(z, t)=(N f)^{n-1}\left(-|z|^{2}, t\right)$ for all $(z, t) \in$ $\mathbb{C} \times \mathbb{R}$. In the similar way, for $\sigma>0$ we have that

$$
\begin{aligned}
\widehat{f}_{2}(0, \sigma) & =\int_{\mathbb{C}} J_{0}(\sigma|z|) f_{2}(z, \widehat{0}) d z \\
& =\int_{\mathbb{C}} J_{0}(\sigma|z|)(N f)^{n-1}\left(-|z|^{2}, \widehat{0}\right) d z \\
& =2 \pi \int_{0}^{\infty} J_{0}(\sigma r)(N f)^{n-1}\left(-r^{2}, \widehat{0}\right) r d r \\
& =\pi \int_{0}^{\infty} J_{0}\left(\left(-\left(-\sigma^{2}\right) \tau\right)^{1 / 2}\right)(N f)^{n-1}(-\tau, \widehat{0}) d \tau \\
& =(-1)^{n-2} \pi\left\langle S_{-\sigma^{2}}, N f\right\rangle \\
& =0
\end{aligned}
$$

where we have used (4.2). Then $(N f)^{n-1}\left(-|z|^{2}, \widehat{0}\right)=0$ for all $z \in \mathbb{C}$, that is,

$$
\begin{equation*}
(N f)^{n-1}(\tau, \widehat{0})=0 \quad \forall \tau \leq 0 \tag{4.4}
\end{equation*}
$$

By (4.3) and (4.4) we obtain $(N f)^{n-1}(\tau, \widehat{0})=0$ for all $\tau \in \mathbb{R}$. So, $N f(\tau, \widehat{0})$ is a polynomial of degree $n-2$ in τ and moreover it is a rapidly decreasing function, therefore $N f(\tau, \widehat{0})=0$ for all $\tau \in \mathbb{R}$, that is,

$$
\begin{equation*}
\int_{-\infty}^{\infty} N f(\tau, t) d t=0 \tag{4.5}
\end{equation*}
$$

Let φ be defined on \mathbb{R}^{2} by

$$
\begin{equation*}
\varphi(\tau, x)=\int_{-\infty}^{x} N f(\tau, t) d t \tag{4.6}
\end{equation*}
$$

It is clear that $x \mapsto \varphi(\tau, x)$ is in $C^{\infty}(\mathbb{R})$ and it is not difficult to see that also, it is a rapidly decreasing function by using (4.5) and that the map $t \mapsto N f(\tau, t)$ is in $\mathcal{S}(\mathbb{R})$.

By (4.6) we obtain

$$
N f(\tau, \widehat{x})=\left(\frac{\partial \varphi}{\partial x}\right)(\tau, \widehat{x})=i x \quad \varphi(\tau, \widehat{x})=x \quad i \varphi(\tau, \widehat{x}) .
$$

Moreover, as the map $N: \mathcal{S}\left(H_{n}\right) \rightarrow \mathcal{H}^{\#}$ is surjective there is $h \in \mathcal{S}\left(H_{n}\right)$ such that $N h=i \varphi$, then

$$
N f(\tau, \widehat{\lambda})=\lambda N h(\tau, \widehat{\lambda}), \quad \forall(\tau, \lambda) \in \mathbb{R}^{2}
$$

Finally,

$$
\left\langle S_{\lambda, k}, f\right\rangle=\left\langle F_{\lambda, k}, N f(\cdot, \widehat{\lambda})\right\rangle=\left\langle F_{\lambda, k}, \lambda N h(\cdot, \widehat{\lambda})\right\rangle=\lambda\left\langle S_{\lambda, k}, h\right\rangle,
$$

implies $\mathcal{F}(f)(\lambda,(2 k+p-q)|\lambda|)=\lambda \mathcal{F}(h)(\lambda,(2 k+p-q)|\lambda|)$ for all $\lambda \neq 0, k \in \mathbb{Z}$.

Proposition 4.4. Let $N \in \mathbb{N}$. Given $f \in \mathcal{S}\left(H_{n}\right)$ there exist $f_{j} \in \mathcal{S}\left(H_{n}\right)$ for all $j=0,1, \ldots, N$ and $\varphi_{j} \in \mathcal{H}_{n}$ for all $j=0,1, \ldots, N-1$ such that

$$
\begin{equation*}
\mathcal{F}(f)(\lambda,|\lambda|(2 k+p-q))=\sum_{j=0}^{N-1} \lambda^{j} \varphi_{j}(\lambda,|\lambda|(2 k+p-q))+\lambda^{N} \mathcal{F}\left(f_{N}\right)(\lambda,|\lambda|(2 k+p-q)), \tag{4.7}
\end{equation*}
$$

where φ_{j} is the function of Lemma 4.2 associated to f_{j}.
Proof. Let ϕ be as in Definition 4.1 and $f \in \mathcal{S}\left(H_{n}\right)$. We will do the proof by induction on N.

Let $\theta_{1}, \theta_{2} \in \mathcal{S}(\mathbb{R})$ such that $\mathcal{F}(f)(0, s)=\theta_{1}(s)+s^{n-1} \theta_{2}(s) H(s)$, and let

$$
\varphi_{0}(\lambda, s)=\theta_{1}(s) \phi(\lambda)+\prod_{k=-p+1}^{q-1}(s-(2 k+p-q)|\lambda|) \theta_{2}(s) \phi(\lambda) H(s)
$$

Then, by Theorem 1.8 there exists $f_{0} \in \mathcal{S}\left(H_{n}\right)$ such that $\mathcal{F}\left(f_{0}\right)=\left.\varphi_{0}\right|_{\Sigma}$. So,

$$
\mathcal{F}\left(f-f_{0}\right)(0, s)=\mathcal{F}(f)(0, s)-\varphi_{0}(0, s)=0, \forall s \in \mathbb{R}
$$

By Proposition 4.3, there exists $f_{1} \in \mathcal{S}\left(H_{n}\right)$ such that

$$
\mathcal{F}\left(f-f_{0}\right)(\lambda,|\lambda|(2 k+p-q))=\lambda \mathcal{F}\left(f_{1}\right)(\lambda,|\lambda|(2 k+p-q)) .
$$

Therefore,

$$
\begin{aligned}
\mathcal{F}(f)(\lambda,|\lambda|(2 k+p-q)) & =\mathcal{F}\left(f_{0}\right)(\lambda,|\lambda|(2 k+p-q))+\lambda \mathcal{F}\left(f_{1}\right)(\lambda,|\lambda|(2 k+p-q)) \\
& =\varphi_{0}(\lambda,|\lambda|(2 k+p-q))+\lambda \mathcal{F}\left(f_{1}\right)(\lambda,|\lambda|(2 k+p-q)) .
\end{aligned}
$$

