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Using a scattering matrix approach we study transport in coherent conductors driven by a time-
periodic bias voltage. We investigate the role of electron-like and hole-like excitations created by
the driving in the energy current noise and we reconcile previous studies on charge current noise in
this kind of systems. The energy noise reveals additional features due to electron-hole correlations.
These features should be observable in power fluctuations. In particular, we show results for the
case of a harmonic and bi-harmonic driving and of Lorentzian pulses applied to a two-terminal
conductor, addressing the recent experiments of Refs. 1 and 2.
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I. INTRODUCTION

In recent years the interest in transport through meso-
scopic systems driven by time-dependent potentials has
been increasing, in particular with the aim of obtain-
ing enhanced control over the charge flow through the
system. Indeed, even the controlled emission of single

electrons (or a fixed integer number of electrons) in a
given time interval has been realized with periodically
and nonlinearly driven mesoscopic capacitors3–5 and elec-
tron pumps.6–11 These setups are usually based on the
emission of particles from a confined region such as a
quantum dot. They are useful for metrology, where a
quantum standard for the current is sought for, or for
the tuneable synchronization of particles for quantum
optics with electrons.12–14 It is hence necessary to make
these single-electron sources as precise as possible,15–19

decreasing their noise. Furthermore, it is important to
achieve a profound understanding of the properties of the
source,20 for example by explicitly studying the waiting
time distribution of emitted particles21–23 and the energy
spectrum of the signal.24–28

A different way of creating a controlled and noiseless
flow of single particles - without resorting to specific con-
fined structures - is the application of Lorentzian volt-
age pulses to a conductor. It has been demonstrated by
Levitov and coworkers15,17,29 that a series of Lorentzian-
shaped pulses V (t) of quantised flux,

∫

eV (t)dt = h, leads
to the propagation of a noiseless train of independent
single-particle excitations, which were therefore named
Levitons. This means that, in striking contrast with the
general situation where an oscillating voltage is applied,
no electron-hole pairs induced by this particular time-
dependent driving contribute to transport. Recent ex-
periments showed that by superposing several harmonic
driving potentials a Lorentzian pulse carrying an integer
number of particles can be approximately achieved, lead-

ing to a reduction of the charge current noise reduction1

and allowing for the study of controlled single-particle
effects.2

These recent efforts have boosted the general inter-
est in the study of noise30 as a powerful tool to char-
acterize the response of a conductor to a generic time-
dependent driving potential.1,2,19,31–36 In particular it
has been shown that the noise carries information on the
probability with which electron-hole pairs are created by
the ac part of the driving31,37,38 and it is sensitive to
correlations between electrons and holes.39 Electron-hole
pairs do not carry charge and therefore their creation
by the ac potential does not affect the average charge
transport. However, these pairs carry a finite energy and
they will thus strongly influence the properties of energy
transport in ac-driven conductors.

Here, we study a simple system consisting of a two-
terminal conductor with a central scatterer. This system
is subjected to an arbitrary, time-dependent bias. Its
study allows for general statements concerning the im-
pact of electron and hole excitations on charge and energy
transport and their fluctuations and it is at the same time
appropriate to model the latest experiments on controlled
charge transport.1,2 After revisiting the study of the
charge current noise in ac-driven systems,1,17,31,34,37–44

we go beyond this study by considering in detail also the
energy current and energy current fluctuations.

Our analysis of the charge current noise considers in
detail contributions due to correlations between electrons

and holes created by the driving potential as well as the
separate contributions of electron-like and hole-like exci-
tations, and reconciles interpretations obtained from pre-
vious works31,37–39,41 where the impact of electron-hole
pairs and their correlations was debated. It turns out to
be useful to separate the charge current noise into a trans-
port part and an interference part. We then consider in
the same terms the energy current and energy current
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fluctuations. Motivated by the experimental progress in
time-dependently driven electronic systems, there has in-
deed recently been growing interest in various aspects
of their energy-transport properties.24,25,28,45,46 In this
work, we show that while the energy flow can be inter-
preted as the time-average of the energy current due to a
“frozen” potential, energy fluctuations show specific fea-
tures of the excitations created by the ac driving. In
particular, we reveal features due to electron-hole corre-
lations which are not visible in the charge noise and anal-
yse their behavior for different types and superpositions
of driving potentials, namely a harmonic or bi-harmonic
driving as well as Lorentzian pulses. Specifically, for a
system driven by Lorentzian-shaped pulses, we show that
the energy and its fluctuations are a tool to reveal that
L particles emitted by a sequence of L Lorentzians, each
having a time integral equal to h/e, are independent,
while L particles emitted at once by a Lorentzian with a
time integral equal to L×h/e are not29 - a characteristic
which is not visible neither in the charge current nor in
its noise.
All the major features discussed in the energy noise

can be shown to be present also in the power fluctuations.
They are hence expected to be measurable in up-to-date
experimental setups.1,2

The manuscript is organized as follows: in Section II
we introduce the Floquet scattering matrix approach for
time-dependent systems that we apply here; more details
are given in the Appendix. The appearance of electron-
like and hole-like excitations in charge and energy cur-
rents and their fluctuations are calculated in Section III,
followed by an interpretation of their contributions to the
transport and interference parts of the noise, Section IV.
Finally, we relate the energy noise to the heat noise and
to measurable power fluctuations in Section V.

II. FORMALISM

We consider a coherent mesoscopic conductor con-
nected to metallic contacts (also called reservoirs). The
system is brought out of equilibrium by time-periodic
voltages Vα(t) applied to these contacts. We describe
charge and energy transport through the system within
the scattering theory of photon-assisted tunneling devel-
oped by Büttiker and coworkers,47,48 a brief summary of
which is given in the Appendix. As customary, we model
the conductor in terms of a central scattering region con-
nected to the external electronic reservoirs by ideal leads,
i.e. pieces of ballistic conductors. The total charge cur-
rent operator in contact α is49

Îα(t) =
e

h

∫ ∞

−∞

dE dE′ei(E−E′)t/~ îα(E,E
′), (1)

where e is the electron charge (e < 0), îα(E,E
′) =

b̂
†

α(E)b̂α(E
′) − â

†
α(E)âα(E

′), and âα and b̂α are vec-

tors of operators with components âαn and b̂αn. The

operator âαn (b̂αn) annihilates an electron impinging on
(outgoing from) the scatterer in channel n in lead α. The

relation between the operators âα and b̂α is governed
by the time-independent scattering matrix of the con-

ductor, b̂α(E) =
∑

β sαβ(E)âβ(E), where sαβ(E) has
dimensions Nα × Nβ for leads with Nα and Nβ chan-
nels. Similarly, assuming that energy is carried only by
electrons, the energy flux in contact α is given by the
operator50,51

