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Abstract

We recently introduced an algorithm for training a sequence of coupled Sup-
port Vector Machines which shows promising results in the field of non-
stationary classification problems [12]. In this paper we analyze its appli-
cation to the abrupt change detection problem. With this goal, we first
introduce and analyze an extension of it to deal with the One-Class Support
Vector Machine (OC-SVM) problem, and then discuss its use as an improved
abrupt change detection method. Finally, we apply the proposed procedure
to artificial and real-world examples, and demonstrate that it is competitive
by comparison against other abrupt change detection methods.

Keywords: abrupt change detection, one class classification, support vector
machine

1. Introduction

In data modeling, an abrupt change is usually defined as a noticeable
variation in the distribution that generates the data, produced on a very
short period of time [1]. Abrupt changes can be easily spotted in some cases,
for example when there is a big increase in the variance of the noise of a
time-series, or hard to find in others, as in a subtle change in the vibration
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pattern of a complex machine. The problem has many real world applica-
tions, including time series analysis [3], spam filtering [15], modeling of data
streams [28], or some industrial processes [21] .

Among the methods aimed at abrupt change detection, a well-known
strategy is to measure an appropriate property of the data over short periods
of time (time windows) and to associate a change in the value of this property
with an abrupt change in the data. Simple methods use a given statistic of
the data [1], while more complex ones involve the analysis of the parameters
of statistical or machine learning models fitted to the windowed data set [7].
One of the drawbacks of this approach is that the fitting of complex models
over small datasets usually produces poorly regularized solutions that lead
to a high false positive detection rate.

In particular, One-Class classifiers are appropriate models for this anal-
ysis. In One-Class problems the goal is to describe a single class of objects
and distinguish it from all other possible objects (usually outliers). One of
the most successful and effective methods in this area is the One-Class SVM
(OC-SVM) [26], which has been widely applied, including for example docu-
ment classification [17], intrusion detection [9], Bioinformatics [31] and fault
detection [4].

It is also well known that in the context of non-stationary problems it is
useful to consider methods that do not assume that the data samples are iden-
tically distributed, thereby able to adapt themselves to the non-stationary
situation. In this work we first introduce an extension of the Time-Adaptive
Support Vector Machines (TA-SVM) [12] to One-Class problems. Our new
method uses a series of coupled OC-SVMs in order to learn efficiently in
slowly changing environments. It is based on individual, adaptive models
which are fitted on short segments of the full time interval, all learned si-
multaneously (in a global way) using a coupling term that forces neighbor
models to be similar, introducing a regularization effect on the sequence of
models. A non-stationary version of OC-SVM has been proposed by Camci
et al. [4]. It assigns different (lower) weights to data items as a function of
their “age”, obtaining a model that is fitted to the current time. While this
can be used to generate a sequence of models capturing the evolution of the
data, we would need to train each model separately. The method introduced
in this paper can fit the whole sequence with a similar cost to one OC-SVM.

The second novelty of this work is that we show how this coupled sequence
of OC-SVMs can be used to detect abrupt changes in the data (using a
single user-selected threshold as other methods, such as the Kernel Change
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Detection(KCD) algorithm [7]). The resulting method has several benefits.
In the first place, the user does not need a priori to assume a particular
data distribution and the method can be applied to problems with high
dimensionality, given that it is based on OC-SVM. It shares this characteristic
with KCD. In the second place, it is more robust to noise than KCD, since it is
based on TA-SVM while KCD uses sliding windows. This characteristic was
already observed for TA-SVM [12]. In 4 and the following sections we show
the potential of our new method with artificial and real world applications,
comparing the detection capabilities against two previous methods. We close
this paper drawing some conclusions in Section 6.

2. Previous Work

Given a data set X = {x1, . . . ,xn} sampled independently from an un-
known distribution P, the objective of the OC-SVM is to find a region of
the input space where the sampling probability is high. Schlkopf et al. [26]
achieve this by using a kernel —usually a Gaussian kernel— to map the data
points to a feature space where they are separated from the origin with a
plane (defined by a vector w and a scalar ρ) with maximum margin.

