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The Time-Dependent Travelling Salesman Problem (TDTSP) is a generalization of the traditional TSP
where the travel cost between two cities depends on the moment of the day the arc is travelled. In this
paper, we focus on the case where the travel time between two cities depends not only on the distance
between them, but also on the position of the arc in the tour. We consider two formulations proposed in
the literature, we analyze the relationship between them and derive several families of valid inequalities
and facets. In addition to their theoretical properties, they prove to be very effective in the context of a
Branch and Cut algorithm.
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1. Introduction and literature review

The Time-Dependent Travelling Salesman Problem (TDTSP) is a
generalization of the classical Travelling Salesman Problem (TSP)
in which the cost of the travel between two cities depends not only
on the distance between them, but also on the time of the day the
arc is travelled.

This problem can be stated as follows: Consider a complete di-
graph D = (V,A), with V = {0,1, . . . ,n} the set of vertices and A the set
of directed arcs. Assume that there exists a discrete time horizon 0,
1, . . . , T and an (n + 1) � (n + 1) time-dependent cost matrix
C(t) = [cij(t)], 0 6 t 6 T, that associates a cost cij(t) to each arc (i, j)
in A, where cij(t) is a time-dependent cost function for the arc
(i, j) if departing from i at instant t. Vertex 0 is a special vertex rep-
resenting the depot. The TDTSP involves finding a minimum cost
tour that visits each vertex exactly once, starting at and returning
to vertex 0.

The TDTSP can handle many interesting practical applications.
One of the main advantages is that it allows us to model some real
world situations that the classical TSP cannot deal with. For exam-
ple, the travel time between any two cities may be different if the
arc is taken early in the morning or at noon, or if it is known that
traffic jams may occur during rush hours, etc. The TDTSP can model
this kind of scenarios by using an appropriate cost function for
each arc.
In its simplest version, TDTSP assumes that the travel time be-
tween any two cities is one time period, meaning that the travel
time function depends on the distance between the cities and on
the position of the arc in the tour. The time-dependent cost func-
tion for arc (i, j), cij(t), can be expressed as a step function with
one constant value for each time period k = 1, . . . , n, named cijk.
In addition to the advantages mentioned above, this version of
TDTSP can be used to model different scheduling and assignment
problems.

Fox (1973) proposes TDTSP formulations to solve the problem
of scheduling production with time-dependent staff requirements.
Picard and Queyranne (1978) give three integer programming for-
mulations-two of them are linear-for TDTSP to model a scheduling
problem with time-dependent transition costs. They use these for-
mulations to minimize the tardiness costs in one machine schedul-
ing and they report instances with up to 20 vertices solved to
optimality. Fox et al. (1980) give a new formulation with O(n3)
variables and only n constraints, but no computational results
are reported. Gouveia and Voss (1995) present two new formula-
tions for the TDTSP derived from a Quadratic Assignment Problem
(QAP), and establish a relation among the previously mentioned
formulations and the new ones in terms of the tightness of the lin-
ear relaxations.

Almost at the same time, Vander Wiel and Sahinidis (1995)
present a new formulation for the TDTSP which results to be the
same as the one proposed by Gouveia and Voss (1995). The only
difference between them is that Vander Wiel and Sahinidis
(1995) prove that the integrality condition of some variables can
be relaxed. As a result, their formulation has O(n3) variables, but
only O(n2) are required to be binaries. The main idea of the model
is to reformulate the TDTSP as the problem of finding the shortest
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constrained path in a directed multi-partite graph. They use a
Benders-based heuristic to compute upper and lower bounds for
their formulation of TDTSP. Computational experience shows that
this procedure achieves very good bounds with minimal computa-
tional effort. In a follow up paper, Vander Wiel and Sahinidis
(1996) develop an exact algorithm for the TDTSP. Preliminary com-
putational results show instances with at most 20 cities solved to
optimality.

A very interesting approach is proposed by Bigras et al. (2008).
The authors study the path formulation proposed in Picard and
Queyranne (1978) and evaluate the improvements in the LP relax-
ations of pricing path without four cycles. Cutting planes are ap-
plied at the root node, considering different families of valid
inequalities of TSP as well as clique inequalities obtained by con-
structing the conflict graph using incompatibilities specially in-
ferred for the TDTSP. They evaluate a Branch-Cut and Price
(B&C&P) algorithm on different instances and are able to solve ran-
domly generated instances having up to 50 vertices as well as some
instances from the TSPLIB. In two very recent papers, Abeledo et al.
(2010) provide good computational results using a B&C&P based on
the approach of Bigras et al. (2008) and Godinho et al. [Godinho
et al., 2011] present an extended formulation based on Picard
and Queyranne’s model for which the lower bound given by the
linear programming relaxation has gap close to zero on the in-
stances tested.

This simplified version of TDTSP also generalizes the well-
known Travelling Deliveryman Problem (TDP). Given a vehicle depot
and a number of customers with known travel times between each
pair of them, the TDP involves finding a path starting at the depot
and visiting every customer exactly once that minimizes the sum
of the times required to reach every customer. In particular, this
objective function can be captured defining cijk = (n � k + 1)cij,
where cij denotes the travel time from vertex i to vertex j. Exact
solution algorithms for the TDP are available in Lucena (1990); Fis-
chetti et al. (1993); van Eijl (1995); and Méndez-Díaz et al. (2008).

In Picard and Queyranne (1978), one of the models is a three-in-
dex integer linear programming formulation. Méndez-Díaz et al.
(2008) tested it for TDP instances and the results obtained for in-
stances having up to 30 vertices show a reasonable tradeoff be-
tween the quality of the bound provided by the LP relaxation and
the computational effort required. In addition, Gouveia and Voss
(1995) prove that this formulation is equivalent to the one pre-
sented in Vander Wiel and Sahinidis (1995) in terms of the linear
relaxation, and that this value is an upper bound for the rest of
the formulations considered.

These results suggest that both models look promising to be
used in a Branch and Cut (B&C) algorithm. Picard and Queyranne
(1978) use a Branch and Bound (B&B) algorithm. Vander Wiel
and Sahinidis (1996) developed a B&C algorithm to solve the mas-
ter problem of the Benders decomposition, but they only use gen-
eral purpose cuts for a restricted set of inequalities. They suggest
that, as future research, it would be interesting to study the poly-
hedron of the TDTSP. The aim of this paper goes in that direction.
We consider the models presented in Picard and Queyranne
(1978) and Vander Wiel and Sahinidis (1995). Since both models
are a linearization of QAP, it results that their polytopes are
strongly related. We derive several families of valid inequalities
and facets for both polytopes. In particular, we provide a theoreti-
cal framework that allows to derive further families of facets by
means of applying a maximum sequential lifting procedure over
some specific set of variables. Finally, in order to analyze their
computational behavior, we incorporate them in a B&C algorithm
which is tested over instances from the related literature, obtaining
very good computational results.

The paper is organized as follows. In Section 2 we introduce the
models from Picard and Queyranne (1978) and Vander Wiel and
Sahinidis (1995) and establish a strong relation between them. In
Section 3 we introduce a new family of valid inequalities based
on the well known cycle inequalities for the ATSP. We also analyze
some polyhedral properties for this family, which is used to derive
five families of facets, and present another four families of valid
inequalities. In Section 4 we give the outline of the B&C algorithm,
which is tested and compared with other exact algorithms in Sec-
tion 5. Finally, in Section 6, we present some conclusions and fu-
ture research.

2. Models

2.1. Picard and Queyranne

This model is proposed in Picard and Queyranne (1978). It uses
a set of binary decision variables yijk, where yijk = 1 if city j is visited
in time period k + 1 after city i was visited in time period k. By forc-
ing vertex 0 to be the depot, we can remove from the formulation
the variables yij0"i P 1, yijn"j P 1, yi0k"k 6 n � 1, y0jk"k P 1, given
that they always take value zero. The formulation is shown below

ðPQÞmin
Xn

j¼1

c0j0y0j0 þ
Xn

i¼1

Xn

j¼1;j–i

Xn�1

k¼1

cijkyijk þ
Xn

j¼1

cj0nyj0n ð1Þ

s:t:
Xn

j¼1

y0j0 ¼ 1 ð2Þ

Xn

i¼1;i–j

yji1 ¼ y0j0 j ¼ 1; . . . ;n ð3Þ

Xn

i¼1;i–j

yijk ¼
Xn

i¼1;i–j

yjikþ1 j ¼ 1; . . . ;n; k ¼ 1; . . . ;n� 2 ð4Þ

Xn

i¼1;i–j

yijn�1 ¼ yj0n j ¼ 1; . . . ;n ð5Þ

y0j0 þ
Xn

i¼1;i–j

Xn�1

k¼1

yijk ¼ 1 j ¼ 1; . . . ;n ð6Þ
yijk 2 f0;1g
i ¼ 1; . . . ;n; j ¼ 1; . . . ;n
k ¼ 1; . . . ;n� 1; i – j
yj0n; y0j0 2 f0;1g j ¼ 1; . . . ;n;
The objective function minimizes the total travel cost of the
tour. Eq. (2) forces the vehicle to depart from the depot in time per-
iod 0. Eqs. (3)–(5) ensure that the selected transitions are travelled
in consecutive time periods. Constraints (6) establish that the vehi-
cle must arrive to each vertex j 2 Vn{0} in exactly one time period.
Finally, integrality conditions on variables are imposed.