ÎEα(t) =
1

h

∫ ∞

−∞

dE dE′ (E+E′)
2 ei(E−E′)t/~îα(E,E

′). (2)

The physical observables that we are interested in are
the dc-components of the average charge and energy cur-
rents

Iα = 〈Îα(t)〉, IEα = 〈ÎEα(t)〉, (3)

as well as their zero-frequency auto- and cross-correlators

Sαβ =

∫ T

0

dt

T

∫ ∞

−∞

dτ〈∆Îα(t+ τ)∆Îβ(t)〉, (4a)

SE
αβ =

∫ T

0

dt

T

∫ ∞

−∞

dτ〈∆ÎEα (t+ τ)∆ÎEβ (t)〉, (4b)

which in the following we will name in short the charge

noise and the energy noise, respectively. Angular brack-
ets denote the quantum and statistical average and ∆Â =
Â − 〈Â〉. The over-line indicates the time average over

one period of the driving T , i.e. x(t) =
∫ T

0
dt
T
x(t). In ad-

dition to the charge and energy noise, also the mixed cor-
relator between charge and energy currents is expected to
be nonzero, since electrons and holes are carriers both of
charge and energy. A discussion of this mixed correlator
will be presented elsewhere.52

In order to evaluate the quantum statistical aver-
ages, it is useful to re-express the current operators in
terms of the operators for incoming states âαn only.49

In case of time-independent voltages Vα, the statis-
tics of these operators reflects directly the equilib-
rium statistical properties of the reservoirs.49 Assum-
ing that the latter are in thermal equilibrium, this im-
plies 〈â†αn(E)âβm(E′)〉 = δαβδmnδ(E − E′)fα(E), where

fα(E) = [1 + exp{(E − eVα)/kBT }]
−1

is the Fermi func-
tion, with T the electronic temperature in the reservoirs
and kB the Boltzmann constant.

This is no longer true in the presence of a time-
dependent driving, because the ac part of the voltage
gives rise to a spread in energy of the electronic wave-
function. In this case, a state with energy E in the leads
corresponds to a superposition of reservoir states with
energy E−k~Ω, where Ω = 2π/T is the frequency of the
driving.47,48 The statistics of the operators âαn(E) and
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â†αn(E) is thus modified into

〈â†αn(E)âβm(E′)〉=δαβδmn× (5)

+∞
∑

k,ℓ=−∞

c∗αkcβk+ℓfα(E−k)δ(Eℓ−E
′)

with Eℓ = E + ℓ~Ω, and

cαk =

∫ T

0

dt

T
e−i e

~

∫
t

0
dt′[Vα(t′)−V α] eikΩt. (6)

Here Vα(t) is the voltage applied to contact α and V α

is its dc component. The coefficients cαk represent the
probability amplitude that an electron absorbs (k > 0)
or emits (k < 0) k energy quanta ~Ω (Floquet quanta)
while interacting with the ac part of the driving voltage.
Note that in Eq. (5), the Fermi distribution depends only
on the dc component V α of the potential applied to the
contact.47,48

For the sake of clarity, from now on we will focus on
the case of a two-terminal conductor, assume that the
right contact is grounded VR(t) = 0, and measure all
energies with respect to the electrochemical potential µ
of this reservoir. The left contact is subject to the time-
dependent potential VL(t) = Vac(t) + V̄ , where V̄ is the
dc voltage offset and Vac(t) is a pure ac component.

III. ELECTRON-HOLE PICTURE OF

CURRENTS AND FLUCTUATIONS

Since electrons obey fermionic statistics, charge trans-
fer across the sample can only occur if the incoming state
is filled and, at the same time, the outgoing state is
empty. A dc voltage bias applied to the conductor opens
an energy window (typically named bias window) where
both conditions are fulfilled and transport is possible,
Fig. 1(a). An ac potential applied on top of the dc bias
perturbs the local equilibrium of the lead it is applied
to, creating electron-hole pair excitations. Whether both
the electron and the hole of a pair contribute to charge
and energy transport depends on their energy with re-
spect to the bias window, as illustrated schematically in
some examples in Fig. 1(b)-(c).
While electron-hole pairs will not contribute to the av-

erage charge current, it however has an important impact
on the charge noise, limiting e.g. the precision of single-
particle emitters. Moreover, the creation of an electron-
hole pair is a correlated process and the manifestations
of these correlations in physical observables are of par-
ticular interest. In Ref. 39, Rychkov et al. developed
an electron-hole description of the charge noise in lin-
ear response for coherent conductors that are subject to
pure ac voltages in the absence of a dc voltage. This al-
lows them to pinpoint contributions in the shot noise of
a two-terminal conductor which are due to electron-hole
correlations and coexist with electron-electron and hole-
hole correlations. This result seemingly contradicts the

(c)(b)(a)

FIG. 1. Energy landscape of a two-terminal conductor with
a central scatterer. (a) Dc biased conductor: electrons within
the bias window can be transmitted through the scatterer.
(b)-(c) Examples of possible processes occurring in the pres-
ence of a time-dependent driving (shaded areas indicate the
amplitude of the ac oscillations). In (b) an electron with
energy in the bias window gets promoted above the chemical
potential of the left reservoir by interacting with the ac-part of
the driving. The corresponding vacancy does not contribute
to transport as it cannot be filled by an electron tunneling
from the right reservoir (i.e. it is reflected with probability
1). In contrast, in (c) both the electron as well as the remain-
ing hole can be transmitted through the scatterer.

interpretation given by Reydellet et al.41 of their mea-
surements of the shot noise in an ac driven point contact,
which assumes that electrons and holes generate a par-
tition noise independently from each other and that the
two contributions add incoherently. Here, we generalise
the approach of Rychkov et al.39 to the case when the
driving has an ac and a dc component of arbitrary mag-
nitude, and show that the contradiction between Ref. 39
and Ref. 41 is only apparent. Furthermore, we extend
this description to energy transport and highlight the
role of electron-hole correlations and independent contri-
butions of electrons and holes to the energy noise.
In order to implement a description for electron- and

hole-contributions to transport, we notice first that for
the considered case of a periodically driven system,
Eq. (3)-(4) can be re-written in energy space as39

Iα =

∫

dE〈Îα(E)〉, (7)

Sαβ = h

∫∫

dEdE′〈∆Îα(E)∆Îβ(E
′)〉, (8)

with Îα(E) = e/h · îα(E,E), and similarly for the av-
erage energy current IEα and the energy noise SE

αβ , with

Îα(E) simply replaced by ÎEα(E) = E/h · îα(E,E). The

energy-resolved current operators Îα(E) and ÎEα(E) can
be expressed as the sum of electron and hole contribu-
tions

Îα(E) =
∑

i=e,h

Î(i)α (E), ÎEα(E) =
∑

i=e,h

ÎE(i)α (E), (9)

with Î
(i)
α (E) = Îα(E)θi(E), and Î

E(i)
α (E) = ÎEα(E)θi(E).