This can be done by solving the following problem:

min
w,ρ,ξ

1

2
||w||2 + 1

νn

∑
i

ξi − ρ (1)

subject to w · Φ(xi) ≥ ρ− ξi; ξi ≥ 0,

where ||x|| is the norm of vector x, ξi are the slack variables, ν is a parameter
selected by the user and Φ a mapping from the input to the feature space
[26]. It is worth noting that Tax and Duin [27] presented a similar problem,
reaching an equivalent solution.

In order to learn classification tasks in slowly changing environments, a
new method based in SVMs was recently proposed [12], the TA-SVM. It
consists of fitting SVMs on short segments of the full time interval, which
are all learned simultaneously (in a global way) using a coupling term that
forces neighboring models to be similar. It assumes that each sample (xi, yi)
of the data set {(x1, y1), . . . , (xn, yn)} was obtained at time i, i.e. they are
time-ordered, and that the relationship between x and y changes slowly over
time. It then divides the data into m consecutive, non-overlapping time
windows and creates a coupled sequence of m classifiers, each one optimal
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in its corresponding time window. As the problem follows a slow evolution,
each classifier should be similar to its temporal neighbors. To this end, TA-
SVM searches a solution which is a trade-off between (individual) optimality
and (neighbor) similarity. Given a distance measure d(cµ, cν) that quantifies
the diversity between two neighboring models fµ and fν , this is obtained as
the solution of the problem

min
1

m

m∑
µ=1

Errµ +
γ

m− 1

m−1∑
µ=1

d(fµ, fµ+1), (2)

where the first term is the average of the usual cost function for each of the m
classifiers and the second evaluates the total difference among the sequence of
modeling functions. The free parameter γ regulates the compromise between
both terms, as in any usual regularized fitting.

The parameter m indicates the detail desired in the modeling of the se-
quence. With a small value for m, only a few hyperplanes will be actually
used in the model, each one describing the sequence in a long period of time.
With a big value for m (including m = n) each hyperplane will describe
only a short time period of the sequence. As shown in [12], it is advisable to
use m = n when the data under analysis has a low noise level, while with a
higher noise level it may be useful to use lower values. For the abrupt change
detection method proposed in Section 4 it is convenient to maintain m = n,
since this allows the detection of a change in any point of the sequence. A
lower value would make the method detect changes only in a fraction of the
points.

To quantify the diversity between the classifiers, a quadratic distance is
used:

d(fµ, fν) = ||wµ −wν ||2 + (bµ − bν)
2.

In a recent work, Camci et al. [4] introduced a non-stationary ver-
sion of the OC-SVM, the General Support Vector Representation Machine
(GSVRM). The method proposes to solve the same problem as in the stan-
dard OC-SVM, but assigning different (lower) weights to data points as a
function of their “age”.

Regarding the abrupt change detection problem, the solutions proposed
can be divided in parametric and nonparametric. Amongst the first type,
one of the most important and widely used is the CUSUM algorithm [18].
Unfortunately, as with all parametric methods, it needs information about
the data that is generally unavailable in real problems.

4



One of the state-of-the-art tools to tackle this problem is the Product
Partition Model (PPM) originally introduced by Hartigan [13, 16, 23, 20].
This method casts the number of changes and their positions as random
variables, and for this reason does not need the number of changes to be
specified by the user. It also gives not just the most probable partition, but
several partitions with their probabilities. The main drawback is that the
type of the data distribution must be known a priori [6].

If there is no previous information available about the sequence to be
analyzed, another nonparametric method can be used. A relevant example,
based in OC-SVMs, is the KCD algorithm [7]. It detects abrupt changes
by fitting two One-Class SVMs for each point t in the sequence, one in the
immediate past subset (a time window that ends at point t) and one in
the immediate future subset (a time window that starts at point t + 1). It
then calculates a dissimilarity measure between the two results, and if it is
greater than a user specified threshold, it decides that there is an abrupt
change between points t and t + 1. KCD is mainly used in audio problems.
Successful applications include music segmentation [7, 10], classification of
impulsive sounds [25], and speaker diarization [8].

