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1. Introduction

Let k be an algebraically closed field of characteristic zero and let H be a semisimple Hopf algebra
over k. This work is in the framework of the classification of finite-dimensional Hopf algebras whose
coradical is a Hopf subalgebra isomorphic to H. Let §y be the family of such Hopf algebras. This
problem has two interrelated sub-problems:

e To determine all V e ﬁyD such that the Nichols algebra 6(V) is finite-dimensional and give a
presentation of B(V).
e To classify the lifting Hopf algebras of B(V) over H.
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If A e§y is generated in degree one, then A is a lifting of a Nichols algebra over its coradical. It was
conjectured that this holds when H is a group algebra [9]. These steps compose the Lifting Method
of [11].

First defined by Nichols, and also called quantum symmetric algebras, Nichols algebras are de-
termined by a profound combinatorial behavior which is no yet fully understood. They are not Hopf
algebras in the usual sense, but rather Hopf algebras in the category of Yetter-Drinfeld modules gyD.

Let G be a finite group. If G is abelian, all V € ﬁég)}D with dimB(V) < oo have been determined in
[31] and the presentation of ®8(V) together with a positive answer to the conjecture in [9] were given
in [14,15]. If G is non-abelian, it has been shown that for many (simple) groups most V € ﬂigyD yield
Nichols algebras of infinite dimension [2,3]. Furthermore, only a few examples of finite-dimensional
Nichols algebras are known, see below. Up to date, it is very complicated to find the relations defin-
ing the Nichols algebras and to compute their dimension, even using the computer, see [27]. Notice
that Nichols algebras in ﬂigyl) and ﬁg)}D coincide since these categories are braided equivalent, see
Section 3.

Recall that the Hopf algebras in §i¢ are called pointed, while those in ¢ are called copointed, cf.
[12].

The most prominent result in the classification of Hopf algebras is in [11] where the pointed
Hopf algebras over an abelian group of order coprime with 210 are classified. The classification of
nontrivial, i.e. different from group algebras, pointed Hopf algebras over non-abelian group is known
for: S3 [7], S4 [25] and D4 [18]. Also they have been classified the cases A, n > 5, and most simple
sporadic groups but all turn out to be group algebras [2,3,19]. In the copointed case the classification
is known only for S3 [12]. The Hopf algebras obtained in the above results are all liftings of Nichols
algebras over their coradical and cocycle deformations of each other [37,18,13,22,21].

Also, in [16] the liftings of the quantum line over four families of nontrivial semisimple Hopf
algebras are classified, and in [8] another approach for the lifting problem is proposed.

Nichols algebras of finite dimension over non-abelian groups appear associated to racks and
2-cocycles, see [5]. It is worth mentioning that racks appear also in the calculus of knot invari-
ants [29]. Next, we list all pairs of non-abelian indecomposable racks and cocycles whose associated
Nichols algebras are known to be finite-dimensional, see for instance [27].

(1) Racks of the conjugacy classes O}, of m-cycles in Sy:

e The rack O} and constant 2-cocycle —1, n=3,4,5.
e The rack O} and a non-constant 2-cocycle x, n=4,5.
e The rack Oj and constant 2-cocycle —1.

Their Nichols algebras were studied in [38,20,5,25]. In [40] it is shown that the Nichols algebras
associated to O} with constant and non-constant 2-cocycle are twist equivalent. All of these racks
can be realized over the symmetric groups and their duals. The families §s, and Fs, were classified
in [7,25] respectively, and §s; in [12].

(2) The affine racks:

o (F3,2), (F4,w), (Fs,2), (Fs,3), (F7,3) and (F7, 5) with constant 2-cocycle —1 [38,26,5].!
e (F4, w) and a non-constant 2-cocycle ¢ [33] with ¢;; a third root of 1 for i € F4.

The aim of this work is to study both the pointed and copointed lifting of the Nichols algebras associ-
ated to these affine racks (Fj, N) with constant 2-cocycle —1. In this case no liftings are known, apart
from the case (I3, 2), see [6, Theorem 3.8]. In [1] a general strategy to classify the family §y is de-
veloped showing at the same time that they are cocycle deformations of the bosonization B(V)#H.
We adapt the ideas there to compute the pointed, and copointed, liftings of these Nichols algebras
over any group G. We also give results which apply to other racks.