Now, we suppose that for $N \geq 1$ there exist $f_{j} \in \mathcal{S}\left(H_{n}\right)$ for all $j=0, \ldots, N$ and $\varphi_{j} \in \mathcal{H}_{n}$ for all $j=0, \ldots, N-1$ such that

$$
\begin{equation*}
\mathcal{F}(f)(\lambda,|\lambda|(2 k+p-q))=\sum_{j=0}^{N-1} \lambda^{j} \varphi_{j}(\lambda,|\lambda|(2 k+p-q))+\lambda^{N} \mathcal{F}\left(f_{N}\right)(\lambda,|\lambda|(2 k+p-q)) . \tag{4.8}
\end{equation*}
$$

Then, for the first part of this proof with f_{N} instead of f, there exist $\varphi_{N} \in \mathcal{H}_{n}$ and $f_{N+1} \in \mathcal{S}\left(H_{n}\right)$ such that

$$
\begin{equation*}
\mathcal{F}\left(f_{N}\right)(\lambda,|\lambda|(2 k+p-q))=\varphi_{N}(\lambda,|\lambda|(2 k+p-q))+\lambda \mathcal{F}\left(f_{N+1}\right)(\lambda,|\lambda|(2 k+p-q)) . \tag{4.9}
\end{equation*}
$$

So by (4.8) and (4.9) we get (4.7) for $N+1$.
The following Definition 4.5, Proposition 4.6 and Corollary 4.7 are straightforward adaptations of Lemma 3.1 proved by A., Di B. and R. in [1].

Definition 4.5. For a function h defined on Σ, let $E(h)$ be the function defined on \mathbb{R}^{2} by

$$
E(h)(\lambda, s)= \begin{cases}\sum_{k \in \mathbb{Z}} h(\lambda,|\lambda|(2 k+p-q)) \omega\left(\frac{s-|\lambda|(2 k+p-q)}{|\lambda|}\right), & \lambda \neq 0, \tag{4.10}\\ 0, & \lambda=0,\end{cases}
$$

where ω is a function in $C_{c}^{\infty}(\mathbb{R})$ such that $\omega(t)=1$ if $|t| \leq \frac{1}{2}$ and $\omega(t)=0$ if $|t| \geq \frac{3}{4}$.

Proposition 4.6. For $N \in \mathbb{N}$ let $f \in \mathcal{S}\left(H_{n}\right)$ satisfying

$$
\mathcal{F}\left(f_{j}\right)(0, s)=0 \forall s \in \mathbb{R}, \forall j=0, \ldots, 2 N .
$$

Then, the function $E(\mathcal{F}(f))$ as in 4.10) lies in $C^{N}\left(\mathbb{R}^{2}\right)$ and
(i) $E(\mathcal{F}(f))(\lambda,|\lambda|(2 k+p-q))=\mathcal{F}(f)(\lambda,|\lambda|(2 k+p-q)) \forall \lambda \neq 0, k \in \mathbb{Z}$.
(ii) $\frac{\partial^{i} E(\mathcal{F}(f))}{\partial \lambda^{i}}(0, s)=0 \forall s \in \mathbb{R}, 0 \leq i \leq N$.
(iii) For any $i, j, M \in \mathbb{N}_{0}$ there exists a positive constant $C_{M, N}$ such that

$$
\sup _{(\lambda, s) \in \mathbb{R}^{2}}\left|\left(\lambda^{2}+s^{2}\right)^{M} \frac{\partial^{i+j} E(\mathcal{F}(f))}{\partial \lambda^{i} \partial s^{j}}(\lambda, s)\right| \leq C_{M, N}, \quad \forall i+j \leq N .
$$

Proof. It follows the same lines as in the proof of Lemma 3.1 in [1]. But here, we have to use Theorems 2.6 and 2.8 in [14].

As a consequence of this Proposition we have the following (see Proposition 7.5 in [2])

Corollary 4.7. We suppose that f belongs to $\mathcal{S}\left(H_{n}\right)$ satisfies

$$
\mathcal{F}\left(f_{j}\right)(0, s)=0, \forall s \in \mathbb{R}, \forall j \in \mathbb{N}_{0}
$$

Then, the map $E(\mathcal{F}(f))$ defined by 4.10 is in $C^{\infty}\left(\mathbb{R}^{2}\right)$ and
(i) $E(\mathcal{F}(f))(\lambda,|\lambda|(2 k+p-q))=\mathcal{F}(f)(\lambda,|\lambda|(2 k+p-q)) \forall \lambda \neq 0, k \in \mathbb{Z}$,
(ii) $\frac{\partial^{i} E(\mathcal{F}(f))}{\partial \lambda^{i}}(0, s)=0 \forall s \in \mathbb{R}, \forall i \in \mathbb{N}_{0}$,
(iii) $E(\mathcal{F}(f)) \in \mathcal{S}\left(\mathbb{R}^{2}\right)$.

From now on, our purpose is to remove the restrictive condition $\mathcal{F}\left(f_{j}\right)(0, s)=0$ for all $s \in \mathbb{R}, j \in \mathbb{N}_{0}$.

Lemma 4.8. Let $\left\{\theta_{j}(s)=\theta_{1, j}(s)+s^{n-1} \theta_{2, j}(s) H(s)\right\}_{j=0}^{\infty}$ be a sequence of functions as in (2.3). Then, there exists a sequence $\left\{\nu_{j}\right\}_{j=0}^{\infty}$ of positive numbers greater than 1 such that the function G defined on \mathbb{R}^{2} by

$$
G(\lambda, s)=\sum_{j=0}^{\infty} \frac{\lambda^{j}}{j!} \theta_{1, j}(s) \omega\left(\nu_{j} \lambda\right)+\prod_{k=-p+1}^{q-1}(s-(2 k+p-q)|\lambda|) \sum_{j=0}^{\infty} \frac{\lambda^{j}}{j!} \theta_{2, j}(s) \omega\left(\nu_{j} \lambda\right) H(s),
$$

lies in \mathcal{H}_{n}.
Proof. Let ω be as in Definition 4.5. To prove Lemma 4.8, it is enough to show that for an appropriate sequence $\left\{\nu_{j}\right\}$ of positive numbers, if

$$
f_{j}(\lambda, s):=\frac{\theta_{1, j}(s)}{j!} \lambda^{j} \omega\left(\nu_{j} \lambda\right), \quad g_{j}(\lambda, s):=\frac{\theta_{2, j}(s)}{j!} \lambda^{j} \omega\left(\nu_{j} \lambda\right),
$$

then $f=\sum_{j=0}^{\infty} f_{j}$ and $g=\sum_{j=0}^{\infty} g_{j}$ are in $\mathcal{S}\left(\mathbb{R}^{2}\right)$.
To see this, we will take a sequence $\left\{\nu_{j}\right\}_{j=0}^{\infty}$ such that

$$
\begin{equation*}
\sup _{(\lambda, s) \in \mathbb{R}^{2}}\left|s^{k} \frac{\partial^{i+l} f_{j}}{\partial s^{i} \partial \lambda^{l}}(\lambda, s)\right| \leq \frac{1}{2^{j}} \text { and } \sup _{(\lambda, s) \in \mathbb{R}^{2}}\left|s^{k} \frac{\partial^{i+l} g_{j}}{\partial s^{i} \partial \lambda^{l}}(\lambda, s)\right| \leq \frac{1}{2^{j}} \tag{4.11}
\end{equation*}
$$

for all $0 \leq i, l, k \leq j$. Since in this case, given $k^{\prime}, k, N \in \mathbb{N}_{0}$ we obtain

$$
\left|\lambda^{k^{\prime}} s^{k} \frac{\partial^{i+l} f_{j}}{\partial s^{i} \partial \lambda^{l}}(\lambda, s)\right| \leq \frac{1}{2^{j}}|\lambda|^{k^{\prime}}, \forall j \geq \max \{N, k\}, \forall i+l=N .
$$