Another successful application field of nonparametric methods is fault
detection in power systems. In [29, 30] the authors present a method based
on wavelets which shows a good performance for this type of problems.

3. One-Class TA-SVM

In this section we extend the TA-SVM method to deal with a non-
stationary version of the One-Class problem, that is to find a region of the
input space where most of the data points can be found, taking into account
that the input distribution, and thus this small region, may vary slowly with
time. We will call this extension One-Class Time-Adaptive Support Vector
Machine (OC-TA-SVM).

To this end, we combine Eq. 2 with the problem introduced by Schölkopf
et al., Eq. 1. As a result we obtain the primal version of the problem to be
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minimized:

min
wµ,ρµ,ξ

1

m

(
1

2

m∑
µ=1

||wµ||2 − ρµ

)
+ C

n∑
i=1

ξi +

+
γ

m− 1

m−1∑
µ=1

d(fµ, fµ+1) (3)

subject to ξi ≥ 0; wµi
· xi ≥ ρµ − ξi,

where the distance function d is defined over hyperplanes characterized by
w and ρ:

d(fν , fµ) = ||wν −wµ||2 + (ρν − ρµ)
2. (4)

It is worth noting that the cost function in Eq. 1 depends on the norm of w
and the scalar ρ. Problem 3, applying a factor 1

2
to the sum of the norms of

wµ, maintains the relationship found in the original problem between w y ρ.
This problem shares some characteristics with the original TA-SVMmethod.

The parameter γ regulates how strong the coupling will be along the sequence
of models. A low value will almost decouple the sequence, while large ones
will produce a sequence of almost identical models. The formulation is also
valid when considering time windows including one point (m = n), as in the
original case [12].

Following the same derivation for TA-SVM [12, Appendix A], it can be
seen that the problem in (3) can be rephrased in terms of its corresponding
dual as:

max
α

−1

2
αTRα,

subject to 0 ≤ αi ≤
1

νn
;
∑

αi = 1.

for an appropriate matrix R.
The time complexity of OC-TA-SVM can be analyzed in two stages:

the computation of matrix R, and the solution of the optimization problem.
The matrix can be computed in O(n2) [12]. Once this matrix is calculated,
the optimization problem is a conventional SVM problem, which is between
O(n2) and O(n3). From this we can conclude that the time complexity of an
OC-TA-SVM problem is roughly the same as an SVM one.
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3.1. Artificial Example

We first study the behavior of the new method using an artificial data set
sampled from a distribution in a two-dimensional space that changes slowly
with time. Each data point (in polar coordinates) has a radius taken from
a normal distribution with mean 1 and standard deviation 0.05. Its angle is
taken from a uniform distribution in the interval [2π t

500
− π

2
+ 0.1; 2π t

500
+

π
2
−0.1], where t is the timestamp of each point. The data set has 500 points

(that means t ∈ 1 . . . 500), expressed in Cartesian coordinates.
As it can be seen from previous works [26, 27], the solution obtained by

OC-SVM is highly dependent on the values selected for the free parameters.
The same is valid for the non-stationary version of the method, the GSVRM
[4].

In this first experiment, we train a OC-TA-SVM with a Gaussian kernel.
This kernel is particularly useful to the OC-SVM problem, showing better
results than other kernels [27]. Moreover, a relationship between OC-SVM
and Density Estimation can be established when this kernel is used [19].

In this and the following experiments, the method proposed was imple-
mented using LibSVM [5] and R [24].

In Figure 1 we show the solutions obtained for different values of γ while
maintaining the remaining free parameters constant. Figure 2 presents the
results corresponding to different values of σ, the Gaussian kernel width.

In these figures we can see that, as expected, high values of γ (dashed and
dashed-and-dotted lines) result in an overgrown region, because of the influ-
ence of points that are too far away in time. On the other hand, with a low
value of γ (dashed and double point line) the distribution cannot be modeled
correctly. For values between these extremes (thick line) we observe satis-
factory solutions. Similar results are obtained by varying the σ parameter.
The main difference is that in this case the region does not grow or shrink
following the trend in the data —it just becomes smoother or bumpier.

