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Sufficient Conditions for Generic Feedback Stabilizability
of Switching Systems via Lie-Algebraic Solvability

Hernan Haimovich and Julio H. Braslavsky

Abstract—Weaddress the stabilization of switching linear systems (SLSs)
with control inputs under arbitrary switching. A sufficient condition for
the stability of autonomous (without control inputs) SLSs is that the indi-
vidual subsystems are stable and the Lie algebra generated by their evo-
lution matrices is solvable. This sufficient condition for stability is known
to be extremely restrictive and therefore of very limited applicability. Our
main contribution is to show that, in contrast to the autonomous case, when
control inputs are present the existence of feedback matrices for each sub-
system so that the corresponding closed-loop matrices satisfy the afore-
mentioned Lie-algebraic stability condition can become a generic prop-
erty, hence substantially improving the applicability of such Lie-algebraic
techniques in some cases. Since the validity of this Lie-algebraic stability
condition implies the existence of a common quadratic Lyapunov function
(CQLF) for the SLS, our results yield an analytic sufficient condition for
the generic existence of a control CQLF for the SLS.

Index Terms—Common quadratic Lyapunov function (CQLF),
switching linear systems (SLSs), uniform global exponential stability
(UGES).

I. INTRODUCTION

Switched systems are dynamical systems that combine a finite
number of subsystems by means of a switching signal [1], [2]. In
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recent years, considerable research effort has been devoted to studying
the stability and stabilizability of switched systems [1], [3]–[5]. In this
technical note, we focus on the case where each subsystem is linear
and also on stability under “arbitrary switching”, where stability holds
for every possible switching signal. We refer to the switched systems
under consideration as switching linear systems (SLSs).
A SLS may either be autonomous or have control inputs. For au-

tonomous SLSs, it is known that the uniform global exponential sta-
bility (UGES, where ‘uniform’ means ‘over all switching signals’) is
equivalent to the existence of a Lyapunov function common to all sub-
systems [6]. A computationally appealing stability condition, though
more restrictive, is the existence of a common quadratic Lyapunov
function (CQLF) [5, § 4.2]. A CQLF may be efficiently numerically
sought for by solving linear matrix inequalities [7]. An analytical sta-
bility condition, even more restrictive, states that a SLS admits a CQLF
(and is hence UGES) if every individual subsystem is stable and the
Lie algebra generated by their evolution matrices is solvable. The solv-
ability of a matrix Lie algebra is equivalent to the existence of a single
similarity transformation that transforms each matrix into upper trian-
gular form. This Lie-algebraic stability condition is simple to check
numerically and holds both for discrete-time SLSs [8], [9] and con-
tinuous-time SLSs [10], [11]. These Lie-algebraic stability conditions,
although mathematically elegant and possibly computationally advan-
tageous (cf. [12]), have had very limited applicability due to their re-
strictiveness.
The situation can be radically different for SLSs with control inputs,

where feedbackmay be employed to stabilize the SLS. Indeed, themain
contribution of the current technical note is to establish that the exis-
tence of feedback matrices for each subsystem so that the closed-loop
SLS satisfies the aforementioned Lie-algebraic stability condition can
become a generic property, namely, a property that is valid for al-
most every set of system parameters. We give conditions that ensure
the genericity of this property and thus may enhance the applicability
of such Lie-algebraic stabilization techniques when control inputs are
present. These conditions depend on the number of states, subsystems
and control inputs of each subsystem. In order to be satisfied, the given
conditions require each subsystem to have a “substantial” number of
inputs, although possibly fewer inputs than states.
Feedback control design based on Lie-algebraic solvability has been

previously pursued by the authors [13]–[16]. A central contribution
in [13], [14] is an iterative design algorithm that searches for a set of
stabilizing feedback matrices that attain the target simultaneously tri-
angularizable closed-loop structure via the application of a common
eigenvector assignment (CEA) procedure and the reduction of state di-
mension at each iteration. The main theoretical result in [13], [14] es-
tablishes that the proposed algorithm will iterate successfully until the
state dimension is reduced to 1 if and only if feedback matrices exist
so that the corresponding closed-loop subsystem matrices are stable
and simultaneously triangularizable, i.e. if and only if feedback ma-
trices exist so that the closed-loop system satisfies the aforementioned
Lie-algebraic stability condition. A numerical implementation for the
proposed iterative design algorithm and the CEA procedure are also
provided in [14], together with a key structural condition, which, when
satisfied, guarantees a directly computable solution for the CEA pro-
cedure. If this structural condition is not satisfied, then the required
quantities are sought by means of an optimization problem.
In addition to its limited applicability, the aforementioned Lie-alge-