Moreover, $f_{j}(s, \lambda)=0$ for all $(\lambda, s) \in \mathbb{R}^{2}$ such that $|\lambda| \geq 1$. Then,

$$
\sup _{(\lambda, s) \in \mathbb{R}^{2}}\left|\lambda^{k^{\prime}} s^{k} \frac{\partial^{i+l} f_{j}}{\partial s^{i} \partial \lambda^{l}}(\lambda, s)\right| \leq \sum_{j=0}^{\bar{M}} \sup _{(\lambda, s) \in \mathbb{R}^{2}}\left|\lambda^{k^{\prime}} s^{k} \frac{\partial^{i+l} f_{j}}{\partial s^{i} \partial \lambda^{l}}(\lambda, s)\right|+\sum_{j=\bar{M}+1}^{\infty} \frac{1}{2^{j}} \leq C_{k, k^{\prime}, N} .
$$

Consider (4.11). By the Leibniz's rule we obtain

$$
\begin{aligned}
\frac{\partial^{i+l} f_{j}}{\partial s^{i} \partial \lambda^{l}}(\lambda, s) & =\frac{\partial^{i} \theta_{1, j}}{\partial s^{i}}(s) \frac{\partial^{l}\left(\lambda^{j} \omega\left(\nu_{j} \lambda\right)\right)}{\partial \lambda^{l}} \\
& =\frac{\partial^{i} \theta_{1, j}}{\partial s^{i}}(s) \sum_{r=0}^{l}\binom{l}{r} \frac{j!}{(j-r)!} \lambda^{j-r} \nu_{j}^{l-r} \omega^{l-r}\left(\nu_{j} \lambda\right) \\
& =\frac{\partial^{i} \theta_{1, j}}{\partial s^{i}}(s) \frac{1}{\nu_{j}^{j-l}} \sum_{r=0}^{l}\binom{l}{r} \frac{j!}{(j-r)!}\left(\lambda \nu_{j}\right)^{j-r} \omega^{l-r}\left(\nu_{j} \lambda\right) .
\end{aligned}
$$

Then, since $\omega^{(r)}\left(\nu_{j} \lambda\right)=0$ for $\left|\nu_{j} \lambda\right|<1$, we may find positive constants c_{j} and d_{j} such that

$$
\begin{aligned}
& \left|s^{k} \frac{\partial^{i+l} f_{j}}{\partial s^{i} \partial \lambda^{l}}\right| \leq \frac{c_{j}}{\nu_{j} j!}\left|s^{k} \frac{\partial^{i} \theta_{1, j}}{\partial s^{i}}\right| \leq \frac{c_{j}}{\nu_{j}} \sum_{k, i=0}^{j}\left\|s^{k} \frac{\partial^{i} \theta_{1, j}}{\partial s^{i}}\right\|_{\infty} \\
& \left|s^{k} \frac{\partial^{i+l} g_{j}}{\partial s^{i} \partial \lambda^{l}}\right| \leq \frac{d_{j}}{\nu_{j} j!}\left|s^{\frac{2}{} \theta^{i} \theta_{2, j}} \frac{d_{j}}{\partial s^{i}}\right| \leq \frac{d_{j}}{\nu_{j}} \sum_{k, i=0}^{j}\left\|s^{k} \frac{\partial^{i} \theta_{2, j}}{\partial s^{i}}\right\|_{\infty} .
\end{aligned}
$$

Then, we take $\nu_{j} \geq 1$ such that

$$
\nu_{j} \geq \max \left\{2^{j} c_{j} \sum_{k, i=0}^{j}\left\|s^{k} \frac{\partial^{i} \theta_{1, j}}{\partial s^{i}}\right\|_{\infty}, 2^{j} d_{j} \sum_{k, i=0}^{j}\left\|s^{k} \frac{\partial^{i} \theta_{2, j}}{\partial s^{i}}\right\|_{\infty}\right\} .
$$

Thus, the series $\sum_{j=0}^{\infty} f_{j}(\lambda, s)$ and $\sum_{j=0}^{\infty} g_{j}(\lambda, s)$ lie in $\mathcal{S}\left(\mathbb{R}^{2}\right)$ and G satisfies the claim.

Corollary 4.9. Let $\left\{b_{j}(s)\right\}_{j=0}^{\infty}$ be a sequence of functions in $\mathcal{S}(\mathbb{R})$. Then, there exists a sequence $\left\{\nu_{j}\right\}_{j=0}^{\infty}$ of numbers greater than 1, such that the map H defined by

$$
H(\lambda, s)=\sum_{j=0}^{\infty} \lambda^{j} b_{j}(s) \frac{\omega\left(\nu_{j} \lambda\right)}{j!}
$$

is a Schwartz function on \mathbb{R}^{2}.

For $g \in \mathcal{S}\left(H_{n}\right)$, let $\left\{g_{j}\right\}_{j=0}^{\infty}$ be the sequence of functions in $\mathcal{S}\left(H_{n}\right)$ associated to g given by Proposition 4.4.

Proposition 4.10. Let $f \in \mathcal{S}\left(H_{n}\right)$. Then, there exist $G \in \mathcal{H}_{n}$ and $g \in \mathcal{S}\left(H_{n}\right)$ such that
(i) $\left.G\right|_{\Sigma}=\mathcal{F}(g)$ and,
(ii) $\mathcal{F}\left(f_{j}\right)(0, s)-\mathcal{F}\left(g_{j}\right)(0, s)=0$ for all $s \in \mathbb{R}, j \in \mathbb{N}_{0}$.