In a second experiment we compared the performance of OC-TA-SVM
with OC-SVMs trained in a sliding window and with the GSVRM. This
last algorithm was designed to obtain a current model in the case of non-
stationary data. We can apply it to the case at hand with a simple modifi-
cation: we generate a sequence by running the algorithm once for each point
in the data set and weighting exponentially past and future points.

For each method we selected free parameters values that minimize the
generalization error. According to Tax and Duin, for the original OC-SVM
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Figure 1: Selected area by OC-TA-SVM for time t = 200 for various values of γ. Big
values of γ are shown with dotted and dashed lines. A low value is shown with a dashed
and double point line, and an approximately optimal value with a thick line. The points
from t = 190 to t = 210 are shown in red.
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Figure 2: Selected area by OC-TA-SVM for time t = 200 for various values of σ. Big
values of σ are shown with dotted and dashed lines. A low value is shown with a dashed
and double point line, and an approximate optimal value with a thick line. The points
from t = 190 to t = 210 are indicated in red.
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Method Error
OC-SVMs in sliding windows 0.30 (0.01)

OC-TA-SVM 0.16 (0.01)
GSVRM 0.22 (0.01)

Table 1: Mean error over 30 independent trials of the three methods. In parenthesis we
show the standard deviation of this mean.

case, the error comes from two sources: patterns that are rejected even
though they belong to the concept, and patterns that do not belong but
are nevertheless accepted [27]. This also applies to the non-stationary case.

The first source can be estimated with cross-validation. The second source
is more difficult, since we do not have samples of this case. What can be
done is to select the free parameters which, while maintaining a small error
of the first class, result in a smaller region. Similar policies have been used
before for OC-SVM [14].

In this experiment we fixed the ν parameter to 0.01 in order to have
very few points outside the region modeled by the algorithm. A grid was
used for the other two parameters (σ and the window length for OC-SVM
in sliding windows, σ and γ for OC-TA-SVM and σ and γ for GSVRM). We
discarded the combinations of parameters which generate solutions that do
not show similar training and validation errors (with a tolerance of up to 5%
difference), and from the remaining pairs we selected the one which generates
the solution with the smaller region. This was measured by classifying an
external data set made of a uniform grid in a squared region of R2 that
contains the original data set.

In Table 1 we show the mean error obtained over a grid of points used as
a test data set, with its standard deviation, over 30 independent runs of this
experiment. These are Macro Average Errors, i. e. MAE = E1

N1
+ E2

N2
where

Ei is the number of errors produced on class i points (we have two classes:
points that belong to the concept present in the training data set and points
that do not). Ni is the number of points in class i.

4. An application: Abrupt Change Detection

In this and the next section we explore the use of OC-TA-SVM in the
problem of abrupt change detection. We base our proposal in a dissimilarity
measure between previous and posterior models of the distribution for a time
instant t.
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Given that a correctly fitted OC-TA-SVM provides a sequence of these
models, we can use it to measure the distance d from Eq. 4 between adjacent
models. Providing an a priori fixed threshold τ , an abrupt change would be
detected between models ν and ν + 1 if and only if:

d(hν , hν+1) = ||wν −wν+1||2 + (ρν − ρν+1)
2 > τ.

The threshold τ fixes the sensibility of the approach. A low value makes it
more sensitive, increasing the probability of false positives, while with a high
value actual changes in the data may pass undetected. Also, the distance
between adjacent models may become higher because of the presence of noise
in the data, thus demanding a higher threshold to avoid false positives. In this
work we propose, following Desobry and Davy [7], to select the threshold with
the other parameters of the method by means of a supervised optimization
over a small sample of the considered sequence, where the time of each abrupt
change is known. In particular, in the following experiments we took the
mean of the maximum values of the index in small intervals around the
known changes, and the mean of the index in the rest of the points (without
known changes). The threshold was then fixed at the middle point between
these two mean values.