Feasible solutions satisfying constraints (2)–(6) correspond to
tours with transitions travelled in consecutive time periods, start-
ing from the depot in time period 0. It is important to remark that
this formulation does not allow subtours.

2.2. Vander Wiel and Sahinidis

We also consider the TDTSP formulation of Vander Wiel and
Sahinidis (1995) (VW). The model is a linearization of the QAP pre-
sented in Picard and Queyranne (1978), and it can be seen as the
problem of finding the shortest constrained path in a directed mul-
ti-partite graph. We show this formulation in a slightly different
way than the one in Vander Wiel and Sahinidis (1995) because
we force the vertex 0 to be the depot.

The QAP formulation uses a set of binary decision variables xik,
where xik = 1 if city i is assigned to time period k, and xik = 0 other-
wise. This model is quadratic because of the presence of the
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product between xi k�1 and xi k in the objective function for each
possible combination of (i, j) and k.

In Vander Wiel and Sahinidis (1995), variables xik are referred as
the assignment variables. To linearize the objective function of the
QAP, they define the transition variables, yijk, which have the same
meaning as the ones defined in the previous section. Moreover,
they prove (see Proposition 1 of Vander Wiel and Sahinidis
(1995) for a detailed proof) that yijk = 1 if and only if xik�1xjk = 1,
when variables yijk are considered as positive continuous variables.
The advantage of this linearization is that it only introduces contin-
uous variables to the original formulation of the QAP. See Vander
Wiel and Sahinidis (1995, Section 1) for a detailed explanation
and examples.

ðVWÞmin
Xn

j¼1

c0j0y0j0 þ
Xn

i¼1

Xn

j¼1;j–i

Xn�1

k¼1

cijkyijk þ
Xn

j¼1

cj0nyj0n ð7Þ

s:t:
Xn

k¼1

xik ¼ 1 i ¼ 1; . . . ; n ð8Þ

Xn

i¼1

xik ¼ 1 k ¼ 1; . . . ; n ð9Þ

y0j0 ¼ xj1 j ¼ 1; . . . ; n ð10ÞXn

i¼1;i–j

yijk ¼ xjkþ1 j ¼ 1; . . . ; n; k ¼ 1; . . . ; n� 1 ð11Þ

yi0n ¼ xin i ¼ 1; . . . ;n ð12ÞXn

j¼1;j–i

yijk ¼ xik i ¼ 1; . . . ;n; k ¼ 1; . . . ; n� 1 ð13Þ

Xn

j¼1

y0j0 ¼ 1 ð14Þ

Xn

j¼1

yj0n ¼ 1 ð15Þ

yijk P 0; xik 2 f0;1g ð16Þ

Similarly to model (PQ), the objective function minimizes the
total travel cost of the tour. Eqs. (8) and (9) establish that each ver-
tex must be assigned to exactly one time period and that each time
period can be assigned to exactly one vertex, respectively. Eqs. (10)
and (11) ensure that the arrival to a vertex is done according to the
time period in which it is assigned. An analogous relation is estab-
lished in Eqs. (12) and (13) for the departure of each vertex. Eqs.
(14) and (15) establish that the vehicle must depart from the depot
in time period 0 and arrive in time period n, respectively. Finally,
integrality conditions on variables are imposed.

As in the previous formulation, by forcing vertex 0 to be the de-
pot, we can remove from the formulation the variables xi0"i P 1,
x0k"k P 1, yij0"i P 1, yijn"j P 1, yi0k"k 6 n � 1, y0jk"k P 1, given
that they always take value zero.

2.3. Relation between both models

As we mentioned in the introduction, (PQ) and (VW) are
strongly related. It is easy to see that (PQ) is the projection of
(VW) onto variables yijk, and Gouveia and Voss (1995) prove that
these formulations are equivalent in terms of the linear relaxation.
Formulation (VW) expresses each assignment variable, xik, in terms
of the transition variables yijk. Considering the results shown in Ba-
las and Oosten (1998), we deduce that there is a 1–1 correspon-
dence between the faces of (PQ) and the faces of (VW).
Moreover, if Pn

PQ and Pn
VW are the polytopes associated with models

PQ and VW, respectively, we can also state that
dim Pn

PQ

� �
¼ dim Pn

VW

� �
. From Müller (1996) we also know the

dimension of Pn
PQ .
Theorem 1 Müller (1996). The dimension of Pn
PQ is n(n � 1)(n � 2)

for n P 5.

Then, if an inequality is valid for Pn
PQ , it is also valid for Pn

VW since
variables yijk are considered in formulation (VW). Conversely, if an
inequality is valid for Pn

VW , the projected version of the inequality is
valid for Pn

VW since variables xik can be replaced by their expression
in terms of variables yijk.

3. Polyhedral study

In this section we focus on deriving families of valid inequalities
and facets. Based on the results presented in Section 2.3, these
inequalities are valid for both Pn

PQ and Pn
VW , although most of the

inequalities consider variables xik.
In Section 3.1 we propose a new family of valid inequalities

exploiting the idea of time dependent cycles. For this family, we
prove that they are facet defining on a polytope obtained by
restricting Pn

PQ and Pn
VW and, from this characterization, we provide

in Section 3.2 a procedure to obtain facets of Pn
PQ and Pn

VW by means
of maximum sequential lifting. Finally, in Section 3.3 we derive fur-
ther valid inequalities that express certain properties regarding
time periods.

3.1. Time-dependent cycle inequalities

In this section we introduce a new family of valid inequalities
based on the idea of the well known cycle inequalities for the
asymmetric TSP. The main characteristic is that they include the
time dependency of the transitions between vertices. Time depen-
dent cycles are not allowed by the formulations considered in this
paper. However, this family can be used to cut fractional solutions
which can be useful in practice. Indeed, in the next section we will
strengthen these inequalities by applying a lifting procedure.

Fig. 1 illustrates the idea behind time dependent cycles. The va-
lue associated with each arc stands for the time period in which it
is travelled. Let C = hv1,v2,v3,v4,v1i be a simple cycle with transi-
tions between consecutive vertices travelled in time periods k,
k + 1, k + 2, k + 3. If we consider n P 4, then this time dependent
cycle cannot be part of a feasible solution.

To forbid this situation, we can consider the following
inequality

yv1v2k þ yv2v3kþ1 þ yv3v4kþ2 þ yv4v1kþ3 6 3:

However, as we show next in Proposition 1, we can replace the right
hand side by some of the vertex variables xik from formulation (VW)
involved in the cycle, as shown below. This new expression domi-
nates the previous one, since by definition variables xik are upper
bounded by 1.

yv1v2k þ yv2v3kþ1 þ yv3v4kþ2 þ yv4v1kþ3 6 xv2kþ1 þ xv3kþ2 þ xv4kþ3

We will refer to this family of inequalities as the Time-Depen-
dent Cycle Inequalities (TDCIs). For the sake of notation, we ex-
press them in terms of both variables xik and yijk.

Proposition 1 (TDCI). Let C = hv1,v2, . . . ,vl,vl+1 = v1i, l < n, be a sim-
ple cycle with transitions between consecutive vertices travelled in
time intervals k, k + 1, . . . , k + l � 1, k + l 6 n. Then, inequality

Xl

i¼1

yv iv iþ1kþi�1 6
Xl�1

i¼1

xv iþ1kþi ð17Þ

is valid for Pn
PQ and Pn

VW .
Proof. From Eq. (11) we know that yv iv iþ1kþi�1 6 xv iþ1kþi for i = 1, . . . ,
l � 1 are valid. Adding these inequalities we get that



Fig. 1. TDCI for a cycle with four vertices.
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Xl�1

i¼1

yv iv iþ1kþi�1 6
Xl�1

i¼1

xv iþ1kþi ð18Þ

is a valid inequality. Using a similar argument, but now considering
Eq. (13), inequalities yv iv iþ1kþi�1 6 xv ikþi�1 for i = 2, . . . , l are valid.
Adding them and rewriting the right hand side we get that

Xl

i¼2

yv iv iþ1kþi�1 6
Xl�1

i¼1

xv iþ1kþi ð19Þ

is also a valid inequality.
Considering inequalities (18) and (19), we can rewrite them as
yv1v2k þ
Xl�1

i¼2

yv iv iþ1kþi�1 6
Xl�1

i¼1

xv iþ1kþi

Xl�1

i¼2

yv iv iþ1kþi�1 þ yv lv1kþl�1 6
Xl�1

i¼1

xv iþ1kþi

Given that yv1v2k and yv lv1kþl�1 cannot both take value one in a fea-
sible solution, the inequality

Xl

i¼1

yv iv iþ1kþi�1 6
Xl�1

i¼1

xv iþ1kþi

is valid for Pn
PQ and Pn

VW . h

The TDCI do not define facets for Pn
PQ and Pn

VW . However, sim-
ilarly to the cycle inequalities for the ATSP, TDCI define facets
of a projection of Pn

PQ and Pn
VW over some specific variables. Let

C = hv1,v2, . . . ,vl,vl+1 = v1i, l < n and k as defined in Proposition 1.
For notational convenience, we restrict our analysis to Pn

VW ,
although it is also valid for Pn

PQ . We define the following sets of
variables.