The classification in the pointed case is given by the next theorem.

T As racks (F3,2) ~ O%, (Fs5,2)* ~ (Fs, 3) and (F7, 3)* ~ (F7, 5).
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Main Theorem 1. Let G be a finite group. The pointed Hopf algebras over kG whose infinitesimal braiding
arises from a principal YD-realization of an affine rack X with the constant 2-cocycle q = —1 are classified in

(i) Theorem 6.2, if X = (F3, 2).
(ii) Theorem 6.3, if X = (F4, w).
(iii) Theorem 6.4, if X = (Fs, 2).
(iv) Theorem 6.5, if X = (Fs, 3).

All of these liftings are cocycle deformations of B(X, —1) #kG.

The first item is already in [6, Theorem 3.8], without the statement about cocycle deformations.
It is important to remark that in some of these new examples, some of the relations are not only
deformed by elements in the coradical, but also by elements in higher terms of the coradical filtration.
This phenomenon is quite new, and was only present previously in some deformations in [32] for the
abelian case.

The classification in the copointed case is given by the next theorem.

Main Theorem 2. Let G be a finite group. The copointed Hopf algebras over k¢ whose infinitesimal braiding
arises from a principal YD-realization of an affine rack X with the constant 2-cocycle q = —1 are classified in

(i) Theorem 7.3, if X = (F3, 2).
(ii) Theorem 7.5, if X = (F4, w), (Fs, 2), (Fs, 3), (F7, 3) or (F7, 5).

All of these liftings are cocycle deformations of B(X, —1) #kC.

We explicitly define biGalois objects to prove the last assertion. These liftings are new examples
of Hopf algebras.

The Hopf algebras found are presented as quotients of bosonizations of tensor algebras. Hence the
greatest obstacle to achieve our principal results is to show that these quotients have the right di-
mension, or just to show that they are nonzero. The same issue is present in the rest of the works
cited above. We are able to avoid this obstacle by showing that the quotient is a cocycle deformation,
as proposed in [1]. However, some very complicated computations are necessary at an intermediate
step and we are forced to appeal to computer program [23]. However, we find that the computer
is not always enough and some examples cannot be attacked with this method. The same computa-
tional impediment is present in the calculation of Nichols algebras themselves. Hence, new tools are
required to attack these problems, such as representation theory, see for instance [13,25,18].

The paper is organized as follows: In Section 2 we give some conventions and notations. In Sec-
tion 3 we give the correspondence between Nichols algebras in braided equivalent categories of
Yetter-Drinfeld modules. We recall the notions of rack and Yetter-Drinfeld realization of a rack over a
group. In Section 4, we introduce the known examples of finite-dimensional Nichols algebras attached
to an affine rack and give some properties of these which will be useful for us. In Section 5 we go
through the ideas in [1] and adapt them to prove new results that apply in our setting. In Sections 6
and 7 we use these results to prove our main theorems. We also include Appendix A with the ideas
behind some of the computations.

2. Preliminaries

We work over an algebraically closed field k of characteristic zero; k* :=k\ {0}. If X is a set, then
kX denotes the free vector space over X. If A is an algebra and X C A, then (X) is the two-sided
ideal generated by X.

Let G be a finite group. We denote by e the identity element of G, by kG its group algebra and
by k¢ the function algebra on G. The usual basis of kG is {g: g € G} and {8g: g € G} is its dual
basis in kC, i.e. 8g(h) =65 forall g,heG. If M is a k¢-module and g € G, the isotypic component
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of weight g is M[g] =6z - M. We write suppM = {g € G : M[g] # 0} and M* = @g# M[g]. The
symmetric group in n letters is denoted by S, and sgn:S; — Z; denotes the morphism given by the
sign.

Let H be a Hopf algebra. Then A, &, S denote respectively the comultiplication, the counit and
the antipode. We use Sweedler’s notation for comultiplication and coaction but dropping the sum-
mation symbol. We denote by {Hj;j}i>o the coradical filtration of H and by grH = @@0 gr"H =
@Dn>o Hin/Hin-1) the associated graded Hopf algebra of H with Hj_q) =0.