braic stability condition is also non-robust, in the sense that even if it is
satisfied for a given autonomous SLS, it is almost surely not satisfied
by SLSs with parameters arbitrarily close to the given one. The work
in [15] then provides a robust result by relaxing, for single input sys-
tems, the simultaneous triangularization requirement to approximate
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(in a specific sense) simultaneous triangularization. The main theo-
retical contribution in [15] establishes that if a single-control-input
SLS satisfying the aforementioned Lie-algebraic condition exists in
a suitably small neighborhood of the given SLS, then the proposed
algorithm is guaranteed to find feedback matrices so that the corre-
sponding closed-loop SLS admits a CQLF even if the Lie-algebraic
condition is not met by the given system. (Agrachev et al. [17] have
recently derived, for autonomous SLSs, robust stability conditions re-
lated to Lie-algebraic solvability and formulated directly in terms of
Lie brackets.)
Our current main results build upon the key structural condition pro-

vided in [14]: if such structural condition is satisfied at every iteration of
the algorithm, then the considered feedback control design via Lie-al-
gebraic solvability problem may be not restrictive at all for systems
with the given dimensions. In this regard, the main result in [16] is the
identification of the situation that prevents the structural condition from
being satisfied at every iteration of the algorithm.
In the present technical note, we build upon the results of [16] by

providing sufficient conditions for the structural condition to hold at
every iteration of the algorithm for almost every set of system param-
eters with the given dimensions. We thus provide sufficient conditions
for the genericity of the property of existence of feedback matrices so
that the closed-loop subsystem matrices are stable and generate a solv-
able Lie algebra, a property which implies the existence of a CQLF
for the closed-loop system. Consequently, a side contribution of the
current technical note is the derivation of an analytic condition that en-
sures the genericity of the property of existence of feedback matrices
so that the corresponding closed-loop SLS admits a CQLF. Prelimi-
nary results on this topic have been previously presented by the au-
thors in [18]. Even though our previous results [13]–[16], [18] focus
on discrete-time SLSs, the current results are valid for both discrete-
and continuous-time SLSs.
Notation: The index set is denoted . The kernel

(null space) of a matrix or linear map is denoted
and its image (range), . Given a subspace , the subspace

is denoted . For , its transpose
is denoted , its conjugate transpose and its Moore-Penrose gener-
alized inverse . If are vector spaces, then means that
is a subspace of , denotes the direct sum of and (which
implies that ), and denotes the dimension of . If is
a finite set, then denotes the number of elements in .

II. PROBLEM FORMULATION

Consider the discrete- or continuous-time SLSs

(1)

(2)

where the switching function takes values in , and for
all , , the matrices and
are known, and have full column rank. We are interested in state-
feedback control design of the form

(3)

so that the resulting closed-loop system

(4)

(5)

admit a CQLF and hence be stable under arbitrary switching. Note that
at every time instant, the control law (3) requires knowledge of the
“active” subsystem given by or .

Fig. 1. Algorithm for iterative triangularization by feedback.

As is well-known, ensuring that each be stable is necessary but
not sufficient to ensure the stability of the autonomous SLS (4) under
arbitrary switching. A sufficient condition is given by the following
result [9, Theorem 6.18], [10, Theorem 2].
Lemma 1 (Lie-Algebraic-Solvability Stability Condition): If every
is stable and the Lie algebra generated by is

solvable, then (4) admits a CQLF and hence is UGES.
In this technical note, we specifically consider stabilizing state feed-

back design for the SLSs (1) and (2) based on the Lie-algebraic-solv-
ability condition of Lemma 1. We thus focus on the SLS class defined
next.
Definition 1 (SLASF): A set

is said to be SLASF (Solvable Lie Algebra with Stability by
Feedback) if there exist such that as in (5) are stable
(Schur-stable for a discrete-time SLS; Hurwitz-stable for a continuous-
time SLS) and generate a solvable Lie algebra.
In matrix terms, the fact that the Lie algebra generated by the ma-

trices is solvable is equivalent to the existence of an invertible ma-
trix such that is upper triangular for all .
Note that even if the matrices have real entries, those of may
be complex [19].