� F1 ¼ fyv lv jkþj�2 ¼ 0 : j ¼ 2; . . . ; l� 1g
� F2 ¼ fyv lv jkþl�1 ¼ 0 : j ¼ 2; . . . ; l� 1g
� F3 ¼ fyv iv jkþj�2 ¼ 0 : i ¼ 3; . . . ; l� 1; j ¼ 2; . . . ; i� 1g
� F4 ¼ fyv iv jkþi�1 ¼ 0 : i ¼ 2; . . . ; l� 1; j ¼ 1; . . . ; i� 1g
� F5 ¼ fyv1v jkþj�2 ¼ 0 : j ¼ 3; . . . ; lg,

and

Pn
VWðC; kÞ ¼ Pn

VW \
\5
i¼1

Fi:

Variables characterizing subspaces F1, . . . , F5 represent chords (vi,vj)
of C, vi,vj 2 C, travelled in valid time periods of departure from vi or
of arrival at vj with respect to their corresponding positions in the
cycle.

We begin characterizing the dimension of the restricted poly-
tope Pn

VWðC; kÞ in Theorem 2. Then, based on this result, we prove
in Theorem 3 that the TDCI (17) are indeed facet defining of
Pn

VWðC; kÞ. The importance of this result is twofold. First, it implies
that the TDCI cannot be strengthened when considering Pn

VWðC; kÞ.
Secondly, based on the definition of F1, . . . , F5 we can devise which
variables may be considered to obtain strengthened versions of the
TDCI for the general polytope Pn

VW . This topic is addressed in detail
in Section 3.2.
We now establish the following results. Due to space limita-
tions, the complete proof of Theorem 2 is shown in Appendix A.

Theorem 2. Let C = hv1,v2, . . . ,vl,vl+1 = v1i, 4 6 l < n and k the set of
vertices and the starting time period associated with a TDCI as defined
in Proposition 1. The dimension of Pn

VW ðC; kÞ is
n(n � 1)(n � 2) � (l + 1)(l � 2) for n P 5.

Based on this theorem, we now state the following result. Sim-
ilarly to Theorem 2, the detailed proof is shown in the appendix.

Theorem 3. Let C = hv1,v2, . . . ,vl,vl+1 = v1i, 4 6 l < n and k as defined
in Proposition 1. The TDCI (17) are facet-defining for Pn

VW ðC; kÞ for
n P 5.
3.1.1. Separation of time-dependent cycle inequalities
In this section we study the complexity of the separation prob-

lem associated with TDCI inequalities. We consider the reformula-
tion of the TDTSP as the problem of finding the shortest
constrained path in a directed multi-partite graph, as suggested
by Picard and Queyranne (1978) and Vander Wiel and Sahinidis
(1995). Let DM = (VM,AM) be this graph. A vertex u 2 VM is a combi-
nation between a vertex i 2 V and a time period k, where 0 6 k 6 n.
We will denote this vertex as u = ik. In addition, we will refer to
arcs e 2 AM as e = (ik, jk + 1), with ik, jk + 1 2 VM.

The separation problem for this family of inequalities can be
formulated as follows:
TIME-DEPENDENT CYCLE INEQUALITIES SEPARATION
Instance:
 A point ~z ¼ ð~y; ~xÞ 2 Pn
VW
Question:
 Does ~z violate some Time-Dependent Cycle
Inequality?.
We begin showing that this family can be separated considering
the support graph, DMð~zÞ, instead of the complete graph. The fol-
lowing proposition proves this result.

Proposition 2. Let ~z ¼ ð~y; ~xÞ be a solution of the relaxation that
satisfies (8)–(15) and ~z P 0;C ¼ fv1; . . . ;v lg � V and k the set of
nodes and the starting time period associated with a TDCI, and
i0 2 {1, . . . , l}. If ~yv i0

v i0þ1kþi0�1 ¼ 0, then the TDCI induced by C and k is
trivially satisfied.
Proof. From Proposition 1, the TDCI associated with C and k, can
be rewritten considering v i0 asXi0�1

i¼1
~yv iv iþ1kþi�1 �

Xi0�1

i¼1
~xv iþ1kþi

� �
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

A

þ ~yv i0
v i0þ1kþi0�1

þ
Xl

i¼i0þ1
~yv iv iþ1kþi�1 �

Xl�1

i¼i0
~xv iþ1kþi

� �
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

B

6 0:

It is easy to see that A 6 0 and B 6 0, since solution ~z satisfies
Eqs. (11) and (13), respectively. Then, knowing that
~yv i0

v i0þ1kþi0�1 ¼ 0, the inequality is satisfied by ~z. h



J.J. Miranda-Bront et al. / European Journal of Operational Research 236 (2014) 891–902 895
Based on this result, we first identify some necessary conditions
for the existence of a violated TDCI. As we have seen before, the
main idea behind TDCI is the presence of a time-dependent cycle,
starting and ending in the same node but with different time-peri-
ods. Then, there must exist vertices v k, v k0 2 VM, with k0 = k + l, for
some l > 1, k + l 6 n. In addition, even when this condition holds, it
is also necessary the existence of a simple path-in terms of vertices
vi 2 V-going from vk to vk0, which is not always the case. Let v1k, v1-

k0 2 VM be those vertices as defined before. We want to determine if
there exists or not a set of vertices C = {v2, . . . ,vl} � V such that

Xl

i¼1

~yv iv iþ1kþi�1 �
Xl�1

i¼1

~xv iþ1kþi > 0; ð20Þ

where vl+1 = v1. We now restrict our search to the subgraph defined
by those vertices in the support graph with time periods between k
and k0, i.e., u = vt such that v 2 V and k < t < k0. For this subgraph, we
also define the arc weight function w : AM ! R as

wðit; jt þ 1Þ ¼
~yv iv j t if i ¼ 1; t ¼ k
~yv iv j t � ~xv i t otherwise:

(

Considering these two definitions, we seek for a maximum-weight
path connecting v1k and v1k0. This can be done in polynomial time
with a straightforward application of dynamic programming.

However, the optimal solution returned by the maximum-
weight path algorithm may not be simple in terms of vertices v
from the original graph (i.e., it is possible that the path contains
vertices vit, vit0 2 VM, with t – t0, visiting more than one time the
row corresponding to vertex vi in different time periods). Let P be
this optimal solution, and w⁄ the weight of P. Clearly, if w⁄ 6 0,
then ~z does not violate any TDCI starting and ending in v1k and
v1k0, respectively, since w⁄ is an upper bound for the value of any
simple path connecting these two vertices. On the contrary, if
w⁄ > 0, there might exist a TDCI that is violated by ~z. The following
proposition proves that if this condition on w⁄ holds, then we can
separate ~z.

Proposition 3. Let ~z ¼ ð~y; ~xÞ be a solution of the relaxation that
satisfies (8)–(15) and ~z P 0, and P = hv1, . . . ,vli, vl+1 = v1, the sequence
of nodes returned by the maximum path algorithm with optimum
value w⁄ > 0. Then, there exists a subsequence P0 # P and a time
period k0 such that the TDCI defined by P00 and k0 is violated by ~z.
Proof. We start by pointing out that if sequence P has no repeti-
tions, then clearly P and k define a violated TDCI, since w⁄ > 0.

Otherwise, P has at least one repeated vertex and each vertex
may appear even more than two times. We also know that these
repetitions cannot be in consecutive time periods, since this
situation is not allowed even in graph DM. However, it is not
difficult to see that there exists a repeated vertex v i0 ¼ v i1

2 P,
i0 < i1, appearing in time periods k0 = k + i0 � 1 and k00 ¼ kþ i1 � 1,
respectively, such that the vertices of P between two of its
repetitions defines a subsequence of P which is a simple path
connecting v i0 k0 and v i0 k00. Let P0 ¼ fv i0

; . . . ;v i1�1g � P be this
sequence, where jP0jP 3. We now analyze the TDCI defined by P
and k in terms of subsequence P0 and k0. Expression (20) can be
rewritten as

Xi0�1

i¼1

~yv iv iþ1kþi�1 �
Xi0�1

i¼1

~xv iþ1kþiþ ð21Þ

Xi1�1

i¼i0

~yv iv iþ1kþi�1 �
Xi1�2

i¼i0

~xv iþ1kþiþ ð22Þ
Xl

i¼i1

~yv iv iþ1kþi�1 �
Xl�1

i¼i1�1

~xv iþ1kþi > 0; ð23Þ

where (22) is the expression related to P0. We consider each part
separately:

1. The value of expression (21) is at most zero, since solution ~z sat-
isfies Eq. (11).

2. Analogously, expression (23) is also upper bounded by zero,
given that ~z satisfies (13).

3. From the previous two items, it follows that (22) is strictly
greater than zero. In addition to this fact, by construction, P0

has no repeated vertices. Moreover, if we consider
k0 = k + i0 � 1, expression (22) defines a TDCI for P0 and k0. Then,
we have found a sequence of vertices P0 and time period k0 that
represent a TDCI violated by ~z.