Assume S is bijective and let ZJ/D be the category of Yetter-Drinfeld modules over H. If V €
HYD, then the dual object V* € YD is defined by (h- f,v) = (f,S(h) - v) and f_1)(f0), V) =
S1 (v=1){f.,v) forall veV, feV*and h e H, where (,) denotes the standard evaluation.

2.1. Galois objects

Let H be a Hopf algebra with bijective antipode and A be a right H-comodule algebra with right
H-coinvariants A©°H =k,

If there exist a convolution-invertible H-colinear map y : H — A, then A is called a right cleft
object. The map y can be chosen so that (1) =1, in which case it is called a section. In turn, A is
called a right H-Galois object if the following linear map is bijective:

can:AQA—~A®H, a®brabp ®bn).

Analogously, left H-Galois objects are defined. Let L be another Hopf algebra. An (L, H)-bicomodule
algebra is an (L, H)-biGalois object if it is simultaneously a left L-Galois object and a right H-Galois
object.

Assume A is a right H-Galois object. There is an associated Hopf algebra L(H, A) such that A is
an (L(A, H), H)-biGalois object, see [39, Section 3]. L(A, H) is a subalgebra of A ® A°P. Moreover, if
L is a Hopf algebra such that A is (L, H)-biGalois then L = L(A, H). More precisely, if §, §; stand for
the coactions of L(A, H) and L in A, there is a Hopf algebra isomorphism F : L(A, H) — L such that
8, = (F ®id)s and

F(Y a@b)@1a=> r@)A®b). > a@beL(A H). M

Thus, one can use Galois objects to find new examples of Hopf algebras. Furthermore, L(H, A) is a
cocycle deformation of H [39, Theorem 3.9].

3. Nichols algebras and racks

From now on C denotes a category of (left, right or left-right) Yetter-Drinfeld modules over a
finite-dimensional Hopf algebra H. Then C is a braided monoidal category. Let ¢ be the canonical
braiding of C. See e.g. [35] for details about braided monoidal categories.

Let V € C. The tensor algebra T(V) is an algebra in C. Also, T(V) ® T(V) is an algebra with
multiplication (m ® m) o (id ® ¢ ® id). Hence T (V) becomes a Hopf algebra in C extending by the
universal property the following maps

AWV =v®1+1QvV, e(v)=0 and S(v)=-v, veV.

Let J(V) be the largest Hopf ideal of T(V) generated as an ideal by homogeneous elements of
degree > 2.

Definition 3.1. (See [10, Proposition 2.2].) The Nichols algebra of V (in C) is B(V)=T(V)/T (V).



A. Garcia Iglesias, C. Vay / Journal of Algebra 397 (2014) 379-406 383

See [10] for details about Nichols algebras. Let n € N; we denote by [7"(V), respectively B"(V), the
homogeneous component of degree n of J(V), respectively of B(V). We set Jn(V) = (DL, NELD))
and Bp(V) =TV)/Tn(V).

Let A be Hopf algebra such that grA is isomorphic to B(V)#H. Then A is called a lifting of
$B(V) over H. The infinitesimal braiding of A is V € ﬁyD with the braiding of ﬁyD. Recall from [12,
Proposition 2.4] that there exists a lifting map ¢ : T(V)#H — A, that is an epimorphism of Hopf
algebras such that

¢ =id, ¢y #y isinjective and ¢((k® V)#H)=Ap). (2)

We recall another characterization of 7 (V), see e.g. [4,10]. Fix n € N. Let B, be the Braid group:

It is generated by {o;: 1< i <n} subject to the relations 0;0i110; = 0i410;0i+1 and 00} = 0;0;
for all 1 <i,j <n such that |i — j| > 1. The projection B, — Sy, g; — (ii + 1), 1 <i < n, admits
a set-theoretical section s:S; — B, defined by s(ii +1) =0, 1 <i<n, and s(t) =0y, ---0j, if

T =(i1i1 +1)---(igig + 1) with £ minimum; this is the Matsumoto section. The quantum symmetrizer
is:

S, = Z s(7) € kBy,.