Since the sequence obtained with TA-SVM is generally less noisy than
the one obtained with SVMs trained on sliding windows (see [12, Section 3
B]), it is expected that this will lead to a more robust index than the ones
using sliding windows, such as KCD.

4.1. Time Complexity

Given the model sequence obtained with OC-TA-SVM, the index pro-
posed requires just to calculate the distance between neighboring models.
Each one of these are, in the OC-TA-SVM solution, a weighted sum of the
images of the support vectors in the feature space. This implies a computa-
tion of order O(nSV ), where nSV is the number of support vectors, for each
pair of neighboring models which, counting all neighbors in the sequence,
gives a total computation of order O(nnSV ). Thus, the time complexity of
calculating the index is basically the same as obtaining the OC-TA-SVM
solution.

Since this computational cost can be excessive for very large data sets,
one approach to ameliorate it is to divide the original large sequence into
smaller pieces. We calculate the index in each of these pieces and append
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them as a final stage. In this way, if we divide the original sequence of n
points into p pieces, we have p problems with the complexity corresponding
to n/p points.

This simple technique can bring two problems. First, how can we de-
termine the size of the smaller pieces? Second, how can we compensate the
border effects that arise in this case at the edge of each piece?

For the first problem, we can use a long enough time window. This is not
the typical problem with time windows, where a long one could be harmful.
In this case, a long time window just makes the algorithm to consume more
time, but does not make it less accurate. Hence, the size of the pieces should
be large enough as to only discard the points with negligible influence, given
the coupling parameter γ. The second problem can be solved by just discard-
ing the border values and overlapping the small pieces. In the real example
shown in the next section, we applied this policy using batches of 500 points
and discarding the first and last 125 of each one. The γ used is such that the
influence of a point 125 steps away can be disregarded. As a result, the index
obtained is almost the same as would be obtained if the whole sequence were
used, but in a fraction of the time.

4.2. Illustrative Example

We began by performing a simple experiment to verify the usefulness of
the method. We trained an OC-TA-SVM with a two-dimensional data set
made of 1,000 samples taken from two Gaussian distributions that change
their centers abruptly. More specifically, the first component of each data
point is taken with equal probability from N(x, 1) or N(−x, 1), with x =
0, 2, 4, 6, 8 in the intervals 1 to 200, 201 to 400, 401 to 600, 601 to 800 and
801 to 1000 respectively. The second component is taken from N(0, 1) for
the whole data set. It is worth noting that, even though the mean of each
Gaussian changes with time, the mean of the whole data set does not.

Figure 3 shows the index obtained —the average over 30 trials with its
standard deviation— by an OC-TA-SVM trained with free parameters ν =
0.1, g = 0.1 and γ = 104. It can be seen that, as suspected, the maximum
distance between adjacent hyperplanes appears in the time instants where
there is an abrupt change.
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Figure 3: Distance between adjacent hyperplanes. The line shows the average value over
30 trials while the bars show their standard error.

5. Empirical Evaluation

In this section we apply the proposed method to two artificial and one real
problem and compare it with KCD and PPM to evaluate its performance.
In the three considered problems the free parameters were tuned using an
independent data set. In the artificial tests we conducted 100 trials of the
experiment, and here report the mean results of these trials. It was also
compared with a widely used multivariate version of CUSUM first introduced
by Pignatiello and Runger [22, 2, 11].

For PPM we used the version of Loschi et al. [16], based on Gibbs sam-
pling, whose code is publicly available from the authors. In that work the
authors assume that the sequence to analyze is univariate, and that the data
between consecutive changes have a normal distribution with parameters σ
y µ having a conjugate normal-inverted-gamma prior distribution. For more
details refer to [16].