To sum up, given the sequence of nodes P for whose optimal
value w⁄ is strictly greater than zero, we are able to find a TDCI that
is violated by ~z. h
Finally, considering all we have seen so far, we can state that the
separation problem for the TDCI can be solved in polynomial time.
A pseudocode for the separation procedure summarizing all steps
from this section is shown in Algorithm 1. The complexity in the
worst case is O(n5), although in practice it requires little effort
since the support graph DMð~zÞ tends to be sparse and many cases
can be avoided.

Algorithm 1. TDCI SEPARATION ALGORITHM
Input: ~z ¼ ð~y; ~xÞ 2 Pn
VW .
1. for ik; ik0 2 DMð~zÞ; k0 > kþ 1, do:

2. Calculate the maximum path on DMð~zÞ considering

w : AM ! R as the arc weight function. Let P be the
optimal solution and w⁄ its cost.
3. If w⁄ > 0 then

4. If P is simple, then answer yes and return the TDCI

induced by P.

5. else

6. Determine the simple subpath P0 # P as shown in

Proposition 3 answer yes and return the TDCI induced by
P0.
7. end if

8. end for
3.2. Lifted time-dependent cycle inequalities

Based on the ideas from Balas and Fischetti (1999) and Gutin
and Punnen (2002), from Proposition 3 we can derive facets of
Pn

PQ and Pn
VW applying a maximum sequential lifting over the vari-

ables present in F1, . . . , F5. It is well known that the order in which
variables are lifted may generate different inequalities. Indeed, we
lifted these variables in five different ways to obtain five families of
facets. The support graph for some of these inequalities with l = 4 is
shown in Fig. 2. In all cases, a solid arc corresponds to a variable in
the original TDCI, and a dashed arc represents a variable obtained
by the lifting process.

The following proposition shows the five different families of
facets. The proof is provided in Appendix.

Proposition 4. Let C = hv1,v2, . . . ,vl,v_l+1 = v1i, l < n, be a simple cycle
with transitions between consecutive vertices taken in time intervals
k, k + 1, . . . , k + l � 1, k + l 6 n. Then, inequalities



Fig. 2. Support for Lifted TDCI inequalities.
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Xl

i¼1

yv iv iþ1kþi�1 þ
Xl�1

i¼2

Xi�1

j¼1

yv iv jkþi�1 þ
Xl�1

j¼2

yv lv jkþl�1 6
Xl�1

i¼1

xv iþ1kþi ð24Þ

Xl

i¼1

yv iv iþ1kþi�1 þ
Xl

j¼3

yv1v jkþj�2 þ
Xl�1

j¼2

yv jv1kþj�1 6
Xl�1

i¼1

xv iþ1kþi ð25Þ

Xl

i¼1

yv iv iþ1kþi�1 þ
Xl�1

i¼3

Xi�1

j¼2

yv iv jkþj�2 þ
Xl�1

j¼2

yv lv jkþl�1 þ
Xl�1

j¼2

yv lv jkþj�2

6

Xl�1

i¼1

xv iþ1kþi ð26Þ

Xl

i¼1

yv iv iþ1kþi�1 þ
Xl�1

i¼3

Xi�1

j¼2

yv iv jkþj�2 þ
Xl

j¼3

yv1v jkþj�2 þ
Xl�1

j¼2

yv lv jkþj�2

6

Xl�1

i¼1

xv iþ1kþi ð27Þ

Xl

i¼1

yv iv iþ1kþi�1 þ
Xl�1

i¼3

Xi�1

j¼2

yv iv jkþj�2 þ
Xl

j¼3

yv1v jkþj�2 þ yv l�1v1kþl�2

6

Xl�1

i¼1

xv iþ1kþi ð28Þ
1 The results in Abeledo et al. (2010) have been obtained independently and
simultaneously from ours.
define facets of Pn
PQ and Pn

VW .

This proposition proves that constraints (24)–(28) are facet
defining. We next remark that these five lifting of a TDCI indeed
define different facets of Pn

PQ and Pn
VW . For this purpose, we use fea-

sible solutions satisfying them by equality. Let C = hv1,v2,v3,v4i be a
time dependent cycle. We consider feasible solutions with the fol-
lowing permutations of the vertices.

� v4v1v3v2 satisfies by equality (24), (25), (27) and (28), and
strictly (26). Then, constraint (26) is different from the other
Lifted TDCIs.
� v4v2v1v3 satisfies by equality (24)–(27), and strictly (28). Then,

constraint (28) is different from (24), (25) and (27).
� v3v2v4v1 satisfies by equality (26)–(28), and strictly (24) and

(25). Then, constraint (27) is different from (24) and (25).
� v3v1v5v4v2 satisfies by equality (24) and (26), and strictly (25),

(27) and (28). Then, constraint (24) is different from (25).

These five inequalities can be written as the Admissible Flow
Constraints (AFC) proposed in Abeledo et al. (2010). In this paper,
the authors conjecture that some of the AFC are facet defining,
but that it is difficult to characterize which ones have this property.
In Proposition 4 we characterize a subset of the AFC that are facet
defining.1

3.2.1. Separation procedure
In order to incorporate these inequalities to the B&C algorithm,

we use a heuristic separation routine based on the separation algo-
rithm for the TDCI. For every two vertices of the form ik and ik0 that
are present in the support graph, we execute the maximum path
algorithm. If the returned path is simple (in terms of vertices in
V of the original graph D), then we add the value of the lifted vari-
ables involved in the inequality to the cost of this path.

Although this approach is heuristic, in practice it is quite effec-
tive for all families, finding a considerable number of violated cuts.

3.3. Polynomial size families

In this section we present four families of valid inequalities for
Pn

PQ and Pn
VW . The following proposition introduces the first of

them. The idea behind this family is to bound a particular variable,
yi0 j0k0

based on the values of the variables representing arcs leaving
a particular vertex, l0, with l0 – i0,j0. The remaining constraints fol-
low a similar idea.

Proposition 5 (Family 1). For i0, j0, l0 = 1, . . . , n: i0 – j0 – l0,
inequalities

yi0 j0k0
þ yj0 l0n�1 þ yi0 l0n�1 6 yl0 i0k0�1

þ
Xn�1

t ¼ 1
t–k0 � 1; k0; k0 þ 1

Xn

w ¼ 1
w–i0; j0; l0

yl0wt þ yl00n ð29Þ

for k0 = 2, . . . , n � 3, and

yi0 j0n�2 þ
Xn

w ¼ 1
w–j0; l0

ywl0n�1 6 yl0 i0n�3 þ
Xn�4

t¼1

Xn

w ¼ 1
w–i0; j0; l0

yl0wt þ yl00n ð30Þ

yi0 j0n�1 6 yl0i0n�2 þ
Xn�3

t¼1

Xn

w ¼ 1
w–i0; j0; l0

yl0wt ð31Þ

are valid for Pn
PQ and Pn

VW .
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Proof. We start by noting an identity that will be used several
times within the proof. If we focus in the case, where yi0 j0k0

¼ 1,
and considering Eqs. (3)–(6), it is quite easy to see that for
1 6 k 6 n � 1

yl0 i0k�1 þ
Xn

w ¼ 1
w–i0;

j0; l0

Xn�1

t ¼ 1
t–k� 1;
k; kþ 1

yl0wt þ yl00n ¼ y0l00 þ
Xn

w ¼ 1
w–l0

Xn�1

t¼1

ywl0t ¼ 1:
ð32Þ

Now we prove the validity of each inequality separately.

1. For inequality (29), we consider three different cases:
� If yi0 j0k0

¼ yj0 l0n�1 ¼ yi0 l0n�1 ¼ 0, the inequality is trivially sat-
isfied since all variables are non-negative.

� If yi0 j0k0
¼ 1, it follows that yj0 l0n�1 and yi0 l0n�1 have value zero

since k0 6 n � 3. Then, by (32) the inequality is satisfied.
� If either yj0 l0n�1 ¼ 1 or yi0 l0n�1 ¼ 1, variable yi0 j0k0

¼ 0 and the
inequality is satisfied since by Eq. (5) yl00n ¼ 1.

These three cases cover all possible situations, and therefore
inequality (29) is valid for Pn

PQ and Pn
VW .

2. For inequality (30), we separate again the proof in three cases:
� If yi0 j0n�2 and ywl0n�1 are zero, for w = 1, . . . , n, w – l0, j0, then

the inequality is trivially satisfied.
� If yi0 j0n�2 ¼ 1, ywl0n�1 ¼ 0 for w = 1, . . . , n, w – l0, j0. Using Eq.