III. PREVIOUS RESULTS

Control design that causes the closed-loop system to be stable by
satisfying the conditions of Lemma 1 can be performed iteratively
by seeking feedback matrices that assign a common eigenvector
with stable corresponding eigenvalues at every iteration [13], [14].
Although the latter references deal exclusively with discrete-time
SLSs, the only difference between the discrete- and continuous-time
cases is the stability region considered (the open unit disk or the open
left half-plane). The control design method of [13], [14] is represented
by Algorithm ITF (Iterative Triangularization by Feedback), shown
in Fig. 1. Algorithm ITF seeks feedback matrices so that the
closed-loop matrices given by (5) are stable and simultaneously
triangularizable.
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A. Algorithm for Iterative Triangularization by Feedback

Algorithm ITF begins by setting internal matrices equal to the sub-
system matrices of the SLS to be stabilized ( and at
the Initialization step). At every iteration [ indicates iteration number,
see (6)], the algorithm executes Procedure CEA [see (7)] on its internal
system matrices and . Procedure CEA aims to compute a vector,
, and corresponding feedback matrices, , so that is a feed-

back-assignable unit eigenvector common to all internal subsystems,
with corresponding stable eigenvalues. That is, if Procedure CEA is
successful, then will satisfy and
for some scalars satisfying for discrete-time or
for continuous-time, for all .
The algorithm then computes internal closed-loop matrices [

in (8)], updates internal feedback matrices [ in (9)] and then reduces
the internal state dimension by 1. This reduction occurs at (10)–(13) [
is the internal state dimension, see (6)]. Note that is the first column
of the unitary matrix (10), and considering (11) then
and .
Iterations run until the internal state reaches dimension 1. If the given

system matrices form a SLASF set (recall Definition 1), the matrices
computed by Algorithm ITFwill be the required feedback matrices.

In addition, for each subsystem , the eigenvalues of
will be equal to for .

If the given system matrices , for , form a SLASF set,
then at every iteration of Algorithm ITF a stable feedback-assignable
common eigenvector is ensured to exist for the internal system with
matrices , for . Conversely, if a (stable) feedback-assign-
able common eigenvector exists at every iteration of Algorithm ITF,
then the given systemmatrices form a SLASF set. The latter constitutes
themain theoretical result that underpins our iterative control design al-
gorithm [13], [14].

B. Procedure for Common Eigenvector Assignment

As expressed in the previous paragraph, the existence of a feed-
back-assignable common eigenvector with corresponding stable eigen-
values is central to our development. This section recalls the structural
condition introduced in [14] which, when satisfied, ensures that such a
vector exists and allows its computation in a straightforward and nu-
merically efficient way.
We introduce some notation required to state this structural condi-

tion. Define , and factor ,
where has full row rank and has
full column rank. We adopt the convention that is an empty matrix
if . Note that . Let be the vector with com-
ponents , , i.e.

(14)

and build the matrix

... (15)

where blkdiag denotes block diagonal concatenation.
Lemma 2 (Structural Condition [14], [16]): Let

(16)

Fig. 2. Procedure CEA when the structural condition is satisfied.

Then,
(a) A vector that can be assigned by feedback as a common eigen-

vector with corresponding eigenvalues for exists if and
only if .

(b) If with partitioned as

(17)

(18)

for every satisfying . For each one such
is .

(c) for every choice of as in (14). Conse-
quently, if , then a feedback-assignable common eigen-
vector exists for every choice of corresponding eigenvalues.

Lemma 2 gives a structural condition, namely , for a feed-
back-assignable common eigenvector to exist for each choice of cor-
responding eigenvalues . This condition is structural because the
quantities involved in the computation of are only matrix ranks
and dimensions. If the structural condition is satisfied, a feed-
back-assignable common eigenvector , as required at iteration of
Algorithm ITF, can be computed as follows:
1) Select the corresponding (stable) closed-loop eigenvalues for
each subsystem and build as in (14);

2) Find a vector with components partitioned as in (17) so
that (namely, so that );

3) Select the first components of to construct the subvector
in (17). The feedback-assignable common eigenvector sought is
finally computed as .