Proof. The sequence of functions

$$
\left\{j!\mathcal{F}\left(f_{j}\right)(0, s)\right\}_{j=0}^{\infty}=\left\{\theta_{1, j}(s)+s^{n-1} \theta_{2, j}(s) H(s)\right\}_{j=0}^{\infty}
$$

satisfies the hypothesis of Lemma 4.8, hence there exists a sequence $\left\{\nu_{j}\right\}_{j=0}^{\infty}$ of positive numbers greater than 1 such that

$$
\begin{equation*}
G(\lambda, s)=\sum_{j=0}^{\infty} \lambda^{j} \theta_{1, j}(s) \omega\left(\nu_{j} \lambda\right)+H(s) \prod_{\bar{k}=-p+1}^{q-1}(s-(2 \bar{k}+p-q)|\lambda|) \sum_{j=0}^{\infty} \lambda^{j} \theta_{2, j}(s) \omega\left(\nu_{j} \lambda\right) \tag{4.12}
\end{equation*}
$$

lies in \mathcal{H}_{n}. Then, by Theorem 1.8 there exists $g \in \mathcal{S}\left(H_{n}\right)$ such that

$$
\begin{equation*}
\mathcal{F}(g)=\left.G\right|_{\Sigma} . \tag{4.13}
\end{equation*}
$$

Moreover, given $N \in \mathbb{N}$, by Proposition 4.4 there exist $g_{j} \in \mathcal{S}\left(H_{n}\right)$ and

$$
\psi_{j}(\lambda, s)=\theta_{1, j}(s) \phi(\lambda)+H(s)\left(\prod_{k=-p+1}^{q-1}(s-(2 k+p-q)|\lambda|)\right) \theta_{2, j}(s) \phi(\lambda)
$$

such that
$\mathcal{F}(g)(\lambda,(2 k+p-q)|\lambda|)=\sum_{j=0}^{N} \lambda^{j} \psi_{j}\left(\lambda,(2 k+p-q)+\lambda^{N+1} \mathcal{F}\left(g_{N+1}\right)(\lambda,(2 k+p-q)\right.$,
for $\lambda \neq 0$ and $k \in \mathbb{Z}$. Then, by (4.12), (4.13) and (4.14) we have

$$
\begin{aligned}
& \sum_{j=0}^{\infty} \lambda^{j} \theta_{1, j}((2 k+p-q)|\lambda|) \omega\left(\nu_{j} \lambda\right)+H(s) \prod_{\bar{k}=-p+1}^{q-1} 2|\lambda|(k-\bar{k}) \sum_{j=0}^{\infty} \lambda^{j} \theta_{2, j}((2 k+p-q)|\lambda|) \omega\left(\nu_{j} \lambda\right) \\
& =\sum_{j=0}^{N} \lambda^{j} \psi_{j}(\lambda,(2 k+p-q)|\lambda|)+\lambda^{N+1} \mathcal{F}\left(g_{N+1}\right)(\lambda,(2 k+p-q)|\lambda|), \quad \forall \lambda \neq 0, \quad k \in \mathbb{Z} .
\end{aligned}
$$

Taking limits as $(\lambda,|\lambda|(2 k+p-q))$ goes to $(0, s)$ on both sides of the last equality we obtain $\mathcal{F}\left(f_{0}\right)(0, s)=\psi_{0}(0, s)=\mathcal{F}\left(g_{0}\right)(0, s)$ for all $s \in \mathbb{R}$. Then,
$\mathcal{F}\left(f_{0}\right)(0,|\lambda|(2 k+p-q)) \omega\left(\nu_{0} \lambda\right)=\mathcal{F}\left(g_{0}\right)(0,|\lambda|(2 k+p-q)) \phi(\lambda)=\psi_{0}(\lambda,|\lambda|(2 k+p-q))$
for all $|\lambda|<\frac{1}{\nu_{0}}$ and
$\sum_{j=1}^{\infty} \lambda^{j} \theta_{1, j}((2 k+p-q)|\lambda|) \omega\left(\nu_{j} \lambda\right)+H(s) \prod_{\bar{k}=-p+1}^{q-1} 2|\lambda|(k-\bar{k}) \sum_{j=1}^{\infty} \lambda^{j} \theta_{2, j}((2 k+p-q)|\lambda|) \omega\left(\nu_{j} \lambda\right)$
$=\sum_{j=1}^{N} \lambda^{j} \psi_{j}(\lambda,(2 k+p-q)|\lambda|)+\lambda^{N+1} \mathcal{F}\left(g_{N+1}\right)(\lambda,(2 k+p-q)|\lambda|), \quad \forall|\lambda|<\frac{1}{\nu_{0}}, k \in \mathbb{Z}$.
Taking again limits as $(\lambda,|\lambda|(2 k+p-q))$ goes to $(0, s)$ on both sides of the equality we obtain $\mathcal{F}\left(f_{1}\right)(0, s)=\psi_{1}(0, s)=\mathcal{F}\left(g_{1}\right)(0, s)$. Then,
$\mathcal{F}\left(f_{1}\right)(0,|\lambda|(2 k+p-q)) \omega\left(\nu_{1} \lambda\right)=\mathcal{F}\left(g_{1}\right)(0,|\lambda|(2 k+p-q)) \phi(\lambda)=\psi_{1}(\lambda,|\lambda|(2 k+p-q))$ for all $|\lambda|<\frac{1}{\nu_{1}}$ and thus
$\sum_{j=2}^{\infty} \lambda^{j} \theta_{1, j}((2 k+p-q)|\lambda|) \omega\left(\nu_{j} \lambda\right)+H(s) \prod_{\bar{k}=-p+1}^{q-1} 2|\lambda|(k-\bar{k}) \sum_{j=2}^{\infty} \lambda^{j} \theta_{2, j}((2 k+p-q)|\lambda|) \omega\left(\nu_{j} \lambda\right)$
$=\sum_{j=2}^{N} \lambda^{j} \psi_{j}(\lambda,(2 k+p-q)|\lambda|)+\lambda^{N+1} \mathcal{F}\left(g_{N+1}\right)(\lambda,(2 k+p-q)|\lambda|), \quad \forall|\lambda|<\frac{1}{\nu_{1}}, k \in \mathbb{Z}$.
Iterating this argument we obtain $\mathcal{F}\left(f_{j}\right)(0, s)=\mathcal{F}\left(g_{j}\right)(0, s)$ for all $j=0, \ldots, N$.
Since N is arbitrary we have that $\mathcal{F}\left(f_{j}\right)(0, s)=\mathcal{F}\left(g_{j}\right)(0, s)$ for all $j \in$ \mathbb{N}_{0}.

Theorem 4.11. We suppose that f belongs to $\mathcal{S}\left(H_{n}\right)$. Then, there exists $\varphi \in \mathcal{H}_{n}$ such that $\mathcal{F}(f)=\left.\varphi\right|_{\Sigma}$.

Proof. Given $f \in \mathcal{S}\left(H_{n}\right)$, let $G \in \mathcal{H}_{n}$ and $g \in \mathcal{S}\left(H_{n}\right)$ as in Proposition 4.10. Then $h=f-g \in \mathcal{S}\left(H_{n}\right)$ and it satisfies the hypothesis of Corollary 4.7. Therefore, $E(\mathcal{F}(h)) \in \mathcal{S}\left(\mathbb{R}^{2}\right)$. Let

$$
\varphi=E(\mathcal{F}(h))+G
$$

Then $\varphi \in \mathcal{H}_{n}$ and $\left.\varphi\right|_{\Sigma}=\mathcal{F}(f)$.