(32) for k = n � 2, we get the expression in the right hand
side of the inequality, and therefore it is satisfied.

� If for some w = 1, . . . , n, w – l0, j0, ywl0n�1 ¼ 1, it follows that
yi0 j0n�2 ¼ 0 and from Eq. (5), yl00n ¼ 1 and the inequality is
satisfied too.

Therefore, the inequality is valid from Pn
PQ and Pn

VW .
3. Finally, we consider inequality (31). If yi0 j0n�1 ¼ 0, the inequality

is satisfied. Otherwise, considering Eq. (32) and the fact
yi0 j0n�1 ¼ 1 implies that yl00n ¼ 0, the inequality is also valid
for Pn

PQ and Pn
VW .

Therefore, inequalities (29)–(31) are valid for Pn
PQ and Pn

VW . h

The next family uses mainly the same idea as in the previous
proposition, with the only difference that instead of looking at
the arcs leaving l0, we consider the entering ones. Regarding the
proof for this family, since it is analogous to the one in Proposition
5, we omit the details.

Proposition 6 (Family 2). For i0, j0, l0 = 1, . . . , n: i0 – j0 – l0,
inequalities

yi0 j0k0
þ yl0i01 þ yl0 j01 6 yj0 l0k0þ1

þ
Xn�1

t ¼ 1
t–k0 � 1; k0; k0 þ 1

Xn

w ¼ 1
w–i0; j0; l0

ywl0t þ y0l00

for k0 = 3, . . . , n � 2, and

yi0 j02 þ
Xn

w ¼ 1
w–i0; l0

yl0w1 6 yj0 l03 þ
Xn�1

t¼4

Xn

w ¼ 1
w–i0; j0; l0

ywl0t þ y0l00

yi0 j01 6 yj0 l02 þ
Xn�1

t¼3

Xn

w ¼ 1
w–i0; j0; l0

ywl0t

are valid for Pn
PQ and Pn

VW .

By combining inequalities from Propositions 5 and 6 in a partic-
ular way, we derive the two other families. Next we introduce the
inequalities resulting of the combination of inequalities from Prop-
osition 6.
Proposition 7 (Family 3). For i0, j0, l0 = 1, . . . , n: i0 – j0 – l0,
inequalities
yi0 j0k0

þ yj0 i0k0
þ yl0 i01 þ yl0 j01 6 yi0 l0k0þ1 þ yj0 l0k0þ1

þ
Xn�1

t ¼ 1
t–k0 � 1;
k0; k0 þ 1

Xn

w ¼ 1
w–i0;

j0; l0

ywl0t þ y0l00 ð33Þ

for k0 = 3, . . . , n � 2, and

yi0 j02 þ yj0 i02 þ
Xn

w ¼ 1
w–i0; j0; l0

yl0w1 6 yi0 l03 þ yj0 l03

þ
Xn�1

t¼4

Xn

w ¼ 1
w–i0; j0; l0

ywl0t þ y0l00 ð34Þ

yi0 j01 þ yj0 i01 6 yi0 l02 þ yj0 l02 þ
Xn�1

t¼3

Xn

w ¼ 1
w–i0; j0; l0

ywl0t ð35Þ

are valid for Pn
PQ and Pn

VW .
Proof. We prove first the validity of inequality (33). From the pre-
vious proposition, we know that
yi0 j0k0

þ yl0 i01 þ yl0 j01 6 yj0 l0k0þ1

þ
Xn�1

t ¼ 1
t–k0 � 1; k0; k0 þ 1

Xn

w ¼ 1
w–i0; j0; l0

ywl0t þ y0l00

yj0 i0k0
þ yl0 i01 þ yl0 j01 6 yi0 l0k0þ1

þ
Xn�1

t ¼ 1
t–k0 � 1; k0; k0 þ 1

Xn

w ¼ 1
w–i0; j0; l0

ywl0t þ y0l00

are valid inequalities. Given that yi0 j0k0
and yj0 i0k0

are mutually exclu-
sive, the proposed inequality is valid for Pn

PQ and Pn
VW . The same

argument can be used for inequalities (34) and (35). However, the
former is slightly modified by excluding both yl0 i01 and yl0 j01 from
the sum on the left side of the expression. h

Finally, the remaining family exploits the same idea as Proposi-
tion 7 but for inequalities present in Proposition 5. Again, due to
the similarity with the previous result, the details of the proof
are not provided.

Proposition 8 (Family 4). For i0, j0, l0 = 1, . . . , n: i0 – j0 – l0,
inequalities
yi0 j0k0

þ yj0 i0k0
þ yi0 l0n�1 þ yj0 l0n�1 6 yl0 i0k0�1 þ yl0 j0k0�1

þ
Xn�1

t ¼ 1
t–k0 � 1;
k0; k0 þ 1

Xn

w ¼ 1
w–i0;

j0; l0

yl0wt þ yl00n

for k0 = 2, . . . , n � 3, and

yi0 j0n�2 þ yj0 i0n�2 þ
Xn

w ¼ 1
w–i0;

j0; l0

ywl0n�1 6 yl0 i0n�3 þ yl0 j0n�3

þ
Xn�4

t¼1

Xn

w ¼ 1
w–i0;

j0; l0

yl0wt þ yl00n

yi0 j0n�1 þ yj0 i0n�1 6 yl0 i0n�2 þ yl0 j0n�2 þ
Xn�3

t¼1

Xn

w ¼ 1
w–i0; j0; l0

yl0wt



2 To avoid confusions with variables xik from model (VW), we rename variables xij

from the classical formulation for the TSP as zij. It is important to remark that
variables zij are not included explicitly in the formulation (PQ).
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are valid for Pn
PQ and Pn

VW .

Regarding the separation problems for these families, since each
of them is composed by a polynomial number of members, we
explicitly enumerate them in order to find a violated cut.

4. B&C algorithm

In order to evaluate the strength of the inequalities introduced
in Section 3, we develop a B&C algorithm considering the model
(PQ). We focus mainly on the cutting planes and a primal heuristic
leaving, among other parameters, the branching and the node
selection strategies as CPLEX’s defaults. For notational conve-
nience, sometimes we refer to variables xik from (VW) formulation,
the value of which can be calculated in terms of variables yijk.

We observed that in some instances applying a simple prepro-
cessing improved drastically the overall computing times. This pre-
processing phase aims to eliminate feasible solutions for which we
can assure that either they are not optimal or there exists an alter-
native optimal solution.

The main idea is quite simple and looks for identifying time
dependent arcs which cannot be present in an optimal solution. Gi-
ven i, j 2 Vn{0}, i < j, 1 6 k 6 n � 2, if for all v, w 2 V, v, w – i, j, if

cvik�1 þ cijk þ cjwkþ1 6 cvjk�1 þ cjik þ ciwkþ1; ð36Þ

then we can fix variable yjik = 0. Otherwise, we check whether
swapping i and j the condition is satisfied to fix yijk = 0. It is impor-
tant to remark the second test is applied only when the first one
fails, since otherwise the optimal solution may be cut off.

For some particular cases of the TDTSP, such as the TSP and the
TDP, this test can be executed without considering the particular
position of the arc in the tour and, therefore, the implication is va-
lid for all possible time periods k.

4.1. Primal heuristic

The use of heuristic procedures to obtain feasible integer solu-
tions based on the information provided by the solution of the LP
relaxation have been proven to be very effective to obtain good
quality upper bounds. The main purpose is to reduce the number
of nodes explored in the B&C tree, aiming to reduce the overall run-
ning time of the algorithm. However, it is important to find a rea-
sonable tradeoff between the effectiveness of the algorithm and
the computational effort.

In our algorithm we consider a primal heuristic consisting of
two phases. The first one is a construction phase, which generates
different feasible solutions based on a heuristic. The second phase
consists on applying for each solution an improvement procedure.
We give further details about each phase in the following sections.

4.1.1. Construction phase
The greedy heuristic considered in this phase iteratively adds

vertices to positions 0, 1, . . . , n � 1 using the information of the
fractional solution of the current node. In particular, in iteration
k selects as the next vertex v to be added to the partial tour the
one having the greatest value its corresponding assignment vari-
able yv lastvk, where vlast is the last vertex added to the current partial
path. In case of tie, we select the vertex with minimum cost for the
corresponding arc.

In order to generate several possibilities, we execute this proce-
dure considering each vertex w 2 V as the first one in the tour.

4.1.2. Improvement phase
The aim of this phase is, given a feasible solution for the prob-

lem, to find a new one with a better total cost by applying a local
search procedure. We consider two different improvement opera-
tors, which are executed sequentially. It is important to remark
that this improvement phase is applied to all solutions generated
in the construction phase.