In order to apply PPM to the following examples, their version was ex-
tended to the multivariate case, maintaining the assumption of data nor-
mality. That is, in a d-dimensional space we assume that the data have a
normal distribution between consecutive changes with parameters σ1, . . . , σd

and µ1, . . . , µd, where each pair σi, µi has a conjugate normal-inverted-gamma
prior distribution.
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5.1. Change Detection Under Noise
In the first artificial experiment we explore the performance of the new

method in noisy situations. As stated before, the sequence of hyperplanes
obtained with TA-SVM is less noisy than the one obtained with sliding win-
dows. Because of this, we expect that an abrupt change detector based on
OC-TA-SVM will be more resistant to noise than one based on sliding win-
dows.

To study this situation we designed the next problem. We have 500
sequences of 500 two-dimensional data points. Half of the sequences does not
present any changes and the other half has an abrupt change in the middle
of the sequence (point 250). To add noise, each point of each sequence is
replaced, with probability p, with points taken from a uniform distribution
in a box containing the data. The experiment was repeated for different
values of p: 0, 0.1, 0.2 and 0.3.

We repeated the experiment with different distributions for the points in
the sequences with no changes and the first half of the sequences with changes
(cluster I), and for the points in the second half of the latter ones (cluster
II). In the first case, the components of each point of cluster I are taken from
N(0, 1

3
), while for cluster II the first component of each point is taken with

equal probability from N(3, 1
3
) or from N(−3, 1

3
). In the second case, the

standard deviations of the Gaussians were changed, using N(0, 1
2
) for cluster

I and N(±3, 1
4
) for cluster II. In the third one, the standard deviations were

even bigger, using σ = 3 for cluster I and σ = 1.5 for cluster II. These are
similar to the distance between the Gaussians. In the last case the change
is present only in the standard deviation. Each component of the points of
cluster I are taken from N(0, 1) and for the points of cluster II from N(0, 1

2
).

For each method we counted how many of the 500 sequences were evalu-
ated correctly. In this case, correct means not detecting any changes in the
250 sequences with no changes, and, in the other 250 sequences, detecting
one change only in a small interval around the real change and no false alarms
outside that interval.

To tune the free parameters we used a sequence with an abrupt change
(constructed in the same way as before). The free parameters selected were
the ones that maximized the distance of the maximum value obtained in
an interval around the change time and the mean value of the rest of the
sequence, scaled with the standard deviation of this value.

As PPM directly returns the sequence of change points (with its proba-
bility) the parameters selected for this method were the ones that maximized
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Dataset Noise OC-TA-SVM KCD PPM

1

0% 499.5 (0.1) 480.2 (4.6) 476.0 (2.5)
10% 499.8 (0.1) 465.9 (3.2) 344.4 (3.5)
20% 497.2 (0.4) 410.4 (7.2) 335.3 (3.6)
30% 483.2 (1.9) 375.7 (9.5) 330.8 (5.4)

2

0% 497.3 (0.4) 483.3 (5.1) 436.3 (4.8)
10% 499.6 (0.1) 443.2 (6.9) 352.7 (4.1)
20% 495.8 (0.4) 419.8 (7.4) 341.8 (4.1)
30% 477.2 (2.2) 402.6 (6.7) 337.2 (3.9)

3

0% 189 (13) 87 (10) 384.8 (3.1)
10% 142 (12) 88 (10) 259.9 (2.3)
20% 88 (10) 71.7 (8.3) 241.7 (1.9)
30% 43.3 (7.4) 61.9 (7.8) 245.1 (0.6)

4

0% 243 (13) 151 (11) 411.0 (4.9)
10% 198 (13) 193 (11) 316.1 (6.4)
20% 181 (11) 168.8 (9.8) 237.5 (5.1)
30% 129 (11) 134 (11) 227.2 (4.8)

Table 2: Number of sequences evaluated correctly by each method. The results are the
average over 100 trials, with the standard deviation of this mean in parenthesis.

the probability of a correct evaluation of this sequence (taking into account
the different sequence of change points and probabilities returned by the
method).

In Table 2 we show the results for OC-TA-SVM, KCD and PPM for
different noise levels. We do not include CUSUM given that we were unable
to find a set of operating parameter values that could evaluate correctly the
train sequence (in any of the 100 trials).