Here, we introduced θe(E) = θ(E) and θh(E) = θ(−E),
where θ(x) is the Heaviside step function. In other words
we call electron-like (e-like) current the one carried by ex-
citations with energy above the electrochemical potential
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µ of the right reservoir and hole-like (h-like) current the
one carried by excitations with energy below µ. This def-
inition generalises the one given by Rychkov et al.39 and
it is motivated by the fact that an unoccupied electronic
state created by the time-dependent driving in the bias
window will never be able to participate in the transport
as a hole because of Pauli exclusion principle, see Fig.
1(b).

For the average currents through the two-terminal con-
ductor, the division in electron- and hole-like contribu-
tions, Eq. (9), leads straightforwardly to IE = IE(e) +
IE(h), with (i = e, h)

IE(i) =
∑

n

∫

dE

h
E Dn(E)

[

f̃L(E)− fR(E)
]

θi(E),

(10)

and IE(i) ≡ I
E(i)
R = −I

E(i)
L because of the unitar-

ity of the scattering matrix. The function f̃L(E) =
∑∞

ℓ=−∞ |cLℓ|
2
fL(E−ℓ) is an effective non-equilibrium dis-

tribution function induced by the ac driving in the left
reservoir, and it represents the fact that in the presence of
an ac-driving not only states with energy in the bias win-
dow contribute to transport, but also all their sidebands
with energies differing from E by an integer multiple of
~Ω. The coefficients Dn(E) are eigenvalues of the matrix

s
†
RL(E)sRL(E) that describes the transmission proper-
ties of the scatterer. Apart from the non-equilibrium
distribution function f̃L replacing the equilibrium one
fL, Eq. (10) is formally identical to the expression for
the energy current in a stationary conductor.53–55 How-
ever, while in the stationary case at zero temperature

there are either only e-like or only h-like excitations par-
ticipating in the transport (depending on the sign of
the bias voltage), in the ac driven case in general both
kinds of excitations give a non vanishing contribution

I
E(i)
R

∣

∣

∣

T=0
=

∑

n

∑

ℓ |cLℓ|
2 θi

(

ℓ+ eV̄
~Ω

) ∫ ℓ~Ω+eV̄

0
dE
h EDn(E).

One remarkable exception is the case where VL(t) has
the form of a series of Lorentzian pulses of quantized
area (

∫

eV (t)dt/h = N , N ∈ Z): in this case only the
e-like or the h-like part of the current is non zero, de-
pending on the polarity of the pulses.2,15,35 The results
and the discussion for the charge current are completely
analogous, with the factor E in the integrand of Eq. (10)
simply replaced by the electron charge e.
More insightful is the decomposition of the charge and

the energy noise into contributions that account for the
correlations between the same or different types of exci-

tations, e.g. SE
αβ =

∑

ij=e,h S
E(ij)
αβ with

S
E(ij)
αβ = h

∫∫

dEdE′〈∆ÎE(i)α (E)∆Î
E(j)
β (E′)〉,

and similarly for the charge noise. A nonzero value for

S
E(eh)
αβ or S

(eh)
αβ is an unambiguous signature of the exis-

tence of intrinsic correlations between electron and hole
excitations.39

To simplify the notation, we will in the following use

the fact that S
E(ij)
RR = S

E(ij)
LL = −S

E(ij)
LR = −S

E(ij)
RL as a

consequence of the unitarity of the scattering matrix (and
equivalently for the charge noise30), and always refer to

the auto-correlators in the right reservoir SE(ij) ≡ S
E(ij)
RR

and S(ij) ≡ S
(ij)
RR . Interestingly, in each of these quanti-

ties we identify two contributions with distinct character,

i.e. SE(ij) = S
E(ij)
tr + S

E(ij)
int , with

S
E(ij)
tr =

1

h

∑

n

∫

dE E2Dn(E)[1 −Dn(E)]
{

f̃L(E) [1− fR(E)] + fR(E)
[

1− f̃L(E)
]

}

θi(E)θj(E), (11a)

S
E(ij)
int =

1

h

∑

n

∑

α=L,R

∞
∑

k,ℓ,q=−∞

c∗αℓcα(ℓ+q)c
∗
α(k+q)cαk

∫

dE EEqDn(E)Dn(Eq)fα(E−ℓ) [1− fα(E−k)] θi(E)θj(Eq).

(11b)

Similarly, for the charge noise we have S(ij) = S
(ij)
tr +

S
(ij)
int , where the expressions for S

(ij)
tr and S

(ij)
int are for-

mally analogous to Eq. (11), but with e2 replacing the
factors E2 and E Eq in the integrands.
The two terms in Eq. (11) have different physical

origins.56 The first one stems from correlations due to
particle exchange between the two different reservoirs
and we will therefore refer to it as transport part of the

noise. This is reflected in the fact that S
E(ij)
tr depends

on the occupation of both reservoirs, where the relevant
energy distribution for the left one is the non-equilibrium

distribution f̃L(E). Importantly, S
E(ij)
tr is non zero only

if one considers correlations between the same kind of
excitations, i.e. S

E(eh)
tr = S

E(he)
tr = 0.

The correlations between electron- and hole-like ex-
citations are therefore uniquely encoded in the second

term of Eq. (11), S
E(ij)
int . This term originates ultimately

from correlations due to the exchange of particles be-
tween states with different energies in the same reservoir.
Without periodic driving, only elastic exchange processes
(i.e. thermal fluctuations) contribute to the noise, since
cLk = δk0 if Vac = 0. In contrast, in the presence of
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a periodic driving, correlations between states with dif-

ferent energies manifest themselves in S
E(ij)
int (and S

(ij)
int ),

since in this case each state with a given energy imping-
ing on the scatterer corresponds to a superposition of
states with different energies propagating from the reser-
voirs (see Appendix). Importantly, how much the corre-
lations between the states with energies E−ℓ and E−k in
reservoir L influence the charge and the energy noise de-
pends on the interference between the different “paths”
in energy space in which these states can contribute to
states with energies E and Eq arriving at the scatterer,

see Fig. 2. For this reason, we name S
E(ij)
int the interfer-

ence part of the noise.