First we consider a vertex interchange heuristic. Given C = h
0,v1, . . . ,vn,0i a feasible tour, we define the neighborhood of C,
N(C), as all the possible tours obtained by interchanging the posi-
tions of any two different vertices of C. From all of the tours in
N(C) that improve the cost of C, in case there is any, we choose
as our new solution the one with the smallest cost. We apply this
procedure iteratively until no improvement is achieved or a maxi-
mum of fifteen iterations is reached. Secondly, when this proce-
dure is finished, we execute a 3-opt procedure (Lin, 1965).
4.2. Cutting planes

In this section we specify the cutting plane algorithm consid-
ered. Based on restricted preliminary computational results, con-
sidering together inequalities (24)–(28) slows the resolution of
the LP relaxations. This is due to their similarity, given that some
of them share many of the variables involved in the inequality.
As a consequence, more inequalities are added to the formulation
but obtaining similar results in terms of improvements of the low-
er bound. We observed that the best results are produced consid-
ering together constraints (24) and (26).

In addition to the inequalities presented in Section 3 we in-
cluded also the Subtour Elimination Constraints (SEC). In order to in-
clude these constraints, variables zij can be defined as

zij ¼
Xn

k¼1

yijk;

indicating if vertex j is visited immediately after vertex i in the
tour.2 We consider adding more than one of these constraints in-
stead of only the most violated one by means of the separation rou-
tine proposed by Letchford et al. (2002) and Lysgaard et al. (2004). At
the root node we perform a maximum of fifteen rounds of the cut-
ting plane algorithm and only one round in the internal nodes.

On preliminary computational results, we observed that the
best improvements at the root node is produced by a combination
of the SEC, the TDCI with l = 2 and the Lifted TDCI (24) and (26). For
example, in some instances considering only SEC or TDCI with l = 2,
constraints (24) and (26) the gap at the root node is reduced to
nearly an 8% in both cases. However, when considered together,
this value drops below 2%. For this reason, we include the three
sets of constraints in the cutting plane algorithm. As regards
inequalities presented in Section 3.3, although they do not produce
big improvements in the objective function, they are useful to find
violated Lifted TDCI in successive rounds.

The constraints considered in the cutting plane algorithm are
enumerated below.

� SEC. At most 30 per round.
� TDCI with l = 2.
� Lifted TDCI (24) and (26). At most 100 per round.
� Families from Section 3.3. At most 100 for each of them per

round.

5. Computational results

The experiments were conducted on a workstation with Intel
Core i7-2600 with 16 gigabytes of RAM running a Fedora Linux dis-



Table 1
Computational times (in seconds) and number of tree nodes explored for TSP instances from TSPLIB.

Type Instance n B&C CPLEX-PQ

Time Nodes %rG %fG Time Nodes %rG %fG

TSP burma14 14 0.02 0 0.00 0.00 0.26 125 7.45 0.00
ulysses16 16 0.07 0 0.00 0.00 0.83 364 10.95 0.00
gr17 17 0.09 0 0.00 0.00 19.86 20,001 13.25 0.00
gr21 21 0.09 0 0.00 0.00 8.58 2040 6.75 0.00
ulysses22 22 0.37 0 0.00 0.00 26.27 6128 16.05 0.00
gr24 24 0.47 0 0.00 0.00 25.98 3496 10.68 0.00
fri26 26 0.55 0 0.00 0.00 204.39 29,943 9.14 0.00
bayg29 29 1.01 0 0.00 0.00 609.94 54,874 7.25 0.00
bays29 29 1.83 0 0.00 0.00 1179.66 118,294 8.69 0.00
dantzig42 42 10.88 0 0.00 0.00 ⁄⁄⁄ ⁄⁄⁄ 12.50 7.68
swiss42 42 6.94 0 0.00 0.00 ⁄⁄⁄ ⁄⁄⁄ 17.92 12.28
att48 48 76.29 35 0.17 0.00 ⁄⁄⁄ ⁄⁄⁄ 16.70 19.57
gr48 48 ⁄⁄⁄ ⁄⁄⁄ 1.68 0.33 ⁄⁄⁄ ⁄⁄⁄ 15.47 21.56
hk48 48 24.51 0 0.00 0.00 ⁄⁄⁄ ⁄⁄⁄ 11.10 14.21
eil51 51 1306.8 84 0.82 0.00 ⁄⁄⁄ ⁄⁄⁄ 9.91 32.64
berlin52 52 26.1 0 0.00 0.00 ⁄⁄⁄ ⁄⁄⁄ 13.15 32.39
brazil58 58 220.33 25 0.11 0.00 ⁄⁄⁄ ⁄⁄⁄ 25.73 81.74
br17 17 0.03 0 0.00 0.00 0.56 132 16.03 0.00
ftv33 33 1.81 0 0.00 0.00 646.18 18,158 6.80 0.00
ftv35 35 30.99 39 0.82 0.00 269.58 11,757 5.44 0.00
ftv38 38 59.96 55 0.80 0.00 788.7 14,998 5.28 0.00
p43 43 5080.08 63 0.14 0.00 ⁄⁄⁄ ⁄⁄⁄ 84.13 81.84
ftv44 44 347.23 35 1.43 0.00 5383.61 48,305 5.02 0.00
ftv47 47 528.55 73 1.50 0.00 ⁄⁄⁄ ⁄⁄⁄ 3.63 5.30
ry48p 48 521.12 95 0.85 0.00 ⁄⁄⁄ ⁄⁄⁄ 10.72 9.03
ftv55 55 3164.68 85 1.28 0.00 ⁄⁄⁄ ⁄⁄⁄ 10.17 19.62

Table 2
Computational times (in seconds) and number of tree nodes explored for TDP instances from TSPLIB.

Type Instance n B&C B&C-R CPLEX-PQ

Time Nodes %rG %fG Time Nodes %rG %fG Time Nodes %rG %fG

TDP burma14 14 0.03 0 0.00 0.00 0.53 0 0.00 0.00 0.58 220 8.70 0.00
ulysses16 16 0.14 0 0.00 0.00 6.83 7 1.74 0.00 0.87 273 17.95 0.00
gr17 17 0.1 0 0.00 0.00 1.68 0 0.00 0.00 1.34 380 15.16 0.00
gr21 21 0.37 0 0.00 0.00 2.98 0 0.00 0.00 14.8 4123 16.29 0.00
ulysses22 22 4.65 33 4.18 0.00 129.93 32 4.27 0.00 20.33 4648 27.43 0.00
gr24 24 0.48 0 0.00 0.00 4.54 0 0.00 0.00 22.89 3026 14.68 0.00
fri26 26 2.74 7 0.71 0.00 47.36 7 1.97 0.00 164.91 21,903 13.67 0.00
bayg29 29 94.53 95 3.00 0.00 250.07 27 2.18 0.00 705.15 67,719 12.80 0.00
bays29 29 14.36 39 1.86 0.00 618.08 49 1.62 0.00 345.76 31,839 13.77 0.00
dantzig42 42 39.93 33 0.90 0.00 2278.71 41 2.30 0.00 ⁄⁄⁄ ⁄⁄⁄ 19.10 11.33
swiss42 42 30.33 13 1.20 0.00 1422.74 21 4.01 0.00 ⁄⁄⁄ ⁄⁄⁄ 18.53 13.51
att48 48 70.79 39 0.85 0.00 3377.31 33 4.30 0.00 ⁄⁄⁄ ⁄⁄⁄ 16.12 7.89
gr48 48 2014.95 407 3.99 0.00 ⁄⁄⁄ ⁄⁄⁄ 6.84 8.32 ⁄⁄⁄ ⁄⁄⁄ 20.66 17.70
hk48 48 131.65 39 1.61 0.00 ⁄⁄⁄ ⁄⁄⁄ 4.60 4.60 ⁄⁄⁄ ⁄⁄⁄ 16.48 12.80
eil51 51 90.55 25 0.71 0.00 ⁄⁄⁄ ⁄⁄⁄ 1.94 4.14 ⁄⁄⁄ ⁄⁄⁄ 14.75 19.86
berlin52 52 ⁄⁄⁄ ⁄⁄⁄ 3.54 1.01 ⁄⁄⁄ ⁄⁄⁄ 13.45 14.30 ⁄⁄⁄ ⁄⁄⁄ 21.83 23.71
brazil58 58 ⁄⁄⁄ ⁄⁄⁄ 8.77 2.96 ⁄⁄⁄ ⁄⁄⁄ 17.70 19.15 ⁄⁄⁄ ⁄⁄⁄ 21.83 36.87
br17 17 0.04 0 0.00 0.00 295.08 171 12.45 0.00 0.67 16 7.32 0.00
ftv33 33 22.68 27 1.57 0.00 887.52 47 2.40 0.00 807.67 41,585 11.62 0.00
ftv35 35 23.57 19 1.34 0.00 778.47 38 1.59 0.00 1645.47 72,258 7.87 0.00
ftv38 38 41.74 23 1.38 0.00 341.31 11 2.06 0.00 1426.38 36,485 8.68 0.00
p43 43 3241.23 691 4.54 0.00 ⁄⁄⁄ ⁄⁄⁄ 62.02 62.14 ⁄⁄⁄ ⁄⁄⁄ 50.27 42.39
ftv44 44 449.35 117 3.54 0.00 ⁄⁄⁄ ⁄⁄⁄ 4.44 5.25 ⁄⁄⁄ ⁄⁄⁄ 9.86 7.19
ftv47 47 41.27 13 1.52 0.00 ⁄⁄⁄ ⁄⁄⁄ 3.20 6.25 703.7 4600 6.44 0.00
ry48p 48 39.96 7 0.52 0.00 2550.81 27 3.54 0.00 ⁄⁄⁄ ⁄⁄⁄ 8.03 6.28
ftv55 55 156.89 33 1.48 0.00 ⁄⁄⁄ ⁄⁄⁄ 7.33 7.33 ⁄⁄⁄ ⁄⁄⁄ 12.43 12.18
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tribution. The algorithms are coded in C++and combined with Ilog
CPLEX 12.2 callable library for the optimization routines.