Feedback matrices to assign the eigenvector with corresponding
eigenvalues can be obtained as . Procedure CEA is
thus summarized in Fig. 2 for the case when the structural condition of
Lemma 2 is satisfied.
Even if the SLS matrices have real entries, those of the ma-

trices internal to Algorithm ITF can be complex at some iter-
ation . This is so because the vector returned by Procedure CEA
(a feedback-assignable common eigenvector) can have complex com-
ponents even if have real entries, causing to have
complex entries. However, when the structural condition is sat-
isfied, the closed-loop eigenvalues , i.e. the components of , can
be arbitrarily selected. Hence, selecting will cause the vector
to be real. In the sequel, we assume that real eigenvalues will be se-

lected and hence all matrices internal to Algorithm ITF will have real
entries.

C. Structural Condition

If the structural condition given by Lemma 2, namely , holds
at iteration of Algorithm ITF, then Procedure CEA can compute a
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feedback-assignable common eigenvector and the corresponding feed-
back matrices, for every choice of corresponding (stable) closed-loop
eigenvalues. In addition, if the closed-loop eigenvalues for
every can be freely chosen. The quantity depends on , the
rank of . At the first iteration of Algorithm ITF, i.e. when ,
the internal matrices have rows, columns, and
since by assumption they have full column rank, then . At
subsequent iterations, the matrices have rows and
columns. Since the matrix (10) is unitary by construction, then ac-

cording to (11) and (13) we have

(19)

and moreover, depends on the vector returned by Procedure
CEA as

if ,
if .

(20)

From (20), then when , because
. The following theorem and corollary follow from (6), (16), and

(20).
Theorem 1 ([16]): Consider Algorithm ITF at iteration and as

in (16), with . Then, , with equality if
and only if

(21)

Corollary 1: Let . Then,
(a) for .
(b) if for some .
(c) if and only if and (21) holds.
Corollary 1(c) identifies the condition that prevents the inductivity

of the structural condition from iteration to iteration of
the algorithm. The following section builds on these results.

IV. MAIN RESULTS

In this section, we derive conditions to ensure that the structural
condition will hold at every iteration of Algorithm ITF, i.e.
for . Subsequently, we will establish that, for some state
vector dimensions, , number of subsystems, , and number of con-
trol inputs, for , these conditions are valid for almost every
set of system parameters—the entries of and for .
In Section IV-A, we recall and extend the property of transversality

of subspaces (see, e.g., Chapter 0 of [20]), which is required for the
derivation of our main results. In Section IV-B, we derive conditions
that ensure the validity of the structural condition at every iteration of
Algorithm ITF. In Section IV-C, we analyse the conditions derived in
Section IV-B and relate them to the genericity of the SLASF prop-
erty (recall Definition 1). A brief numerical example is given in Sec-
tion IV-D. Proofs are provided in the Appendix.

A. Transversality of Subspaces

Definition 2 (Transverse): Two subspaces of an ambient space
are said to be transverse when the dimension of their intersection is

minimal, given the dimensions of and , i.e., when

(22)

Equivalently, and are transverse when the dimension of their sum
is maximal. We extend this definition to sets of subspaces as follows.
Let be a set of subspaces of an ambient space .
We say that is transverse when both the intersection of the subspaces

in every subset of has minimal dimension and the sum of the sub-
spaces in every subset of has maximal dimension.
It is well-known [20, Ch.0] that transversality of two subspaces

and is a generic property, i.e. it is satisfied by almost every and
selected “randomly” among all subspaces of . Also, it is evident

that the extension of this property to sets of subspaces according to
Definition 2 preserves genericity, in the sense that almost every set
containing a finite number of subspaces taken “randomly” among all
subspaces of will be transverse according to Definition 2.
We will require the following properties related to transversality.
Lemma 3: Let be a set of subspaces of the

ambient space , and define

Then,
(a) .
(b) If is transverse, then .
(c) If is transverse and , then for all

with .
(d) Let , with and . Suppose that

and that is transverse. Then, is
transverse if and only if .