IV. INTERFERENCE VS TRANSPORT

CONTRIBUTIONS TO CHARGE AND ENERGY

NOISE

In order to make analytic progress and to compare
with the existing literature on shot noise in ac-driven
conductors,30,31,39 from now on we assume the central
scatterer to have an energy-independent transmission.
This assumption is very well suited e.g. for the exper-
iment on noise in an ac driven two-terminal conduc-
tor with a tunnel barrier treated in Ref. 1. Moreover,
to avoid overly cumbersome formulas, we restrict our-
selves to the case of a spinless single-channel conductor.57

Within these assumptions, we will here discuss in detail
the interference and the transport part of the charge and
energy noise introduced in Sec. III, and their physical
interpretation.

When referring to specific driving signals, we use as ex-
amples a simple harmonic driving, a Lorentzian-shaped
signal, leading to quantized charge emission, as well as
a bi-harmonic driving signal, which has recently been
shown to be an intriguing experimental way of approach-

e
n
e
r
g
y

Eq

E
−ℓ

E
−k

E

cL(ℓ+q)

c
∗

Lℓ

cLk
c
∗

L(k+q)

FIG. 2. Sketch of a possible inelastic two-particle scattering
event induced by the time-dependent driving applied to the
left lead. The two reservoir states at energies E−ℓ and E−k are
connected to the incoming states at the scatterer at energies
E and Eq by inelastic process via two possible pairs of energy-
paths.

ing the case of Lorentzian driving via the superposition
of harmonic signals.

A. Interference part

We start by considering the interference part of the

noise, S
(ij)
int and S

E(ij)
int . As already noticed in Sec. III,

these interference terms are the only ones that con-
tribute to the mixed correlators between electron and
hole currents, i.e. S(eh) = S

(eh)
int and SE(eh) = S

E(eh)
int .

A non-zero value for S(eh) and SE(eh) is a clear finger-
print of the existence of intrinsic correlations between
the electron and hole excitations created by the ac driv-
ing, as discussed in detail by Rychkov et al. in the
case of pure ac driving.39 These correlations however
quickly decay for increasing amplitude of the dc compo-
nent V̄ of the driving, as illustrated in Fig. 3(b-c), where

we plot S
(ij)
int and S

E(ij)
int for two different driving fields,

V h
L (t) = V̄ +V0 cos(Ωt) (harmonic driving, full lines) and

V bh
L (t) = V̄ +V0 cos(Ωt)+

V0

2 cos(2Ωt) (bi-harmonic driv-
ing, dashed lines), as a function of the dc component of
the bias at zero temperature.
The interference terms, Eq. (11b), do not only con-

tribute to the correlators between electrons and holes,
but also to those between the same type of particles,
i.e. to S(ii) and SE(ii). Interestingly, independently
of the symmetry of the driving signal and of the am-
plitude of the dc component, the interference contribu-
tion to the electron-electron and hole-hole correlators
in the charge noise are equal and opposite in sign to
the correlators between different types of excitations, i.e.

S
(ee)
int = S

(hh)
int = −S

(eh)
int = −S

(he)
int , see Fig. 3(b). The

total contribution to the charge noise due to interference
terms at zero temperature is therefore identically zero.
More in general, at finite temperature one can show that
the total contribution of the interference terms to the
charge noise reduces to temperature fluctuations

Sint =
∑

ij

S
(ij)
int = 2

e2

h
D2kBT, (12)

since all paths in energy space that correspond to inelas-
tic processes interfere destructively when they contribute
to a physical observable with the same weight (e2, for the
case of the charge noise).
The situation is different for what concerns the inter-

ference contribution to energy noise. In this case we ob-
tain

SE
int =

∑

ij

S
E(ij)
int =

2π2

3h
D2 (kBT )

3 (13)

+
D2

2h

+∞
∑

k=−∞

|e vLk|
2 k~Ωcoth

(

k~Ω

2kBT

)

,

with vLk =
∫ T

0
dt
T
VL(t)e

ikΩt. The first term is similar
to Eq. (12) and it is purely due to thermal fluctuations.



6

The second one instead results from the probabilistic ab-
sorption of energy from the ac driving field. Following
the line of known results for the finite-frequency charge

noise, see e.g. Ref. 58, the factor D2

h k~Ωcoth
(

k~Ω
2kBT

)

can

in fact be interpreted as the characteristic rate at which
electrons exchange the energy k~Ω with the ac fields by
fluctuating between states in the same reservoir.59 The
factor |e vLk|

2
/2 is equal to the variance of the energy

of a classical, charged particle in the oscillating potential
vLk cos(kΩt), i.e. the kth mode of the periodic driving
potential.

The difference between the interference contributions
to the charge and energy noise is obvious also when con-

sidering the different contributions S
(ij)
int and S

E(ij)
int , as

shown in Fig. 3. While for the interference part to the

charge noise at zero temperature we had S
(ee)
int = S

(hh)
int

for all values of V̄ ; for the energy noise we find in gen-

eral S
E(ee)
int ≷ S

E(hh)
int , depending on the polarity of the

dc component V̄ as well as on the shape of the ac-part
of the driving, i.e. depending on whether maxVac(t) ≷

|minVac(t)|. Around V̄ = 0, the mixed correlator S
E(eh)
int

has roughly the same order of magnitude as S
E(ee)
int and

S
E(hh)
int , but it decays quickly as soon as the dc part of the

bias is increased, indicating a suppression of the correla-
tions between electron and hole excitations for large V̄ .
For large values of V̄ , SE

int consists essentially only of the
contribution of one type of excitations, namely electrons
for eV̄ > 0 and holes for eV̄ < 0.

In Fig. 3, we choose a biharmonic driving signal where
the first and second harmonic oscillate in phase. Bi-
harmonic driving signals of the shape V bh

L (t) = V̄ +
V1 cos(Ωt)+V2 cos(2Ωt+ϕ) were used in the experiment
of Ref.1 to minimize the charge noise by tuning the phase
ϕ. It is an important property of the interference con-
tribution of the energy noise that it is fully insensitive
to the phase difference ϕ between the different harmon-
ics, see Eq. (13). It is furthermore insensitive to the dc
offset and only exposes the amplitudes of the different
harmonics, V1 and V2, and their frequencies.