TESy

The group B, acts on V®" via the assignment o; > ¢; i1, 1<i <n, where ¢jjyq: V& — VO is the
morphism

id RC® id : V®i—1 ® V®2 ® V®n—i—1 N V®i—1 ® V®2 ® V®n—i—1_
Then the homogeneous components of 7 (V) are given by
TXV)=kerS,, keN.

3.1. Correspondence between Nichols algebras in braided equivalent categories

Let H, C be as above. Let H’ be a finite-dimensional Hopf algebra, C’ be a category of Yetter-
Drinfeld modules over H’. Assume there is a functor (F,7):C — C’ of braided monoidal categories,
ie. F:C— (' is a functor and 17: ® o F2 — F o ® is a natural isomorphism such that the diagrams

id
FU)®F(V)® F(W) — "~ FU®V)® F(W)

id®7]l ln 3)

FU)®FV W) — FU®V W),

CF(U),F(V)

FUYQFV) — F(V)® F(U)

. :

FU®YV) T‘ F(V®U),
u,v

commute for each U, V,W eC.
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Fix V e C. For m,n e N, set 5y =nyem yen and

M = Nn-1,1(1—2,1 ®1d) -+ (72,1 ® id)(n ® id) : F(V)®" — F(V®").

By abuse of notation, we still write n =711 = n2. By (3), it holds that

Nm+n+k = NMm,n+k (id® M) Mm @ N @ Ng), m,n, k e N. (5)

Note that By, acts on F(V®") via oj — F(ci1+1). Then the commutative diagram (4) implies that n
is an isomorphism of B;-modules. Moreover, combining (3) and (4) with the fact that 7 is a natural
isomorphism, we obtain that 7, : F(V)®" — F(V®") is an isomorphism of B,-modules in C’. As a
consequence we have the next lemma.

Lemma 3.2. Assume (F,n) : C — C’ is exact. Let V € C with dimV < oo. The ideals defining the Nichols
algebras B(V) and B(F (V)) are related by
J"(F(V))=n,'F(I"(V)) forallneN.

If F preserves dimensions, then dim 8" (V) = dimB"(F(V)) foralln € N.

Proof. Recall that J"(F(V)) is the kernel of S, acting on F(V)®", n e N. Since F is exact and 5, is
an isomorphism, the theorem follows. O

We can apply the above result to the categories ZyD and H; YD In fact, by [4, Proposition 2.2.1]
they are braided equivalent monoidal categories via the functor (F, n) defined as follows: F(V) =V
as a vector space,

fv=(f.Svlve. v =fi®S  (h)v and
N:FV)Q FIW)— F(V® W), VO W W)V QW (6)

for every V, W € ﬁyD, feH* veV,weW. Here {h;} and {f;} are dual bases of H and H*.

Lemma 3.3. Let V € YD of finite dimension and M C V®" in HYD. Let N = @,y N™ with N™ C V&
in YD, m € N. Then

(@) FV)®M @ ' F(M) ® F(V)®* = (i) TF(VET @ M ® V),
(b) (1 'F(M)) =3 k i) "' F(VE™ @ M @ VEF),
(c) Let M C T(V)/(N). In T(F(V))/{ED,, nm' F(N™)) it holds that ny ' F(M) = 1, ' F(M).

Proof. (a) Let xe V®™ re M and y € V®. By (5), there exist ¥ € V®™, ' ¢ M and y’ € V® such
that (Nminsk) TX®T®Y) =1 () @1, () ® nk’l (y"). Also by (5), there exist X’ € V®™ " e M
and y” € V® such that 9 X T ®y) =x" @1’ ® y”. Since (nm+n+’<)|iv1®m®M®v®k are injective
morphisms the statement follows. (b) and (c) are straightforward. O

Lemma 3.3c is useful to find deformations of Nichols algebras. Next lemma is a consequence of
Lemma 3.3(a).

Lemma 34. Let M = @, .y M™ with M™ C V®™ in ZJ}D, m € N. Assume that M generates 7 (V) as an
ideal. Then
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(@) Bpen M F(M™) € . VD generates 7 (F(V)) as an ideal.
(b) Jk(F(V)) = (@, 'FI (V) forallkeN. o

3.2. Racks

A rack is a nonempty set X with an operation > : X x X — X such that

¢i: X=X, jirj,

is a bijective map and ¢;(j > k) = ¢i(j) > ¢i(k) for all i, j,k € X. The subgroup of Sx generated by
{¢i}iex is denoted Inns X, it is a subgroup of the group of rack automorphisms Aut. X.