Proof. (of Theorem 1.9) It follows immediately from Theorems 1.8 and 4.11.
Corollary 4.12. Given $f \in \mathcal{S}\left(H_{n}\right)$ there exist $\varphi, \psi \in \mathcal{S}\left(\mathbb{R}^{2}\right)$ such that $\left.\mathcal{F}(f)\right|_{\Sigma^{+}}=$ $\left.\varphi\right|_{\Sigma^{+}}$and $\left.\mathcal{F}(f)\right|_{\Sigma^{-}}=\left.\psi\right|_{\Sigma^{-}}$.

Proof. By Theorem 4.11 there exists $\bar{\varphi} \in \mathcal{H}_{n}$ such that $\mathcal{F}(f)=\left.\bar{\varphi}\right|_{\Sigma}$. Let $\varphi_{1}, \varphi_{2} \in \mathcal{S}\left(\mathbb{R}^{2}\right)$ such that

$$
\bar{\varphi}(\lambda, s)=\varphi_{1}(\lambda, s)+\prod_{k=-p+1}^{q-1}(s-(2 k+p-q)|\lambda|) \varphi_{2} H(s) .
$$

Then, φ defined by $\varphi(\lambda, s)=\varphi_{1}(\lambda, s)+\prod_{k=-p+1}^{q-1}(s-(2 k+p-q)|\lambda|) \varphi_{2}(\lambda, s)$ and $\psi=\varphi_{1}$ satisfy the claim.

Corollary 4.13. Let F be a function defined on Σ. Then, F is in the image of the normalized spherical transform if and only if there exist $\varphi, \psi \in \mathcal{S}\left(\mathbb{R}^{2}\right)$ such that $\left.F\right|_{\Sigma^{+}}=\left.\varphi\right|_{\Sigma^{+}}$and $\left.F\right|_{\Sigma^{-}}=\left.\varphi\right|_{\Sigma^{-}}$.

Proof. It follows from Proposition 1.5 and the previous Corollary.

Corollary 4.14. Let F be a function defined on Σ. The following statements are equivalent:
(i) there exists $f \in \mathcal{S}\left(H_{n}\right)$ such that $F=\mathcal{F}(f)$,
(ii) there exists $\varphi \in \mathcal{H}_{n}$ such that $F=\left.\varphi\right|_{\Sigma}$,
(iii) there exist $\varphi, \psi \in \mathcal{S}\left(\mathbb{R}^{2}\right)$ such that $\left.F\right|_{\Sigma^{+}}=\left.\varphi\right|_{\Sigma^{+}}$and $\left.F\right|_{\Sigma^{-}}=\left.\psi\right|_{\Sigma^{-}}$.

Proof. It follows from Theorem 1.9 and Theorem 4.13.
Now, we look for a sufficient condition that $\mathcal{F}(f)$ must satisfy to admit an extension in $\mathcal{S}\left(\mathbb{R}^{2}\right)$. We know that for any f in $\mathcal{S}\left(H_{n}\right)$ the map

$$
s \mapsto \mathcal{F}(f)(0, s)
$$

lies in $C^{n-2}(\mathbb{R})$. Therefore we ask whether the fact that the map $s \rightarrow \mathcal{F}(f)(0, s)$ lies in $C^{\infty}(\mathbb{R})$ is sufficient for $\mathcal{F}(f)$ to admit extension in $\mathcal{S}\left(\mathbb{R}^{2}\right)$.

Theorem 4.15. Let $f \in \mathcal{S}\left(H_{n}\right)$ such that $s \mapsto \mathcal{F}(f)(0, s)$ is in $\mathcal{S}(\mathbb{R})$. Then, there exists $\varphi \in \mathcal{S}\left(\mathbb{R}^{2}\right)$ such that $\mathcal{F}(f)=\left.\varphi\right|_{\Sigma}$.

Proof. By hypothesis the map $s \mapsto \mathcal{F}\left(f_{j}\right)(0, s)$ lies in $\mathcal{S}(\mathbb{R})$. Thus, $H(\lambda, s)=$ $\sum_{j=0}^{\infty} \lambda^{j} \mathcal{F}\left(f_{j}\right)(0, s) \omega\left(\nu_{j} \lambda\right)$ lies in $\mathcal{S}\left(\mathbb{R}^{2}\right)$. Now we follow the lines of Proposition 4.10 and we obtain $h \in \mathcal{S}\left(H_{n}\right)$ such that $\mathcal{F}(h)=\left.H\right|_{\Sigma}$ and $\mathcal{F}\left(h_{j}\right)(0, s)=$ $\mathcal{F}\left(f_{j}\right)(0, s) \quad \forall s \in \mathbb{R}, \forall j \in \mathbb{N}_{0}$.

Let $g=f-h \in \mathcal{S}\left(H_{n}\right)$ and let

$$
\varphi=E(\mathcal{F}(g))+H .
$$

Then, $\varphi \in \mathcal{S}\left(\mathbb{R}^{2}\right)$ and $\left.\varphi\right|_{\Sigma}=\mathcal{F}(f)$.

Proof. (of Theorem 1.11) It follows immediately from the previous theorem.

5. Looking for an extension of $\mathcal{F}(f)$ with better differentiability properties

In this section we will show that the functions of the space \mathcal{H}_{n} which we used to characterize the image of the spherical transform, are as smooth as we can expect.

Moreover, we will show that there is a close relation between the differentiability of $s \rightarrow \mathcal{F}(f)(0, s)$, and the differentiability of some extension of $\mathcal{F}(f)$ in \mathcal{H}_{n}.

Proof. (of Proposition 1.12) Assume that $s \mapsto \mathcal{F}(f)(0, s)$ lies in $C^{k+n-2}(\mathbb{R})$. So, we note that the functions f_{j} associated to f according to Proposition 4.4 satisfy that the map $s \mapsto \mathcal{F}\left(f_{j}\right)(0, s)$ lies in $C^{k+n-2}(\mathbb{R})$. Therefore, there are $\theta_{1, j}, \theta_{2, j} \in \mathcal{S}(\mathbb{R})$ such that $\mathcal{F}\left(f_{j}\right)(0, s)=\theta_{1, j}(s)+s^{k+n-1} \theta_{2, j}(s) H(s)$.

Then, the map G defined by

$$
G(\lambda, s)=\sum_{j=0}^{\infty} \lambda^{j} \theta_{1, j}(s) \omega\left(\nu_{j} \lambda\right)+s^{k} \prod_{k=-p+1}^{q-1}(s-(2 k+p-q)|\lambda|) \sum_{j=0}^{\infty} \lambda^{j} \theta_{2, j}(s) \omega\left(\nu_{j} \lambda\right) H(s),
$$

lies in \mathcal{H}_{n}. Moreover, such as we did in the proof of Proposition 4.10 we can see that $\mathcal{F}\left(g_{j}\right)(0, s)=\mathcal{F}\left(f_{j}\right)(0, s)$ for all $s \in \mathbb{R}$. Then, the map $\varphi=E(\mathcal{F}(f-g))+G$ extends to $\mathcal{F}(f)$ and the Proposition follows.