Importantly, for the case of a perfectly transmitting
conductor (D = 1), the second term of Eq. (13) is the
only contribution to the energy noise that survives at
zero temperature. It is hence expected to be well observ-
able for scatterers with a high transmission, where the
transport part is suppressed.

B. Transport part

We now consider the transport contributions to the

charge and energy noise, Str =
∑

i S
(ii)
tr and SE

tr =
∑

i S
E(ii)
tr , which, for the case of a conductor with energy
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)
−
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)/
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0
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FIG. 3. Plots of the interference contributions to the charge
and energy noise as a function of the dc offset of the driv-
ing. (a) Line-shape of the applied voltages: harmonic driving,
V h
L (t) = V̄ + V0 cos(Ωt), and bi-harmonic driving of the form

V bh
L (t) = V̄ + V0 cos(Ωt) +

V0

2
cos(2Ωt). (b) Interference con-

tributions to the charge noise S
(ii)
int and S

(i6=j)
int as well as their

sum Sint. (c) Interference contributions to the energy noise

S
E(ii)
int and S

E(i6=j)
int , as well as the total contribution of the in-

terference terms SE
int. In all panels kBT = 0 and eV0 = 2~Ω.

Full lines correspond to the case of harmonic driving while
dashed lines represent the case of bi-harmonic driving.

independent transmission, are given by

Str =
e2

h
D(1 −D)

×

+∞
∑

ℓ=−∞

|cLℓ|
2(ℓ~Ω + eV̄ ) coth

(

ℓ~Ω+ eV̄

2kBT

)

, (14)

SE
tr =

D(1−D)

3h

+∞
∑

ℓ=−∞

|cLℓ|
2 coth

(

ℓ~Ω+ eV̄

2kBT

)

×
[

(ℓ~Ω+ eV̄ )3 + (ℓ~Ω+ eV̄ )(πkBT )
2
]

. (15)

As remarked in Sec. III, the transport part of the
noise sees no signatures of the correlations between elec-
trons and hole excitations, which means in turn that the
two types of excitations contribute independently to the
transport part of the noise. For this reason, we can in-
terpret Eq. (14)-(15) in a rather classical, “particle-like”
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picture and associate the factor D(1 −D) with the par-
tition noise of the scatterer caused by the random trans-
mission/reflection of charge carriers.
It is important to notice that at zero-temperature Str

represents the only non vanishing contribution to the
charge noise. It follows that, although the electron and
hole excitations created by the ac driving are in general
not independent, as pointed out by Rychkov et al.39 and
discussed in Sec. IVA, nevertheless the total charge noise
in the two-terminal conductor at zero temperature can be
written as the incoherent sum of a contribution due to
electron-like excitations and one due to hole-like excita-
tions, as first suggested by Reydellet et al.41

S(kBT = 0) =
∑

i=e,h

e2Ω

2π
D(1 −D)Ni , (16)

where

Ni = σi

+∞
∑

ℓ=−∞

|cLℓ|
2(ℓ + eV̄ /~Ω)θi(ℓ~Ω + eV̄ ), (17)

is the average number of electrons or holes that impinge
on the scatterer during one period (σe/h = ±). If the
driving VL(t) has a non-zero dc component, the number
of electron or hole excitations attempting to cross the
barrier per period will be different, with Ne ≷ Nh de-
pending on eV̄ ≷ 0.
It is interesting to relate Eq. (16) to the picture

of charge transport in ac driven conductors drawn by
Vanević and coworkers.31,37,38 By investigating the full
counting statistics of an energy-independent scatterer,
they classified the elementary charge transport processes
occurring in the presence of a time-dependent driving
in “unidirectional” and “bidirectional events”.37,38 The
first ones have a single-particle-like character and their
counting statistics is equivalent to the one of electrons (or
holes) transmitted through a barrier with a static voltage
drop, while the second ones describe neutral excitations
with pair-like character. According to the definition of
electron and hole excitations given in Sec. II, if we assume
for example eV̄ > 0, we have that Ne accounts both for
the electrons injected by the dc bias and for those that
are part of electron-hole pairs created by the ac driving.
In contrast, since for eV̄ > 0 holes can be excited only by
the ac-part of the driving, Nh corresponds exactly to the
number of those electron-hole pairs where the electron-
and the hole-like excitation have the same probability
D to be transmitted through the barrier. The number
of electron excitation that participate in the transport
without a hole-counterpart is then (Ne −Nh) = eV̄ /~Ω.
Rewriting Eq. (16) as

S(kBT = 0) =
e2Ω

2π
D(1−D)[(Ne −Nh) + 2Nh], (18)

we can associate the first term, which correspond to the
noise due to the “unpaired” electron-like excitations (i.e.

those that are injected by the dc bias and do not in-
teract with the ac driving, as well as those which were
originally in the bias window and got promoted above
the Fermi level of the left reservoir by absorbing a cer-
tain amount of Floquet quanta), to the unidirectional
events of Vanević et al.31,37,38 The second one is asso-
ciated to bidirectional events, i.e. to the excess noise
due to neutral pair-excitations created by the ac-part of
the driving. The factor 2 accounts for the fact that the
electron and the hole of a pair contribute equally to the
charge noise. Note that it is a consequence of considering
a conductor with energy-independent transmission that
the charge noise due to “unpaired” excitations (unidirec-
tional events) is equal to the one that would occur in the
presence of a dc bias only. In this case in fact, the two
processes represented schematically in Fig, 1(a)-(b) are
completely equivalent from the point of view of charge
transport.
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FIG. 4. Plots of the transport contributions to the charge and
energy noise as a function of the dc offset of the driving. In
both panels full lines correspond to the case of harmonic driv-
ing V h

L (t) = V̄ + V0 cos(Ωt) and dashed lines to bi-harmonic
driving of the form V bh

L (t) = V̄ + V0 cos(Ωt) +
V0

2
cos(2Ωt),

with eV0 = 2~Ω. (a) Transport contributions to the charge

noise S
(ii)
tr and Str =

∑
i
S

(ii)
tr . (b) Transport contributions

to the energy noise S
E(ii)
tr and SE

tr =
∑

i
S

E(ii)
int . In all panels

kBT = 0.