A function q : X x X — k*, (i, j) = qij, is a (rack) 2-cocycle if q; jokqjk = Gi>j,i-kqik for all
i, j, k € X. We refer to [5] for details about racks.

Definition 3.5. (See [6, Definition 3.2], [38, Subsection 5].) Let X be a rack and q be a 2-cocycle on X.
A principal YD-realization of (X, q) over a finite group G is a collection (-, g, {Xi}icx) Where

e - is an action of G on X;

e g: X G, i+ g, is a function such that g,; =hgih~! and g;- j=i>jforalli,je X and he G;

e {xi}iex is a 1-cocycle - that is a family of maps x; : G — k* such that x;(ht) = x;.;(h) x;(t) for all
ieX, h,teG - satisfying x;(g;) =qj; for all i, j € X.

We will assume that all realizations are faithful, that is g is injective.

These data define an object V (X, q) € ﬁg)}D [6]. Namely, as a vector space V (X, q) = k{x;}icx, the
action and coaction are

t-xi=xi)x.; and A(x;) =g ®x;, teG,ielX. (7)

We denote by T(X,q) the tensor algebra of V (X, q), its Nichols algebra is denoted by 2B(X,q) and
the defining ideal is J (X, q).

Let W(q, X) be the object in ﬁﬁ YD obtained by applying the functor (6) to the above Yetter-
Drinfeld module V (X, q) over kG. Then

8- X =8, ;1% and i)=Y xi(tT')s ®x-14 teG, ieX. (8)
' teG

We denote by T(q, X) the tensor algebra of W(q, X), its Nichols algebra is denoted by B(q, X) and
the defining ideal is 7 (q, X).
Note that the smash product Hopf algebra T (X, q) #kG satisfies

txi = xi()xpit and Ax)=x®1+ 8 ®x;, teG,ielX. (9)

The smash product Hopf algebra T(q, X) #kC satisfies for all t € G, i € X

Sexi =Xibge and A()=xi®1+ > Xi(t7)s @ X1 (10)
teG
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To find all the groups G supporting a principal YD-realization of (X,q) presents hard computa-
tional aspects [6, Section 3], see e.g. Lemma 3.6(c) below. A possible approach is the following. Let
F(X) be the free group generated by {g;i}icx. The enveloping group Gx of X, see [17,34], is

Gx =F(X)/(gigj — gij&i: 1, j € X). (11)

If X is finite and indecomposable, then the order n of ¢; does not depend on i € X and is called
the degree of the rack, see [33, Definition 2.18], also [28]. Thus, there is a series of finite versions
of Gy, given by

Gk =Gx/(gl" ieX), kel
G}( is denoted by Gy and called the finite enveloping group of X in [33].

Lemma 3.6. Let X be a faithful and indecomposable rack of degree r with a 2-cocycle q. Let (-, g, { Xi}icx) be
a principal YD-realization of (X, q) over a finite group G and K C G be the subgroup generated by {g;: i € X}.
Then

(a) K is normal and a quotient of G'.

(b) (See [6, Lemma 3.3(c)].) G acts by rack automorphisms on X.

(c) (See[6, Lemma 3.3(d)].) If q is constant, then there exists a multiplicative character x¢ : G — k* such that
Xc = xiforallieX.

Proof. (a) Clearly K is normal. As X is faithful, the map g: X — G is injective and thus we have an
epimorphism F(X) — K. Since the relations defining G', are satisfied in K, the epimorphism factor-
izes through G%. O

Lemma 3.7. Let (X, q), (-, g, {Xi}iex) and K be as in the above lemma.

(a) Ifit> j+# j, then gf # gj forall ¢ € Z. In particular, g;g; # e.
(b) Leti, j € X and € € Z be such that ¢{ (j) # j. Then gf #e.