In order to prove the main result of this section we need the following
Proposition 5.1. Let $f \in \mathcal{S}\left(H_{n}\right)$.
(i) If $\mathcal{F}(f)(\lambda,(2 k+p-q)|\lambda|)=0, \forall \lambda \in \mathbb{R} \backslash\{0\}, 2 k+p-q \geq 0$ then, $\left.\mathcal{F}(f)\right|_{\Sigma^{+}} \equiv 0$.
(ii) If $\mathcal{F}(f)(\lambda,(2 k+p-q)|\lambda|)=0, \forall \lambda \in \mathbb{R} \backslash\{0\}, 2 k+p-q \leq 0$ then, $\left.\mathcal{F}(f)\right|_{\Sigma^{-}} \equiv 0$.

Proof.

(i) By Definition 2.7 we have that:

$$
E\left(m^{*}\right)(\lambda, k+q)=\frac{1}{|\lambda|^{n-1}} \sum_{l=0}^{n-1}\binom{n-1}{l}(-1)^{l} \mathcal{F}(f)(\lambda,|\lambda|(2(k-l)+n)) .
$$

We can suppose that n is odd and the proof is similar when n is even. Under the initial hypothesis we have that

$$
|\lambda|^{n-1} E\left(m^{*}\right)(\lambda, k+q)= \begin{cases}\sum_{l=\frac{n+1}{2}+k}^{n-1}(-1)^{l}\binom{n-1}{l} \mathcal{F}(f)(\lambda,(2(k-l)+n)|\lambda|), & 0 \leq k \leq \frac{n-3}{2}, \\ 0, & \frac{n-3}{2}<k .\end{cases}
$$

On the other hand, by using the Inversion formula (Theorem 4.7 in [14]) we know that

$$
N f(\tau, t)=(-1)^{n-1} \int_{\mathbb{R}} \frac{|\lambda|}{2} \sum_{k \geq 0} E\left(m^{*}\right)(\lambda, k+q) L_{k}^{0}(|\lambda| \tau / 2) e^{-|\lambda| \tau / 4} e^{-i \lambda t} d \lambda
$$

for $(\tau, t) \in[0, \infty) \times \mathbb{R}$. So,

$$
\begin{equation*}
\frac{\partial^{j} N f}{\partial \tau^{j}}(0, \widehat{\lambda})=(-1)^{n-1} \frac{|\lambda|^{j+1}}{2} \frac{(-1)^{j}}{4^{j}} \sum_{k \geq 0} E\left(m^{*}\right)(\lambda, k+q) \sum_{l=0}^{j}\binom{j}{l}(-2)^{l}\left(L_{k}^{0}\right)^{(l)}(0) \tag{5.1}
\end{equation*}
$$

Then, by definition of $\mathcal{F}(f)\left(\lambda,\left(2 k^{\prime}+p-q\right)|\lambda|\right)$ for $-p<k^{\prime}<q$, and using (5.1) we get

$$
\mathcal{F}(f)\left(\lambda,\left(2 k^{\prime}+p-q\right)|\lambda|\right)=\frac{(-|\lambda|)^{n-1}}{2} \sum_{j=0}^{n-2} \frac{1}{4^{j}} c_{j, k^{\prime}} \sum_{k \geq 0} E\left(m^{*}\right)(\lambda, k+q) \sum_{l=0}^{j}\binom{j}{l}(-2)^{l}\left(L_{k}^{0}\right)^{(l)}(0),
$$

and an easy computation shows that

$$
\begin{equation*}
t_{k}(j):=\sum_{l=0}^{j}\binom{j}{l}(-1)^{l} 2^{l}\left(L_{k}^{0}\right)^{(l)}(0)=a_{k} t^{k}+\cdots+a_{0} \tag{5.2}
\end{equation*}
$$

is a polynomial in the variable j of degree k where $a_{k}=\frac{2^{k}}{k!}$.
Therefore,

$$
\begin{aligned}
& |\lambda|^{n-1} \sum_{k \geq 0} E\left(m^{*}\right)(\lambda, k+q) \sum_{l=0}^{j}\binom{j}{l}(-1)^{l} 2^{l}\left(L_{k}^{0}\right)^{(l)}(0) \\
& =\sum_{k=0}^{\frac{n-3}{2}} \sum_{l=\frac{n+1}{2}+k}^{n-1}(-1)^{l}\binom{n-1}{l} \mathcal{F}(f)(\lambda,(2(k-l)+n)|\lambda|) t_{k}(j) \\
& =\sum_{i=1}^{\frac{n-1}{2}}\left(\sum_{l=n-i}^{n-1}(-1)^{l}\binom{n-1}{l} t_{i-n+l}(j)\right) \mathcal{F}(f)(\lambda,(2 i-n)|\lambda|) \\
& =\sum_{i=1}^{\frac{n-1}{2}} B_{i-1}(j) \mathcal{F}(f)(\lambda,(2 i-n)|\lambda|)
\end{aligned}
$$

where $B_{i-1}(j)=\sum_{l=n-i}^{n-1}(-1)^{l}\binom{n-1}{l} t_{i-n+l}(j)$ is a polynomial in the variable j of degree $i-1$.

Thus, as $2 k^{\prime}+p-q=2\left(k^{\prime}+p\right)-n$ we set $l=k^{\prime}+p$ and for $1 \leq l \leq \frac{n-1}{2}$ we have that

$$
\mathcal{F}(f)(\lambda,(2 l-n)|\lambda|)=\frac{(-1)^{n-1}}{2} \sum_{r=1}^{\frac{n-1}{2}}\left(\sum_{j=0}^{n-2} \frac{c_{j, l-p}}{4^{j}} B_{r-1}(j)\right) \mathcal{F}(f)(\lambda,(2 r-n)|\lambda|)
$$

Let $1 \leq r, l \leq \frac{n-1}{2}$. An easy computation shows that for $l<p$ we have

$$
\sum_{j=0}^{n-2} c_{j, l-p} \frac{j^{r}}{4^{j}}= \begin{cases}0, & l-1>r \tag{5.3}\\ \sum_{s=l-1}^{r}(-1)^{s} \frac{s!}{2^{s}} a_{s, r}\left(L_{-l+n-1}^{0}\right)^{(n-2-s)}(0), & l-1 \leq r\end{cases}
$$

and

$$
\sum_{j=0}^{n-2} c_{j, l-p} \frac{j^{r}}{4^{j}}= \begin{cases}0, & l-1>r \tag{5.4}\\ \sum_{i=n-l-1}^{n-2}\left(\sum_{s=1}^{r} i(i-1) . .(i-s+1) 2^{-s} a_{s, r}\right)\left(L_{l-1}^{0}\right)^{(n-2-i)}(0), & l-1 \leq r\end{cases}
$$

for $l \geq p$, where $a_{r, r}=1$.
Therefore, if $r<l$ we have that $\sum_{j=0}^{n-2} \frac{c_{j, l-p}}{4 j} B_{r-1}(j)=0$ then,