We use benchmark instances that are divided into three groups.
The first group includes instances from TSPLIB. These instances are
considered both as TSP instances (i.e., cijk = cij) and as TDP instances
(i.e., cijk = (n � k + 1)cij). A second group regards randomly gener-
ated instances for TDP from Méndez-Díaz et al. (2008). Finally,
the third group considers the instances proposed in Rubin and Ra-
gatz (1995) and considered also in Bigras et al. (2008). We slightly
modify the original instances of the third group by discarding the
corresponding due dates, which results in 1jsijj

P
Cj scheduling in-

stances (equivalent to TDP).
As regards the methods evaluated, we consider the following

ones:

� B&C: the B&C algorithm described in Section 4 considering the
PQ model. All CPLEX cuts and heuristics are disabled.



Table 3
Average computational times (in seconds) and number of tree nodes explored for Méndez-Díaz et al. instances.

Instances n B&C B&C-R CPLEX-PQ

Time Nodes %rG %fG Time Nodes %rG %fG Time Nodes %rG %fG

Asymmetric 20 0.05 0.00 0.00 0.00 0.68 0.00 0.00 0.00 0.20 0.00 0.00 0.00
22 0.08 0.00 0.00 0.00 0.84 0.00 0.00 0.00 0.48 10.80 0.41 0.00
24 0.13 0.00 0.00 0.00 2.38 0.60 0.15 0.00 0.75 21.20 2.01 0.00
26 0.13 0.00 0.00 0.00 2.11 0.00 0.00 0.00 0.74 4.20 0.65 0.00
28 0.44 0.60 0.08 0.00 14.54 6.40 0.47 0.00 2.35 25.80 1.70 0.00
30 0.98 2.80 0.50 0.00 34.09 8.00 0.58 0.00 4.30 104.20 3.25 0.00
35 0.99 0.60 0.12 0.00 21.24 0.80 0.10 0.00 4.28 7.20 0.55 0.00
40 8.17 10.00 1.22 0.00 489.50 25.00 1.90 0.00 53.42 952.00 5.48 0.00

Symmetric 20 0.15 0.00 0.00 0.00 1.39 0.00 0.00 0.00 3.28 519.40 18.77 0.00
22 0.28 0.00 0.00 0.00 2.56 0.00 0.00 0.00 8.08 1385.60 17.12 0.00
24 0.47 0.00 0.00 0.00 7.05 1.00 0.11 0.00 23.94 2943.00 27.27 0.00
26 0.58 0.00 0.00 0.00 6.82 1.00 0.23 0.00 63.33 6077.20 23.45 0.00
28 1.00 0.00 0.00 0.00 12.21 0.60 0.04 0.00 113.60 9563.40 26.04 0.00
30 1.46 0.00 0.00 0.00 24.94 1.00 0.22 0.00 466.21 32789.00 27.55 0.00
35 3.67 0.00 0.00 0.00 57.52 0.60 0.07 0.00 (4) 1242.66 47,799 34.61 10.05
40 9.58 2.00 0.19 0.00 391.15 11.00 1.35 0.00 (1) 6749.43 158,253 34.00 19.77

Euclidean 20 0.15 0.00 0.00 0.00 1.27 0.00 0.00 0.00 3.79 526.80 10.47 0.00
22 0.44 0.00 0.00 0.00 6.75 2.80 0.51 0.00 9.90 1199.80 13.32 0.00
24 0.78 0.00 0.00 0.00 10.44 2.00 0.60 0.00 34.84 3689.00 16.12 0.00
26 1.19 1.00 0.13 0.00 19.31 4.40 0.26 0.00 61.93 5772.00 13.37 0.00
28 5.02 10.80 0.69 0.00 37.17 5.60 0.67 0.00 233.05 17746.20 18.25 0.00
30 4.01 2.60 0.22 0.00 133.51 14.20 0.64 0.00 234.90 12049.60 16.24 0.00
35 8.53 3.20 0.32 0.00 139.52 6.20 0.53 0.00 (4) 3164.09 112825.75 20.05 7.74
40 44.35 27.80 1.50 0.00 1421.73 33.80 1.87 0.00 (1) 4984.88 90,391 21.62 10.75

Table 4
Average computational times (in seconds) for scheduling instances.

Instances n B&C CPLEX-PQ

Time Nodes %rG Time Nodes %rG

PROB40x.TXT 15 0.02 0.00 0.00 0.23 2.88 0.04
PROB50x.TXT 25 0.15 0.00 0.00 1.06 21.75 0.06
PROB60x.TXT 35 1.68 4.75 0.02 9.24 80.00 0.08
PROB70x.TXT 45 10.35 7.00 0.02 104.56 923.63 0.09
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� B&C-R: the B&C algorithm for the TDP proposed in Méndez-Díaz
et al. (2008). This algorithm is based on a special formulation for
the TDP, whose variables capture the cumulative nature of
costs. It includes several facet defining inequalities as well as
a primal heuristic, producing good and competitive computa-
tional results. Taking to account the benchmark instances
tested, the results produced by this algorithm represents a good
baseline for the evaluation of B&C. Since we have access to the
code, the computational experiments for this algorithm are car-
ried out in the same environment described before.
� CPLEX-PQ: CPLEX’s default algorithm considering the PQ model.

It also includes the variable fixing phase explained in Section 4
and all CPLEX’s general features. The comparison with this algo-
rithm will show the benefits obtained by including special pur-
pose features in B&C.

For each algorithm we report the computational time (in sec-
onds) and the number of tree nodes explored in the B&C algorithm.
A cell filled with (⁄⁄⁄) means that the instance was not solved
within 2 hours by that algorithm. We also show the gaps at the
root node (%rG) and at the end of the execution (%fG). The %rG is
calculated as 100 ⁄ (BESTUB � LB)/BESTUB, where BESTUB is the
objective value of the best solution obtained considering all algo-
rithms tested. For %fG we adopted a different criterion, and is com-
puted as 100 ⁄ (UB � LB)/UB, where UB stands for the objective
value of the best solution found by the algorithm under consider-
ation. In this way, %fG gives us a measure of the progress made by
the algorithm when the time limit is reached. For the B&C-R algo-
rithm we do not report results of TSP instances, since B&C-R is spe-
cifically developed for the TDP.

5.1. Comparison of B&C algorithms

In Tables 1 and 2 we show the computational times for the TSP-
LIB instances considered as TSP and TDP instances, respectively.
One of the messages of this table is that our B&C algorithm outper-
forms CPLEX-PQ in all the instances considered, producing much
better results and solving almost all instances considered. This lies
on the fact that the inequalities incorporated to the cutting phase
are quite effective, specially the combination of the TDCI of size
2, the Lifted TDCI and SECs. The best gains are obtained at the root
node, where the gap with respect to the optimal solution is consid-
erably reduced. The average of %rG over all TSP instances consid-
ered is 0.36% for B&C while for CPLEX-PQ is 13.84%. For TDP
instances, these values are 1.82% for B&C and 15.85% for CPLEX-
PQ. It is important to note that in both cases the %rG for TDP in-
stances tend to be larger than for TSP ones. Furthermore, the num-
ber of instances solved at the root node by B&C is smaller when
considered as TDP.

The most interesting results are the ones regarding instances
with 40 vertices or more. CPLEX-PQ algorithm is able to solve to
optimality only 2 of the 26 instances (ftv44 TSP; ftv47 TDP) within
2 hours, while our B&C solves 23 of them. This is also expressed in
the number of nodes explored in the B&C tree, where CPLEX-PQ re-
quires to visit an extremely higher number of them compared to
B&C.

Considering B&C-R algorithm, it is able to solve 4 of the 13 TDP
instances with more than 40 vertices, The computational times are
considerable higher compared to the ones produced by B&C. This
can be explained by the fact that B&C-R LP relaxations are difficult
to solve and, even when they produce good lower bounds, the pro-
cedure of B&C is more effective.

We now turn our attention to two specific instances for which
computational times are affected by the preprocessing explained



Table 5
Comparison of computational times (in seconds) with Bigras et al. [Bigras et al., 2008].