Assume q = & is constant, for an nth root of unity &.

np

(c) Ifn1+-~-+na§ém1+-~-+mbmodn,theng?11-~-g:.2“7ég?]1-~gjb.
(d) (xci)" =é.

Proof. (a)-(b) We show that if the equality holds then g; = g;. Notice that g;g; = gj;g; for all
i,jeX. If gj :gf, then g; :gi(gf)gi_] :g,—gjgi_1 = girj but j#iD> j. In particular, gi_1 #gj and
hence e # gig;. If e = gf, then gj = g{ g = £4¢(;) & = 8,¢(j but j # &{ (J)- (c) Apply the multiplicative
character x¢. (d) is immediate. O
3.3. The dual rack
Fix a finite rack (X, ). The dual rack X* is the pair (X,>~1) where
ic"'j=¢'(j) foralli,jeX.

Fix a 2-cocycle g on X and a principal YD-realization (-, g, {xi}iex) of (X, q) over a finite group G. Let
q*: X x X — k* be the 2-cocycle on X* given by

q?ij =0j i1 foralli, j € X.
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Then the dual object to V(X,q) in ﬂigyD (resp. W(g, X) in tﬁyp) is isomorphic to the ob-
ject V(X*,q*) in [SYD (resp. W(g* X*) in tﬁyp) attached to the principal YD-realization
g7l {Xi_l}iex) over G, see for example [25, Eq. (1)].

We set g—* := (g*)~!. It is easy to see that g~* is a 2-cocycle on X* and that (-, g7, {)i}iex) is a
principal YD-realization of (X*, q~*) over G.

Let V(X,q),V(X*.,q™*) € f&VD be defined by (7) for (-, g {xiliex) and (-, g ", {Xi}iex), re-
spectively. We denote by {y;i}icx the basis of V(X*,q~*). We define the linear map ¢: T(X,q) —
T(X*,q~*) as follows: ¢(1) =1,

(X)) = yi ifie X and

c(mr) = c(m)) (m—1y - ¢(r)) ifm,re T(X,q).
It is easy to see that ¢ is well defined.

Proposition 3.8. Let S be a set of generators of the defining ideal J(X,q) of B(X,q) € KSYD. Then the
defining ideal of B(X*,q*) € ﬂigyl) satisfies J (X*,q~*) = «(J (X, q)) and it is generated by ¢(S).

Proof. We consider the co-opposite Hopf algebra (B(X,q)#kG)®P. As kG is cocommutative,
(B(X,q)#kG)P ~ R#kG for some graded braided Hopf algebra R € ]ﬂigyl). Moreover, R is the
Nichols algebra of P(R) € ﬂig)iD because (B(X,q)#kG)P is generated as an algebra by the first
term of its coradical filtration which is (B (X, q) #kG)p1;.

Now, P(R) :k{x,-#gi_l}iex with coaction A(xi#gi_]) = g,._1 ®xi#gi_] and action g - (xj#gi_1) =
gx,wﬁ#gi_lg*1 = Xi(g)xg.,-#gg__g forallie X, g € G. Then P(R) ~ V(X*,q~™*) in ﬁgyl) via the assign-
ment X; #gi_1 — y; for all i € X. Therefore

9 (BX, Q#kG)™ — B(X*,q ) #kG, x#gr> yi#gig icX, geGC

is a Hopf algebra isomorphism. Let m € J (X, q) be such that m_1) ® m) = gn ®m. Then 0 =¥ (m) =
c¢(m)# gy and hence c¢(m) € J(X*,q~*). This shows that ¢(7(X,q)) € J(X*,q~*) and the other in-
clusion is proved in a similar way. The definition of ¢ implies the last statement. 0O

Now, we consider W (q, X), W(q~*, X*) gigyD according to (8). Let ()°P : T(q, X) — T(qg—*, X*)°P

be the algebra map given by xi"p =y; for all i € X, here T(g~*, X*)°P is the opposite algebra of
T(@q@™™, X*).

Proposition 3.9. Let S be a set of generators of the defining ideal 7(q, X) of ®6(q, X) € gzi YD. Then the
defining ideal of B(q~*, X*) € ﬁig YD satisfies J(q~*, X*) = (J (q, X))°P and is generated by S°P.