$$
\mathcal{F}(f)(\lambda,(2 l-n)|\lambda|)=\frac{(-1)^{n-2}}{2} \sum_{r=l}^{\frac{n-1}{2}}\left(\sum_{j=0}^{n-2} \frac{c_{j, l-p}}{4^{j}} B_{r-1}(j)\right) \mathcal{F}(f)(\lambda,(2 r-n)|\lambda|)
$$

hence for each $\lambda \in \mathbb{R}$ we have a homogenous linear system to solve whose associated matrix is upper triangular. By definition of the polynomial B_{l-1} and using (5.3) and (5.4) the diagonal elements of this matrix are given by:

$$
a_{l, l}= \begin{cases}\frac{(-1)^{n-2}}{2}-1, & l<p \\ \frac{1}{2}-1, & l \geq p\end{cases}
$$

so, the only solution is the trivial.
(ii) Let $\varphi \in \mathcal{S}\left(\mathbb{R}^{2}\right)$ such that $\left.\varphi\right|_{\Sigma^{-}}=\left.\mathcal{F}(f)\right|_{\Sigma^{-}}$and let $\psi \in \mathcal{S}\left(\mathbb{R}^{2}\right)$ defined by $\psi(\lambda, s)=\varphi(\lambda,-s)$ then there exist $g \in \mathcal{S}\left(H_{n}\right)$ such that $\left.\mathcal{F}(g)\right|_{\Sigma^{+}}=\left.\psi\right|_{\Sigma^{+}}$. So, $\mathcal{F}(g)$ satisfies the hypothesis of (i) then $\left.\mathcal{F}(g)\right|_{\Sigma^{+}} \equiv 0$.

Proposition 5.2. Let $\varphi \in C^{\infty}\left(\mathbb{R}^{2}\right)$ and let $k_{1}, k_{2}, \ldots, k_{n}$ be integer numbers non zero. If $\varphi\left(\lambda,{ }_{-} k_{i}|\lambda|\right)=0$ for all $i=1, \ldots, n$ and $\lambda \in \mathbb{R}$ then, there exists $\psi \in C^{\infty}\left(\mathbb{R}^{2}\right)$ such that

$$
\varphi(\lambda, s)=\prod_{i=1}^{n}\left(s^{2}-k_{i}^{2} \lambda^{2}\right) \psi(\lambda, s), \forall(\lambda, s) \in \mathbb{R}^{2}
$$

Proof. We will do this proof by induction. In fact, let $k \in \mathbb{Z} \backslash\{0\}$ such that
$\varphi\left(\lambda,{ }^{+} k|\lambda|\right)=0 \forall \lambda \in \mathbb{R}$. Then $\varphi\left(\lambda,{ }^{+} k \lambda\right)=0, \forall \lambda \in \mathbb{R}$ and we have that
$\frac{\varphi(\lambda, s)}{s^{2}-(k \lambda)^{2}}$
$=\frac{1}{s+k \lambda} \frac{\varphi(\lambda, s)-\varphi(\lambda, k \lambda)}{s-k \lambda}$
$=\frac{1}{s+k \lambda} \frac{1}{s-k \lambda} \int_{k \lambda}^{s} \frac{\partial \varphi}{\partial s}(\lambda, t) d t$
$=\frac{1}{s+k \lambda} \int_{0}^{1} \frac{\partial \varphi}{\partial s}(\lambda, k \lambda+t(s-k \lambda)) d t$
$=\frac{1}{s+k \lambda} \int_{0}^{1} \frac{\partial \varphi}{\partial s}(\lambda, k \lambda+t(s-k \lambda))-\frac{\partial \varphi}{\partial s}(\lambda,-s+t(s-k \lambda)) d t$
$+\frac{1}{s+k \lambda} \int_{0}^{1} \frac{\partial \varphi}{\partial s}(\lambda,-s+t(s-k \lambda)) d t$
$=\frac{1}{s+k \lambda} \int_{0}^{1} \int_{-s+t(s-k \lambda)}^{k \lambda+t(s-k \lambda)} \frac{\partial^{2} \varphi}{\partial s^{2}}(\lambda, u) d u d t+\frac{1}{s+k \lambda} \int_{0}^{1} \frac{\partial \varphi}{\partial s}(\lambda,-s+t(s-k \lambda)) d t$
$=\int_{0}^{1} \int_{0}^{1} \frac{\partial^{2} \varphi}{\partial s^{2}}(\lambda,-s+t(s-k \lambda)+u(s+k \lambda)) d u d t+\frac{\varphi(\lambda,-k \lambda)-\varphi(\lambda,-s)}{s+k \lambda}$
$=\int_{0}^{1} \int_{0}^{1} \frac{\partial^{2} \varphi}{\partial s^{2}}(\lambda,-s+t(s-k \lambda)+u(s+k \lambda)) d u d t+\frac{\varphi(\lambda, k \lambda)-\varphi(\lambda,-s)}{s+k \lambda}$
$=\int_{0}^{1} \int_{0}^{1} \frac{\partial^{2} \varphi}{\partial s^{2}}(\lambda,-s+t(s-k \lambda)+u(s+k \lambda)) d u d t+\int_{0}^{1} \frac{\partial \varphi}{\partial s}(\lambda,-s+t(s+k \lambda)) d t$
$=\psi(\lambda, s)$.
It is clear that $\psi \in C^{\infty}\left(\mathbb{R}^{2}\right)$ since $\varphi \in C^{\infty}\left(\mathbb{R}^{2}\right)$.
Let us suppose, by inductive hypothesis, that there exists $\psi_{1} \in C^{\infty}\left(\mathbb{R}^{2}\right)$ such that

$$
\varphi(\lambda, s)=\prod_{i=1}^{j}\left(s^{2}-k_{i}^{2} \lambda^{2}\right) \psi_{1}(\lambda, s)
$$

Then $\psi_{1}\left(\lambda,{ }_{-}^{+} k_{j+1}|\lambda|\right)=0$ for all $\lambda \in \mathbb{R}$. By the first part of this proof, there exists $\psi \in C^{\infty}\left(\mathbb{R}^{2}\right)$ such that

$$
\psi_{1}(\lambda, s)=\left(s^{2}-k_{j+1}^{2} \lambda^{2}\right) \psi(\lambda, s)
$$

Thus,

$$
\varphi(\lambda, s)=\prod_{i=1}^{j+1}\left(s^{2}-k_{i}^{2} \lambda^{2}\right) \psi(\lambda, s)
$$

Corollary 5.3. Let $\varphi \in C^{\infty}\left(\mathbb{R}^{2}\right)$ such that $\varphi(\lambda,(2 k+p-q)|\lambda|)=0 \forall \lambda \in \mathbb{R}$ and for all $k \in\{-p+1, \ldots, q-1\}$ and $2 k+p-q \neq 0$. Then, there exists $\psi \in C^{\infty}\left(\mathbb{R}^{2}\right)$ such that

$$
\varphi(\lambda, s)=\prod_{\substack{k--p+1 \\ 2 k+p-q \neq 0}}^{q-1}(s-(2 k+p-q)|\lambda|) \psi(\lambda, s), \quad \forall(\lambda, s) \in \mathbb{R}^{2}
$$