The approach of Vanević et al.37,38 has been success-
fully applied to interpret noise measurements in ac driven
conductors,31 showing in particular how the reduction of
the shot noise reported by Gabelli and Reulet1 in a tun-
nel junction driven by a bi-harmonic signal is related to a
suppression of the probability of exciting pair-like neutral
excitations. The suppression of the charge noise obtained
with a bi-harmonic modulation is illustrated in Fig. 4a.
Here we plot the transport contribution to the charge
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correlators S
(ii)
tr at zero temperature, for the same kind

of harmonic and bi-harmonic driving considered in Fig. 3.
For the case of bi-harmonic driving the minimum of the
total charge noise S = Str is situated at finite V̄ and,
most interestingly, this minimum can be smaller than
the one obtained in the presence of a simple harmonic
driving. If one looks at the individual contributions due
to (ee) and (hh)-correlations, one sees that the minimum

of the noise corresponds to a suppression of both S
(ee)
tr

and S
(hh)
tr with respect to the case of harmonic driving,

leaving their difference unchanged and thereby indicating
that the reduction of the charge noise is indeed related
to a smaller number of electron-hole excitations partici-
pating to transport, as discussed in detail in Refs. 1 and
31. The reduction of the charge noise for signals designed
to approach the Leviton case by superposing several har-
monics has been shown in Ref. 2.

The suppression of the charge noise obtained with bi-
harmonic driving has in general no counterpart in the
energy noise SE

tr, see Fig. 4(b). This is because, while
the charge noise depends only on the total number of
excitations created by the driving (in the case of a scat-
terer with energy-independent transmission), the energy
noise is sensitive to their energy distribution. The latter
depends sensitively on the shape of the ac driving and
on its dc component V̄ . For example, the bi-harmonic
signal V bh

L (t) considered for the curves of Fig. 4 has
larger excursions for positive than for negative values
when taking V̄ = 0, see Fig. 3(a). As a consequence,
around V̄ = 0 it creates electronic excitations with a
larger spread in energy than the corresponding holes, re-

sulting in S
E(ee)
tr > S

E(hh)
tr . Moreover, increasing the dc

component of the driving enlarges both the number of
one type of excitations participating in transport (e.g.
Ne for eV̄ > 0) as well as the energy range that they
span, while it suppresses the contribution of the other
type of carriers.

Therefore a minimum of the transport part of the en-
ergy noise occurs when a trade-off between the amount
of excited particles and their spread in energy is reached.
In other words, in order to minimize the transport part
of the energy noise, it can be favourable to even increase

the amount of excited particles, if only the total energy
spread is reduced at the same time. This is in contrast to
the charge noise, where a minimum is reached when the
number of excited particles is minimized. Hence, when
comparing Figs. 4(a) and (b) the minima of Str and S

E
tr

are found for average bias voltages V̄ of opposite sign.

For sufficiently large values of V̄ we can consider es-
sentially only one type of excitation, as can be seen from
Fig. 4(b). Then, SE

tr at zero temperature takes the simple
form

SE
tr ≈

D(1−D)

h

|eVL(t)|3

3
, (19)

which resembles closely the form of the energy noise in

the case of a pure dc bias applied to the conductor

SE(kBT = 0, Vac(t) = 0) =
D(1−D)

h

∣

∣eV̄
∣

∣

3

3
. (20)

In other words, for large dc bias, SE
tr is equal to the time

average of the energy noise that one would obtain in a
series of “frozen frames” with a static bias potential, indi-
cating that in this case the transport part of the energy
noise can be interpreted as the contribution of particle
excitations of only one kind that follow instantaneously

the modulation of the driving potential VL(t).

This simple picture breaks down as soon as V̄ is small
enough so that VL(t) changes sign during the driving pe-

riod. Then both S
E(hh)
tr and S

E(ee)
tr are non vanishing, and

SE
tr deviates from Eq. (19). This is different from what

one observes for the energy current, IE = D(eV (t))2/2h,
which can always be seen as the time-average of the en-
ergy current from a series of “frozen frames” with a static
bias potential. The reason is that while the current is
a single-time operator, the noise depends on the cor-
relations between the current operator at two different
times and, if the sign of VL(t) changes over time, there is
no simple mapping between the energy space, in which
we define electron-like and hole-like excitations, and the
time-space, in which one defines the “frozen frames”.

For small dc bias V̄ ≈ 0, the energy noise of the
electron- and the hole-like excitations depends strongly
on the shape of Vac(t). This can be seen for example

in Fig. 5, where we plot S
(ii)
tr and S

E(ii)
tr for the case of

bi-harmonic driving VL(t) = V0 cos(Ωt)+
V0

2 cos(2Ωt+ϕ)
as a function of the relative phase ϕ between the two
harmonics. Changing ϕ one obtains different waveforms
for VL(t), see Fig. 5(a). We notice that while for the
charge noise the transport contributions due to electron
and hole excitations are equal for all ϕ, for the energy

noise we have in general S
E(ee)
tr 6= S

E(hh)
tr . This is because,

while a pure ac voltage VL(t) = Vac(t) always creates the
same number of electron and hole excitations, the energy
distribution of the two types of excitations is equal only
if VL(t) is antisymmetric with respect to one of its nodes.
For the kind of driving considered in Fig. 5, this occurs
for ϕ = (2N+1)π/2,N ∈ Z. For other values of ϕ, eVL(t)
has larger excursions for either positive or negative values
and it therefore creates distributions of either electrons
or holes that have a larger spread in energy than the one
of the other type of carriers. At V̄ = 0 the total trans-

port contribution to the energy noise SE
tr =

∑

i=e,h S
E(ii)
tr

is however independent of ϕ, see Fig. 5. At finite bias also
the total transport part of the energy noise depends on
ϕ. This is in stark contrast to the interference contribu-
tion to the energy noise, which is always independent of
the phase dependence between the two superposed har-
monics.
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C. Lorentzian pulses

Based on the insights on the transport and interference
parts of charge and energy noise, we finally address the
case of a time-dependent driving with Lorentzian shape,

VL(t) =
V0
π

∞
∑

q=−∞

M
∑

r=1

TW

(t− (q + dr)T )2 +W 2
. (21)

This rather general notation describes a series of M ∈ N

Lorentzian pulses emitted at fractions 0 < dr < 1 of
the period, with a full width at half of the maximum
value equal to 2W . The single pulses have a quan-
tized area if eV0 = N~Ω with N ∈ Z. Restricting
ourselves to the case of zero temperature and assum-
ing that the width of the pulses is much smaller than
their distance, avoiding a possible overlap, it is known
that a sequence of pulses with quantized area leads to
the injection of an integer number of particles on the
scatterer, without copropagating electron-hole pairs.15