B. Validity of the Structural Condition at every Iteration

The derivations of this section require deep analysis of the condition
(21). In the sequel, let denote the set of vectors
for which there exist a matrix and a stable scalar so that

(23)

By definition, is the set of feedback-assignable stable eigenvec-
tors for the internal subsystem that are contained in . Con-
sequently, if is a stable feedback-assignable common eigenvector,
then if and only if . The following result is straight-
forward.
Lemma 4:
(a) The set is a subspace.
(b) if and only if and .
Define the following quantities:

(24)

(25)

The core technical result of the technical note is given below as The-
orem 2. This result gives conditions under which the structural condi-
tion of Lemma 2 will hold at every iteration of Algorithm ITF, irre-
spective of the choice of closed-loop eigenvalues performed in Pro-
cedure CEA.
Theorem 2: Let be transverse, , and

be controllable for all . Then,
(a) for .
(b) The set , which identifies the given

SLS, is SLASF.

C. Genericity of the SLASF Property

Theorem 2 gives sufficient conditions under which a given SLS will
be SLASF. We next show that for some state vector dimensions, ,
number of subsystems, , and number of control inputs, for each

, these conditions are satisfied for almost every set of matrices
and with .
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The three conditions required by Theorem 2 are that the set of sub-
spaces be transverse, that the quantity be nonnegative
and that the pairs be controllable. It is well-known that con-
trollability is a generic property [20] and hence we next focus on the
first two conditions.
We show first that transversality of is generic in the

space of parameters of the matrices . From Lemma 5(b), it fol-
lows that . Note that arbitrary choices for the
entries of yield arbitrary , although generi-
cally of dimension . In addition, arbitrary choices for the
entries of yield arbitrary , also generically of di-
mension . Therefore, the subspaces and will be trans-
verse generically and from (22), then

generically. We conclude that arbitrary choices for
the entries of and produce arbitrary even though subject to
the constraint that

(26)

Due to the fact that arbitrary can be produced, then the set
is transverse generically in the space of parameters of .

Consider next the quantity . From (24) and (26) follows that
generically. The condition

imposes a restriction on , , and for each . We summarize
our main result as Theorem 3 below, and subsequently show that
may hold in some non-trivial cases.
Theorem 3 (Genericity of the SLASF Property): If the state dimen-

sion , the number of subsystems , and the number of control inputs
for each , are such that

(27)

then the SLASF property holds for almost every set of system param-
eters and for all .
Corollary 2: Under the same conditions for , and as in

Theorem 3, the property of existence of feedback matrices so that the
closed-loop SLS admits a CQLF is generic.
We next analyse the condition (27). Note that non-trivial cases are

those for which , and for all .
Combining these conditions with (27) leads to the following:
• In order for (27) to hold in a non-trivial case, then it is necessary
that and .

• Under the condition , then it is sufficient (but not nec-
essary) that for all for (27) to hold.

D. Numerical Example

Consider a discrete-time system of the form (1), with , ,

Each of the entries of has been generated by rounding
a random value uniformly distributed in the interval [ 5, 5]. By direct

computation, it can be verified that all the eigenvalues of both and
are unstable and that the set is transverse. Also, and
have full column rank and are controllable. Ac-

cording to (16), we have and from (24), . According to
Theorem 2, the given system is SLASF and at every iteration
of Algorithm ITF, irrespective of the choice of eigenvalues performed
in Procedure CEA. Choosing the stable eigenvalues for ,
2 at every iteration , Algorithm ITF yields

It can be verified that all the eigenvalues of [recall (5)] are zero
(within rounding inaccuracy) and that is upper triangular
for , 2, with

See [16] for more numerical examples on cases where genericity
conditions hold at all or just some iterations of Algorithm ITF.

V. CONCLUSION

We have considered both continuous- and discrete-time SLSs with
control inputs and under arbitrary switching. A stability result for SLSs
with no control inputs states that the SLS is stable if the subsystem
matrices are stable and generate a solvable Lie algebra. This stability
result encounters very limited applicability due to its restrictiveness
and non-robustness. However, we have established that when control
inputs are present, the property of existence of feedback matrices so
that the closed-loop SLS subsystem matrices are stable and generate a
solvable Lie algebra can become generic, i.e. valid for almost every set
of system parameters.We have derived sufficient conditions that ensure
the genericity of this property. In order for these conditions to hold in
non-trivial cases, the number of subsystems of the SLS has to be not
greater than half the number of system states and every subsystem is
required to have more control inputs than half the number of states.
Since the aforementioned Lie-algebraic stability condition implies

the existence of a CQLF for the SLS, our results also provide an ana-
lytic sufficient condition for the genericity of the existence of feedback
matrices so that the closed-loop SLS admits a CQLF.