From these results we observe that the proposed method is superior to
KCD (excluding the cases where both methods give bad results). We can
also see that both methods provide better results than PPM when the data
distribution is far from the assumption made for it. When this is not the
case (datasets 3 and 4), i.e. when we possess prior information about the
data distribution, then PPM is the method of choice.

In order to corroborate that the observed difference between the OC-TA-
SVM based method and KCD is not due to a particularly harmful policy
for KCD for selecting the threshold, in Figure 4 we show the results with
Dataset 1 in a different manner. It shows the results of OC-TA-SVM and
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Figure 4: Number of correctly detected changes as a function of wrongly detected ones,
for the no noise (a), 10% (b), 20% (c) and 30% noise cases (d). Bars indicate standard
error.

KCD for the 4 noise levels, using curves that are similar to a ROC curve. By
varying the threshold we can obtain a different number of correctly detected
changes (vertical axis) and a different number of incorrectly detected ones
(horizontal axis). These have two sources: changes detected in sequences
with no change, and changes detected at the wrong time. This second source
prevents the curve from reaching the upper right corner in all situations, as
normally happens in a standard ROC curve.

As it can be seen, there is no threshold with which KCD can obtain a
superior performance to the proposed method, and the difference becomes
bigger with a noise increase.
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s OC-TA-SVM KCD PPM
50 499.1 (0.2) 437.5 (9.9) 478.6 (3.0)
25 498.8 (0.2) 461.1 (6.2) 473.4 (4.9)
20 499.2 (0.1) 442.4 (11.0) 470.7 (4.3)
15 498.7 (0.2) 455.5 (9.7) 467.9 (6.6)
10 495.9 (0.8) 462.7 (7.2) 466.6 (4.4)

Table 3: Correctly evaluated sequences by the OC-TA-SVM based method, KCD and
PPM for diverse time lapses between changes (s). The results are an average over 100
trials, with the standard deviation of this mean in parenthesis.

5.2. Variable Time Intervals Between Changes

In the second experiment we study the behavior of the new method in
situations where the time elapsed between two adjacent changes is highly
variable. In this case we may have a sequence with well-separated, marked
abrupt changes for selecting the free parameters, but we may have to calculate
the index over a sequence with changes that could be closer to each other.

To this end we designed the following problem. We have 500 sequences of
500 two-dimensional points each with two abrupt changes, the first in point
250− s and the second in point 250+ s. We use the same distributions as in
the first experiment, dataset 1. At the beginning and end of the sequences
the points are taken from the distribution used in the first experiment for
the sequence with no changes, and between them they are taken from the
distribution used after the change. No noise was added to the sequences. We
conducted tests with s = 50, 25, 20, 15, 10.

To adjust the free parameters we used a sequence that alternates between
the two different distributions, with abrupt changes at points 100, 200, 300
y 400. This is the same distance which can be found in the sequences with
s = 50.

In Table 3 we show results for different values of s. As in the last experi-
ment, it shows the number of sequences correctly evaluated by each method,
i.e. the number of cases in which there is a change detected in the tolerance
interval corresponding to each of the two changes in the sequence, and no
other change detected outside those intervals.

In this case, the index obtained with the new method is almost constant,
except for the moments when there is an actual change. This is the cause
for the excellent performance in this test. Figure 5 shows, as an example,
the index corresponding to one sequence where s = 25 and another where
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Figure 5: Index obtained with OC-TA-SVM for an example sequence with s = 25 (a) and
another with s = 10 (b).

s = 10. As it can be seen, there is no difficulty in varying s in this case.

5.3. A real-world example

Here we show the performance of the new method in a real application:
music segmentation, a problem where nonparametric change detection meth-
ods have shown good results [7, 10]. The piece used in this example is J. S.
Bach’s Fugue in G Minor, BWV 578, played by Ian Tracey in Marbella in
19861.

We conducted this test with the first 15 seconds of the piece. The spectro-
gram of the signal was computed, using overlapping windows of 1024 points
and calculating the transform every 256 points. This spectrogram, used as
input for the methods, is shown in Figure 6 (a).