Proof. (of Theorem 1.13) By the differentiability properties of φ it is not difficult to show that there are $\varphi_{1}, \varphi_{2} \in \mathcal{S}\left(\mathbb{R}^{2}\right)$ such that

$$
\varphi(\lambda, s)=\varphi_{1}(\lambda, s)+s^{k+1} \varphi_{2}(\lambda, s) H(s), \quad \forall(\lambda, s) \in \mathbb{R}^{2}
$$

As $\left.\varphi\right|_{\Sigma}$ and $\left.\varphi_{1}\right|_{\Sigma}$ lies in the image of the normalized spherical transform then, the restriction to Σ of the maps defined on \mathbb{R}^{2} by

$$
(\lambda, s) \mapsto s^{k+1} \varphi_{2}(\lambda, s) H(s)
$$

and

$$
(\lambda, s) \mapsto s^{k+1} \varphi_{2}(\lambda, s)(1-H(s))
$$

lies in the image of the normalized spherical transform. Moreover, by Proposition 5.1 we get

$$
((2 k+p-q)|\lambda|)^{k+1} \varphi_{2}(\lambda,(2 k+p-q)|\lambda|)=0
$$

for all $-p+1 \leq k \leq q-1$ and $\lambda \in \mathbb{R} \backslash\{0\}$. Then, by the previous Corollary there exists $\psi \in C^{\infty}\left(\mathbb{R}^{2}\right)$ such that

$$
\varphi_{2}(\lambda, s)=\prod_{\substack{k=-p+1 \\ 2 k+p-q \neq 0}}^{q-1}(s-(2 k+p-q)|\lambda|) \psi(\lambda, s), \forall(\lambda, s) \in \mathbb{R}^{2} .
$$

Finally,

$$
\varphi(\lambda, s)=\varphi_{1}(\lambda, s)+s^{k+1} \prod_{\substack{k=-p+1 \\ 2 k+p-q \neq 0}}^{q-1}(s-(2 k+p-q)|\lambda|) \psi(\lambda, s) H(s)
$$

for $(\lambda, s) \in \mathbb{R}^{2}$, hence

$$
\mathcal{F}(f)(0, s)=\varphi(0, s)= \begin{cases}\varphi_{1}(0, s)+s^{k+n-1} \psi(0, s) H(s), & \text { if } n \text { is even } \\ \varphi_{1}(0, s)+s^{k+n} \psi(0, s) H(s), & \text { if } n \text { is odd }\end{cases}
$$

Thus, $s \mapsto \mathcal{F}(f)(0, s)$ is $k+n-1$ times differentiable at the origin if n is odd and is $k+n-2$ times differentiable at the origin if n is even.

References

[1] Astengo, F., B. Di Blasio, and F. Ricci, Gelfand transforms of polyradial Schwartz functions on the Heisenberg group, J. Func. Anal. 251 (2007), 772-791.
[2] Astengo, F., B. Di Blasio, and F. Ricci, Gelfand Pairs on the Heisenberg group and Schwartz functions, J. Func. Anal. 256 (2009), 1565-1587.
[3] Benson, C., J. Jenkins, and G. Ratcliff, On Gelfand pairs associated with solvable Lie groups, Trans. Amer. Math. Soc. 321 (1990), 85-116.
[4] Benson, C., J. Jenkins, and G. Ratcliff, Bounded K-spherical functions on Heisenberg group, J. Func. Anal. 105 (1992), 409-443.
[5] Benson, C., J. Jenkins, and G. Ratcliff, Spectra for Gelfand pairs associated with the Heisenberg group, Colloq. Math. 71 (1996), 305-328.
[6] Benson, C., J. Jenkins, and G. Ratcliff, The spherical transform of a Schwartz function on the Heisenberg group, J. Func. Anal. 154 (1998), 379-423.
[7] van Dijk, G., Group representations on the spaces of distributions, Russian J. Math. Phys., 2 (1994), 57-68.
[8] van Dijk, G., and K. Mokni, Harmonic analysis on a class of generalized Gelfand pairs associated with hyperbolic spaces, Russian J. Math. Phys., 5 no.2. (1998), 167-178.
[9] Faraut, J., Distribution sphériques sur le espaces hiperbolique, J. Math. Pures et Appl. 58 (1979), 369-444.
[10] Fischer, V., F. Ricci, and O. Yakimova, Nilpotent Gelfand pairs and spherical transforms of Schwartz funtions I. Rank-one actions on the centre, Math. Z. 271, no. 1-2 (2012), 221-225.
[11] Fischer, V., F. Ricci, and O. Yakimova, Nilpotent Gelfand pairs and spherical transforms of Schwartz funtions II. Taylor expansions on singular sets, to apper in Lie Groups: structure, actions and representations, in honor of J.A. Wolf on the ocassion of his 75 th birthday, avaliable on arXiv:1008.4699v1.
[12] Fischer, V., F. Ricci and O. Yakimova, Nilpotent Gelfand pairs and spherical transforms of Schwartz funtions III. Isomorphisms between Schwartz spaces under Vinberg's condition, preprint, arXiv:1210.7962v1 [math.FA] 30 Oct 2012.
[13] Godoy, T., and L. Saal, L^{2} spectral decomposition on the Heisenberg group associated to the action of $U(p, q)$, Pacific J. Math. 193 (2000), 327-353.
[14] Godoy, T., and L. Saal, A spherical transform on Schwartz functions on the Heisenberg group associated to the action of $U(p, q)$, Colloq. Math. 106 (2006), 231-255.
[15] Godoy, T., and L. Saal, On the spectrum of the generalized Gelfand pair $\left(U(p, q), H_{n}\right), p+q=n$, Math. Scandinavia 105 (2009), 171-187.
[16] Helgason, S., Group and Geometric analysis, Academic Press, (1984).
[17] Szegö, G., Orthogonal Polynomials, Colloquium Publication, Vol. XXIII, A.M.S., (1975).
[18] Tengstrand, A., Distributions invariant under an orthogonal group of arbitrary signature, Math. Scand. 8 (1960), 201-218.
[19] Veneruso, A., Schwartz kernels on the Heisenberg group, Boll. Unione Mat. Ital. Sez. B 6 (2003), 657-666.
[20] Vinberg, E. B., Commutative homogeneous spaces and co-isotropic symplectic actions, Russian Math. Surveys, 56 (2001), 1-60.
[21] Wolf, J., Representations of certain semidirect product groups, J. Func. Anal. 19 (1975), 339-372.

Silvina Campos
CIEM-FaMAF
Universidad Nacional de Córdoba Córdoba 5000, Argentina
silcampos@famaf.unc.edu.ar

Linda Saal
CIEM-FaMAF
Universidad Nacional de Córdoba
Córdoba 5000, Argentina
saal@mate.uncor.edu.ar