APPENDIX

Proof of Lemma 3: The proof of (a)–(c) is a direct application of
subspace algebra.
(d) For a set , define

. Since , then and because
for all . By Lemma 3(b) and since and

, then and . By Lemma
3(a), we have

(28)

Necessity is established by substituting the expressions for and
into (28) and recalling that .
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Let . We have
. Taking , jointly with the fact

that is transverse, establishes that the dimension of the
sum of the subspaces in every subset of has maximum
dimension. Also, we have

which, jointly with the fact that is transverse, establishes
that the dimension of the intersection of the subspaces in every subset
of has minimum dimension.
Proof of Theorem 2: The proof of Theorem 2 requires the following

two lemmas.
Lemma 5: Let denote the number of controllability indices of

that are equal to 1. Then, .
Proof: According to the standard construction for the controlla-

bility indices of a system (see, e.g. [20]), it follows that
, where is any matrix satisfying

. Since , write and let . Then,
.

Let be a basis for , be a basis for

, and . By Lemma 4(b), we have that

for and for . Therefore,
.

If , then
for some scalars and , where not all the are zero. Then,

and , which leads to a con-
tradiction. Therefore, and

.
Lemma 6: Consider Algorithm ITF at iteration . Suppose that

is controllable and with and scalar
. Then, , is controllable, and

if ,
otherwise.

(29)

Proof: Let be a basis for and let ,
for be the controllability indices of . By (8)
and the feedback invariance of controllability indices, also are the
controllability indices of the pair .
Since is controllable, then also is controllable,

and
is a basis for . Write with respect to the basis :

, where not all the are zero. Combining the
latter with yields

(30)

From (30), it follows that for at least one pair of indices
such that , or otherwise the vectors in would be

linearly dependent, a contradiction.
Let , and let be such

that . From the basis , construct another basis, , by re-
placing the basis vector by . Note that

and (cf. Section III-A). By (10)–(12)
and the fact that , then .

Hence and

(31)

is a basis for [recall that, by (6), ]. From (13),
it follows that . We have that a basis for , is

if or
if . The condition hence happens if

and only if .
The preceding derivations show that the controllability indices of

are given by for with
and whenever . From the

latter expressions, and recalling Lemma 5, (29) and the controllability
of are established.
Note that whenever , since then
and hence has one controllability index equal to one

more than . The fact that follows from the
latter consideration and the basis .
Proof of Theorem 2: (a) First, we prove that the conditions

(32)

imply that . Since , then and .
From controllability of and Lemma 5, then if and
only if . Hence, if , then . Otherwise,

.
Next, we establish the validity of (32) for . Note that

(32) hold at by assumption and because and .
Next, suppose that (32) hold at some . By the argument
in the previous paragraph, then , which ensures the existence
and computation of such that with scalar
for all . Hence, is controllable by Lemma 6.
Also by Lemma 6, we have for all . Since

, by Lemma 3(b) we have that , and from Lemma 3(c)
we have for all with . It follows
that for all

with . The latter fact establishes that the sum of the sets
in every subset of has maximal dimension and also
that is transverse for all with .
Let be a subset of . We proceed by induction

on the number of subspaces in . We have already established that
is transverse if . Suppose next that is transverse whenever

, with . Let , with
and , and let so that .

By Lemma 6 and properties of maps and subspaces, we have

(33)

By (32) and since , then is transverse. By
Lemma 3(d), then . Combining the latter
equality with (33), then .
By Lemma 3(d) then is transverse. We have thus established
that our induction hypothesis is valid for and we con-
clude that is transverse. By Lemma 3(b), then

.
From (24) and (29), it follows that the minimum value for is
, and this happens only if for all . However,

if , then for at least one because, since
, then . Consequently and

hence we have established (32) for .
(b) By Theorem 2(a), the structural condition will hold at

every iteration of Algorithm ITF. Consequently, a stable feedback-as-
signable common eigenvector exists and can be computed at every it-
eration of the algorithm, and thus the algorithm will finish successfully,
yielding feedback matrices so that the system (1) or (2)
is SLASF.
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