Instance B& C Bigras et al. B& C-R CPLEX-PQ

Time Nodes Time Nodes Time Nodes Time Nodes

gr17 0.1 0 3 1 1.68 0 1.34 380
gr21 0.37 0 10 1 2.98 0 14.80 4123
gr24 0.48 0 15 1 4.54 0 22.89 3026
bays29 14.36 39 76 16 618.08 49 345.76 31,839
bayg29 94.53 95 191 51 250.07 27 705.15 67,719
rbg016a 0.03 0 15 1 1.01 0 0.2 0
rbg031a 1.29 0 90 1 279.37 5 21.31 290
rbg050b 620.46 602 ⁄⁄⁄ ⁄⁄⁄ ⁄⁄⁄ ⁄⁄⁄ 1239.92 16,125
dTSP40.0 3571.54 1119 6473 377 ⁄⁄⁄ ⁄⁄⁄ ⁄⁄⁄ ⁄⁄⁄
dTSP40.1 224.94 95 1452 50 ⁄⁄⁄ ⁄⁄⁄ ⁄⁄⁄ ⁄⁄⁄
dTSP40.2 342.23 125 1068 28 5662.62 127 ⁄⁄⁄ ⁄⁄⁄
dTSP40.3 6410.05 1431 629 24 ⁄⁄⁄ ⁄⁄⁄ ⁄⁄⁄ ⁄⁄⁄
dTSP40.4 26.83 29 299 4 1184.86 30 ⁄⁄⁄ ⁄⁄⁄
dTSP50.0 363.57 91 1364 5 ⁄⁄⁄ ⁄⁄⁄ ⁄⁄⁄ ⁄⁄⁄
dTSP50.1 3088.25 499 ⁄⁄⁄ ⁄⁄⁄ ⁄⁄⁄ ⁄⁄⁄ ⁄⁄⁄ ⁄⁄⁄
dTSP50.2 594.8 205 3668 8 ⁄⁄⁄ ⁄⁄⁄ ⁄⁄⁄ ⁄⁄⁄
dTSP50.3 ⁄⁄⁄ ⁄⁄⁄ ⁄⁄⁄ ⁄⁄⁄ ⁄⁄⁄ ⁄⁄⁄ ⁄⁄⁄ ⁄⁄⁄
dTSP50.4 ⁄⁄⁄ ⁄⁄⁄ ⁄⁄⁄ ⁄⁄⁄ ⁄⁄⁄ ⁄⁄⁄ ⁄⁄⁄ ⁄⁄⁄

3 Obtained from www.cpubenchmark.net. Bigras et al. CPU obtains a rating of 744,
and ours 1922.
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in Section 4. Instance br17, when considered as a TDP instance,
without this variable fixing requires 209.24 s and 1549 nodes in
the B&C tree to be solved. In Table 2 we can appreciate that it is
solved in less than a second at the root node. A similar observation
can be done for p43, which cannot be solved within the time limit
imposed without the preprocessing, neither in its TSP version nor
in its TDP one. Although it is a quite restrictive condition, it shows
to be very effective and produces significant changes in the overall
computational times.

Regarding the %fG, we can observe that B&C produces the best
results in the instances that cannot be solved within the time limit
imposed. For TSP instances, B&C is not able to solve only one in-
stance and %fG is 0.33 %, while for CPLEX-PQ the average %fG over
the unsolved instances is 28.15%. For TDP ones, the average %fG
over the unsolved instances is 1.99% for B&C, 14.61% for B&C-R
and 17.64% for CPLEX-PQ. Based on this values and the number
of instances solved we can deduce that B&C represents a more ro-
bust approach than B&C-R and CPLEX-PQ. This is due to the combi-
nation between the improvements obtained by means of the
cutting planes and the effectiveness of the primal heuristic in find-
ing good feasible solutions early in the B&C tree.

The results for the instances from Méndez-Díaz et al. (2008) are
presented in Table 3. Each row shows the average value for the
computational time, number of nodes explored and gaps over five
instances. If present, a number between parenthesis indicates how
many of the five instances are actually solved to optimality within
2 hours and the value in the cell represents the average considered
only these instances.

In general, results are similar to the ones for the TSPLIB in-
stances. The B&C algorithm produces considerable reductions in
the computational times, and these differences become larger as
the number of vertices of the instances increase. Both B&C and
B&C-R are capable of solving all instances, in general enumerating
a small number of nodes in the B&C tree. CPLEX-PQ begins to fail in
symmetric and euclidean instances with 35 and 40 vertices. The
gaps at the root node for B&C-R are very good in general, but the
algorithm is more time consuming than B&C because of the time
required to solve each LP relaxation. As expected, CPLEX-PQ enu-
merates a great number of nodes in the B&C tree, showing the ben-
efit of the cutting plane algorithm of B&C.

An interesting observation from the results observed in this ta-
ble regards the difficulty of the instances depending on its type.
Both B&C and B&C-R are able to solve asymmetric and symmetric
instances within a reasonable time, and for each algorithm the
times are comparable. However, we can observe an increment on
the times as well as in the number of nodes explored for euclidean
instances, which seem to be harder to solve than the ones men-
tioned previously.

In Table 4 we show the average computational times for the
scheduling instances from Rubin and Ragatz (1995). The average
value is calculated over eight instances for each n = 15, 25, 35,
45. These results are aligned with the ones from the previous ta-
bles. Our B&C performs better than CPLEX-PQ, both in the compu-
tational times and the number of nodes explored. It is important to
note that this difference is significantly higher when n = 45, since
the other instances are easily solved by both methods. Again, this
behavior is due to the strengthening of the bounds produced by
the cutting phase and the primal heuristic.

Finally, we compare our results with the ones reported in Bigras
et al. (2008) in Table 5. As mentioned in the introduction, the
authors study the path formulation proposed in Picard and Queyr-
anne (1978). The formulation has an exponential number of vari-
ables and therefore they consider a B&C&P algorithm. For the
pricing phase, they consider adding paths (columns) without four
cycles. They also include several families of valid inequalities of
the TSP and clique inequalities obtained by constructing the con-
flict graph using incompatibilities inferred for the TDTSP.

The authors report computational times in all cases, exceeding
our time limit of 2 hours in four instances. It is important to remark
that the computer used by Bigras et al. (2008) dates from 2008.
Based on standard CPU comparisons3 and considering that our code
runs in single thread, our computer has a speed-up of nearly three
compared to theirs. Thus, we report (⁄⁄⁄) for their computing times
whenever they exceed 3 � 7200 = 21,600 seconds. Besides this, we
can observe some interesting results in the comparison.

First we note that B&C solves more instances than all the other
methods. In some cases, computational times obtained by Bigras
et al. are reduced by B&C to a 10% of the time. Furthermore, com-
putational times reported by the authors for instances dTSP50.1,
dTSP50.3 and dTSP50.4 are 56,240, 47,771 and 109,586 seconds,
respectively. Regarding B&C, it can solve dTSP50.1 in less than an
hour. It is also interesting the reduction obtained for instance
rbg050b, where B&C requires approximately 10 minutes to solve
it. Despite the difference on the computers, the reductions on the

http://www.cpubenchmark.net
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computational times are also due to the inclusion of specific pur-
pose cuts and the primal heuristic. On the other hand, for the in-
stance dTSP40.3 their algorithm performs much better than B&C,
which is able to find the optimal solution but the initial gap is large
and encounters difficulties to close it. This is related to the nature
of their approach, which can also be observed in the fact that their
B&C&P algorithm tends to enumerate less nodes than B&C. As re-
gards B&C-R and CPLEX-PQ, the behavior is similar to the previous
experiments.

6. Conclusions

In this paper we consider the TDTSP formulations of Picard and
Queyranne (1978) and Vander Wiel and Sahinidis (1996). We ana-
lyze both polytopes and derive several families of valid inequalities
for both models. We generalize the idea of the well-known cycle
inequalities for the ATSP, and derive five families of facets by
applying a lifting procedure. We develop a B&C algorithm in order
to evaluate these inequalities which, together with a primal heuris-
tic, prove to be very effective. The overall approach produces good
computational results over different benchmark instances com-
pared to a general purpose B&C algorithm for the model proposed
in Picard and Queyranne (1978), that inclues also a particular pre-
processing for the problem and is solved with CPLEX default algo-
rithm, and the B&C algorithm from Méndez-Díaz et al. (2008). The
proposed algorithm is capable of solving instances with up to 58
vertices within 2 hours of computing time.

As future research, it would be interesting to analyze the com-
plexity of the separation problems for the lifted TDCI in order to
improve the separation routines implemented so far. Regarding
the polyhedral study performed in this paper, although we do
not have a proof, we conjecture that valid inequalities proposed
in Section 3.3 are facet defining. More work could be done in this
direction.

Investigating how to improve the computational times required
to solve the LP relaxations of B&C, by means of studying particular
characteristics of the formulation (PQ), could lead to significant
reductions in the overall computational times, specially for in-
stances with large values of n. In addition, as mentioned in the
computational experiments, the preprocessing proposed showed
to be very effective on instances satisfying condition (36). It is
worth to investigate further this aspect of the problem to derive
new rules to fix variables in the model.
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