This leads to a suppression of the charge noise, which
is reduced to the level of a purely dc-biased conductor,

t/T

V
L
(t
)/
V
0

ϕ = πϕ =
π

2
ϕ = 0
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(hh)
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S
t
r
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D
)!
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e2
/h

]
S
E t
r
[D
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D
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Ω
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FIG. 5. (a) Shape of the ac excitation VL(t) = V0 cos(Ωt) +
V0

2
cos(2Ωt + ϕ) for different phase shifts: ϕ = 0 (dashed),

ϕ = π/2 (full), ϕ = π (dash-dotted). (b)-(c) Plots of the
transport contributions to the charge and energy noise for the
type of bi-harmonic driving introduced in (a), as a function
of the phase ϕ between the two harmonic components. In all
panels eV0 = 2~Ω and kBT = 0.

S = Str = e2

h D(1 − D)|eV0|.
2,15,17,29,35 However, both

the interference and the transport part of the energy
noise have considerable contributions of comparable mag-
nitude, related to the specific shape of the applied voltage
pulse.
At zero temperature and for an integer number of par-

ticles injected on the scatterer by the driving potential
given in Eq. (21), the transport and interference part of
the energy noise allow for a rather intuitive interpreta-
tion. The absence of electron-hole pairs yields a transport
part of the energy noise, SE

tr = D(1 − D)|eVL(t)|3/3h,
which indicates that the particles injected on the scat-
terer follow the potential modulation instantaneously, see
the discussion of Eq.(19). Moreover, the interference part
yields a contribution inversely proportional to the square
of the width of the pulse, which is related to the intrinsic
energy spread of the emitted particles. In particular we
find SE

int(N = M = 1) = D2(~/2W )2/T , if one particle
is injected per period.28

Importantly, it is known that L single particles injected
by separate pulses are truly independent of each other.15

Such a situation is represented by the pulses given in
Eq. (21) forN = ±1 and arbitrary values ofM = L. This
contrasts with the situation where several particles are in-
jected by the same pulse, namely |N | = L: while also in
this case no electron-hole pairs contribute to transport,
the emitted particles are however not independent of each
other.29 This fact is not visible from the charge current
and charge noise: in fact I(N = L,M = 1) = I(N =
1,M = L) = LI(N = 1,M = 1) and S(N = L,M =
1) = S(N = 1,M = L) = LS(N = 1,M = 1). This
is different for the energy current and the total energy
noise, where these two cases can indeed be distinguished.
For a series of L Lorentzian pulses carrying each one sin-
gle particle (N = ±1 and M = L), the energy current
and the total energy noise are given by the sum of the
contributions of the single particles carried by separate
pulses. We hence have IE(M = L) = LIE(M = 1) as well
as SE(M = L) = LSE(M = 1), indicating the indepen-
dence of the injected particles, also called “Levitons”.2

However, when L particles are emitted in the same pulse
(|N | = L and M = 1) the energy current60 and energy
noise of the particles do not simply add up any longer.
This can be seen from IE(N = L) = L2IE(N = 1) for the
energy current and from SE

int(N = L) = L2SE
int(N = 1)

and SE
tr(N = L) = |L3|SE

tr(N = 1) for the two contribu-
tions to the energy noise. The total energy noise is hence
not proportional to the energy noise of a single Leviton
any longer.

V. HEAT AND POWER FLUCTUATIONS

For a realistic measurement, it is the heat current
which is of relevance, rather than the energy current.
The heat current operator

Ĵα(t) = ÎEα(t)− Vα(t)Îα(t) (22)
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accounts for the flow of energy in each reservoir that is in
excess with respect to the local electrochemical potential
and that must be dissipated in some nearby thermostat to
keep the reservoirs in thermal equilibrium. Since neither
charge nor energy can be accumulated in the conductor,
the sum of the heat currents flowing in all the contacts
must be equal to the total power injected by the voltage
source into the system. At the operator level, this means
for a two-terminal conductor

ĴL(t) + ĴR(t) = P̂ (t) (23)

with P̂ (t) = −V (t)ÎL(t) the operator for the power
provided by the time-dependent voltage source. From
Eq. (23) it follows directly that SJ

LL+S
J
LR+SJ

RL+S
J
RR =

〈(∆P )2〉, where

SJ
αβ =

1

2T

∫ T

0

dt

∫ ∞

−∞

dτ〈{∆Ĵα(t),∆Ĵβ(t+ τ)}〉, (24)

is the heat noise and

〈(∆P )2〉 =
1

2T

∫ T

0

dt

∫ ∞

−∞

dτ〈{∆P̂ (t),∆P̂ (t+ τ)}〉

=
1

2T

∫ T

0

dt

∫ ∞

−∞

dτV (t)V (t+ τ)〈{∆Î(t),∆Î(t+ τ)}.

(25)

is the zero-frequency correlator of power fluctuations.
The latter is an experimentally accessible quantity via
measurements of the current correlator and the applied
voltages.61 The power fluctuations are directly related to
the fluctuations in the work done by the time-dependent
voltage applied across the sample during a long-time
measurement. The features in the energy noise discussed
in Sec. IV can be detected in the fluctuations of the power
delivered by the voltage source. Explicitly, we find

〈(∆P )2〉 =
D2

h

+∞
∑

k=−∞

|evLk|
2k~Ωcoth

(

k~Ω

2kBT

)

+
D(1−D)

h

+∞
∑

ℓ=−∞

|cLℓ|
2(ℓ~Ω + eV̄ )3 coth

(

ℓ~Ω+ eV̄

2kBT

)

(26)

which at zero temperature reduces to

〈(∆P )2〉 = 2SE
int(kBT = 0) + 3SE

tr(kBT = 0) (27)

containing the interference and transport part of the en-
ergy noise discussed in this paper. Importantly, interfer-
ence and transport part of the noise can be distinguished
by their different dependence on the transmission of the
barrier, which in systems containing quantum point con-
tacts can be made tunable. For weakly transmitting bar-
riers, the transport part is the main contribution, while
for transparent barriers only the interference part mat-
ters.62