The free parameters were adjusted using the first 5 seconds of the signal.
After that, we obtained the index for the last 10 seconds. It is important to
note that the average duration of each note is bigger in the first 5 seconds
than in the following 10 seconds.

In Figure 6 (b) we can see the index obtained for the full sequence of 15
seconds and the changes between notes, marked as vertical dashed lines.

1A sample version can be found at http://www.el-organo.com/download/organ/

bach/bwv578/bwv578.htm, accessed in May 2012.
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Figure 6: The spectrogram of the first 15 seconds of BWV 578 (a). The horizontal axis
indicates time, while the vertical axis indicates frequency. The magnitude is given by the
color. Lines are used to indicate the index obtained for (b) the new method and (c) KCD
(continuous line) and the simple method (dotted line). The three indexes are scaled to
have its maximum value at 1. The dotted vertical lines show the actual changes of notes.

PPM and KCD were also applied in this example. We could not get
satisfactory results with PPM, probably because of the high dimensionality of
the dataset (513 dimensions). With KCD we obtained similar results to OC-
TA-SVM (Figure 6 (c)). Given that this example presents the characteristics
studied in the above artificial examples (noise and a different rate of change
between a training and test set), why can’t we obtain a better result?

To answer this question, we executed the same experiment but with a
simpler method: using two sliding windows as in KCD, we calculate the
distance between the means of each window. That is, we suppose that the
mean of the distribution is enough in this case to find the note changes, so
we do not need a more sophisticated method, such as One-Class SVM, to
model the data distribution.

The results are shown in Figure 6 (c), dotted line. These are very sim-
ilar to the ones obtained with OC-TA-SVM and KCD. This shows that the
example is simple enough not to need a complex method to model the data.
Nevertheless, with the new index —as with KCD— we can obtain the simple
behavior needed in this case.
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6. Conclusions

In this work, we first proposed a new method aimed at the estimation of
the support of a high dimensional distribution for non stationary problems,
the OC-TA-SVM. This is achieved by dividing the data into m consecutive
time windows and creating a coupled sequence of m One-Class SVMs, each
one of them being optimal in its corresponding time window. As shown in
Section 3, the cost of obtaining this sequence is similar to the cost of a single
OC-SVM trained with all available data. Using some simple experiments, we
showed that the proposed method is sound and can generate better sequences
than other techniques.

We then applied the new method to the problem of abrupt change de-
tection. To this end, the dissimilarity between adjacent models was used as
an indication of the probability of an abrupt change to be present between
them.

The experiments realized in the previous sections confirmed the expected
desirable features of the proposed method. It can be applied to situations
where the distribution of the data is unknown, given that it is based on OC-
SVM, and yields good results as shown by the experiment of Subsection 5.1.
Of course, when data distribution information is available, a method that uses
it, such as PPM, should be used, as the experiment suggests. Furthermore,
the experiment with real world data of Section 5.3 showed that it can be
successfully applied to high dimensional datasets. These two characteristics
are shared with KCD.

There are also benefits with respect to KCD. As the experiment in Sub-
section 5.1 showed, the index of the proposed method is more robust to noise
than KCD. This advantage was expected, since the sequence of models ob-
tained with TA-SVM was already shown to be more robust to noise than sim-
ply using sliding windows. The experiment of Subsection 5.2 demonstrated
another advantage: good results can be obtained even when the interval be-
tween changes is highly variable. This is important since the method (the
same as KCD) has free parameters that need to be selected before training.
A common strategy is to use the parameters that give best results in a small
portion of data where the position of the abrupt changes is known. The
experiment showed that the changes are detected even when the interval be-
tween them is much smaller than the interval between changes in the known
part of the data.

Two lines of research can be pursued in the future. On one hand, OC-
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TA-SVM can be applied to novelty detection (i.e. the detection of points
which differs significantly from the rest [27]) in non-stationary environments,
in particular fault detection in machinery that slowly decays in time. On the
other hand, the simple abrupt change detection method here proposed can
be used in audio applications, probably in more complex problems of music
segmentation.
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