VI. CONCLUSIONS

We discussed the charge and energy transport proper-
ties of a two-terminal conductor driven by an arbitrary
time-periodic bias voltage, focusing in particular on the
role of electron- and hole-excitations in the charge and
energy noise. The noise exhibits two contributions of
different character, namely transport contributions, con-
taining correlations between particles in different leads,
and interference contributions, due to correlations be-
tween particles in the same lead. We could show that
only the latter contains signatures of the correlations be-
tween electrons and holes excited by the time-dependent
driving. For the charge noise the interference part van-
ishes at zero temperature, allowing for an interpretation
of the total charge noise in terms of binomial statistics
of independent charge carriers, only. The total charge
noise can hence be expressed in terms of the numbers of
electron and hole excitations.
The properties of the energy noise are more intricate,

revealing quantum effects due to the superposition of dif-
ferent energy states in its interference part. The latter
can be related to the variance of the energy distribution
of the excitations due to different modes of the ac-part
of the driving potential. Furthermore, in contrast to the
charge noise, the transport part of the energy noise is
sensitive to the spread in energy of the excited particles
rather than to their number. Therefore, a minimum in
the charge noise, occurring when the number of electron-
hole pair excitations is suppressed, does not go along
with a minimum in the energy noise. The minimum in
the energy noise is due to a trade-off of the reduction of
the number of excitations and their energy spread. For
Lorentzian pulses injecting an integer amount of parti-
cles on the scatterer, the dependence of the energy noise
on the number of emitted particles is a measure of their
dependent or independent emission. All discussed effects
are expected to be observable via power fluctuations.
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Appendix A: Scattering theory for time-dependently

driven systems

In this appendix, we briefly recall the main aspects
of the scattering theory of photon-assisted transport de-
veloped by Büttiker and coworkers, which underly the
investigations performed in this paper.39,47,48,63
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We consider a multiterminal conductor with a periodic
potential Vα(t) applied to each of its contacts α. It turns
out to be convenient to divide the conductor into dif-
ferent subsections, namely the reservoirs, the scatterer,
and perfect ballistic leads connecting the scatterer to the
reservoirs.
The reservoirs are typically good metallic contacts with

efficient screening properties. Therefore, as long as the
frequency of the driving is sufficiently slow, deep inside
each reservoir α, a change of the potential Vα(t) applied
to that contact goes along with an equal shift of the band
bottom, guaranteeing that local electrostatic equilibrium
is maintained at every time t.48,63 As a consequence, the
Fermi level in the reservoirs, and therefore the occupation
of each state with momentum k, does not depend on the
oscillating part of Vα(t).
In contrast, close to the scatterer and in the leads

the effective potential “seen” by the charge carriers has
in general a non-trivial dependence on time due to the
charge injected into the conductor and the one induced
in the neighbouring gates in order to preserve charge
neutrality of the whole device.63 This effective potential
should in general be evaluated self-consistently.47,48,64

Here, however, following also Refs. 31, 35, and 39, we do
not attempt a self-consistent treatment of the potential
seen by the charge carriers and we simply assume that the
time-dependent part of the driving voltages Vα(t) van-
ishes in the leads as we approach the scattering region.
Moreover, we assume Vα(t) to vary slowly with respect
to the Fermi wavelength, such as to not induce any ad-
ditional scattering. Although, this assumption on the
spatial dependence of Vα(t) might seem rather artificial,
it has turned out to be an appropriate model to describe
various experiments on charge noise in ac driven coherent
conductors.1,2,34,40,41

Since we assume the ac part of the driving to van-
ish close to the scatterer, the properties of the latter can
be described by the time-independent (elastic) scattering
matrix sαβ(E) introduced in Sec.II.47,48 As mentioned in
that section, the crucial point in order to be able to eval-
uate observables such as the average current or the noise
is to determine quantum statistical averages of the form

〈â†αn(E)âβm(E′)〉 or 〈â†αn(E)âβm(E′)â†γk(E
′′)âδℓ(E

′′′)〉,

where the operator âαn(E) annihilates an electron in
channel n in lead α that impinges on the scatterer with
energy E. This requires relating the operators âαm(E)
for electrons close to the scatterer to those, which we call
â′αm(E), that correspond to the annihilation of electrons
just injected by the reservoirs. Since the latter remain in
electrostatic equilibrium at every time t, the statistical
averages of the operators â′ are simply equilibrium av-
erages with respect to the local Fermi level Eα,F = eV̄α,

i.e. 〈â′†αn(E)â′βm(E′)〉 = δαβδnmδ(E − E′)f(E − Eα,F).

To determine the relation between âαm(E) and
â′αm(E) we observe47,48 that close to the scatterer, where
there is no oscillating potential, incoming particles in
channel m in lead α are described by wave functions of
the form ψαm(q) = χαm(r⊥)e

iqxαe−iεqαmt, where xα is
the coordinate along the direction of propagation, q is
the longitudinal momentum and χαm(r⊥) is eigenfunc-
tion of the mth transverse eigenmode. In the portion of
lead α close to the reservoir, where the oscillating poten-
tial, Vα(t), is finite, the wave-function is instead given by
ψ′
αm(q) = ψαm(q)e−iφα(t), where

φα(t) =
e

~

∫ t

0

dt′ [Vα(t
′)− V̄α], (A1)

is an additional time-dependent phase due to the oscillat-
ing part of the potential. Matching the wave functions
in the regions with and without modulation potential,
and changing to a description in second quantization, one
finds the required relation between operators âαm(E) and
âαm(E):48

âαm(E) =

+∞
∑

k=−∞

cαkâ
′
αm(E − k~Ω), (A2)

The coefficients cαk are the Fourier components of
e−iφα(t), as defined in Eq. (6). Equation (A2) expresses
the fact that the time-dependent part of the driving ap-
plied to a coherent conductor leads to a spread in energy
of the wave-function, such that each state with energy E
impinging on the scattering region corresponds to a su-
perposition of states with different energies in the reser-
voirs.

The relationship between the operators b̂α and â
′
α for

outgoing and incoming particles in the reservoirs can be
synthetically expressed in terms of a Floquet scattering
matrix S,

b̂α(E) =
∑

β

Sαβ(E,E
′)â′β(E

′), (A3)

with Sαβ(E,E
′) = sαβ(E)

∑∞
ℓ=−∞ cβℓδ(E − E′ − ℓ~Ω).

The matrix elements Sαβ,mn(E,E
′) represent the proba-

bility amplitude that an electron with energy E′ incom-
ing from reservoir β in channel n is ejected at energy
E and in channel m in contact α. Note that since the
driving is periodic, scattering can only occur between
states that differ in energy by a multiple of the driving
frequency.
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