Proof. We consider the opposite Hopf algebra (3B(g, X) #k%)°P. As kC is commutative, we can see
that

9 (B(g, X)#KkO)P — B(q7%, X*)#KC, xi#8g1> yi#8g, ic X, geC.

is a Hopf algebra isomorphism. If m € J(q, X), then 0 = 9 (m) = m°? and hence (J(q, X))°? C
J(@*, X*). The other inclusion is proved in a similar way and the definition of ()°? implies the
last statement. O
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Proposition 3.10. The following maps are bijective correspondences.

{Liftings of B(X, q) over kG} — {Liftings of B(X*,q~*) over kG}
Ar> AP,

{Liftings of B(q, X) over k®} ~ {Liftings of B(q~*, X*) over k®}
A AP,

Proof. We only prove the pointed case. The copointed case is similar.

Let A be a lifting of B (X, q) over kG. It is enough to prove that AP is a lifting of B(X*,q™*)
over kG since (A“P)“P = A. Clearly AP is generated as an algebra by A[} and gr(A®“P) = (gr A)“°P.
Then AP is a lifting of a Nichols algebra B(V) for some V € ﬁgyp. As in Proposition 3.8, we can
see that V >~ V(X*,q7) € ]ﬁig)}D. O

4. Nichols algebras attached to affine racks

Let A be an abelian group and T € Aut A. The affine rack Aff(A, T) is the set A with operation

a>b=T(®b)+ (id-T)(a) foralla,beA,

see [5]. The dual rack Aff(A, T)* is the affine rack Aff(A, T~1).

We define a family of principal YD-realizations for Aff(A, T) and a constant 2-cocycle. Let C, be
the cyclic group of order n € N generated by t. If ord T divides n, then A x1 C, is the semidirect
product of A and C, with respect to T where t-a=T(a) for a € A. Let & be a primitive root of 1 and
¢ =[ord T, ord(¢)] be the minimum common multiple of ord T and ord&.

Proposition 4.1. Let k,m € N with 0 < k < m. Consider the affine rack X = Aff(A, T) with constant
2-cocycle &. Let

e g:Ar> A Xy Cpe bethemap ar> gg =a x tkt+1;
o -2 (A X1 Cn¢) X A— A be the assignmenth-a=b, ifhgsh™' = g;
® Xa:A X7 Cpg — k* be the map xq(b x t°) =&, fora,b € A, s € N.

Then (g, -, {Xa}aca) is a faithful Yetter-Drinfeld realization of (X, &) over A X1 Cpyy.
A realization (g, -, { Xa}aca) as in Proposition 4.1 is called an (m, k)-affine realization of (Aff(A, T), &).

Proof. Clearly, g is injective. f h=a x t5 € A x7 Cm¢ and b € A, then hgyh~! = ((id —T)(a) + T*(b)) x
tk+1 Thus the action - is well defined since the image of g is a conjugacy class and g, -b=a > b.
Also xq(gp) =& and xq = xp is a group morphism for all a, b € A. Then {x4} is a 1-cocycle. O

We denote by F}, the finite field of b elements. The multiplication by N € F} is an automorphism
which we also denote by N. Then Aff(F}, N) is faithful and indecomposable and satisfies

Inne Aff(Fy, N) = Fjy xn Cord n = Auts Aff(Fp, N), (12)

the first equality is easy; the second one is by [5, Corollary 1.25].

Let g be a 2-cocycle on Aff(F,,N) and let (-, g,{xilicx) be a principal YD-realization of
(Aff(Fp, N), q) over a finite group G. If g is constant, pick i € X and set x¢ = ¥x;, cf. Lemma 3.6(c).
From now on, we denote V (b, N, q) € Higyl) the corresponding Yetter-Drinfeld module as in (7). Also,
T(b,N,q) and B(b, N, q) denote respectively its tensor algebra and the Nichols algebra with ideal of
relations 7 (b, N, q).
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4.1. The Nichols algebras B(b, N, q) € Hi(c; YD

We list all the known finite-dimensional Nichols algebras attached to an affine rack Aff(F,, N) and
a 2-cocycle q, see e.g. [27].

4.1.1. The Nichols algebra 53,2, —1)
Its ideal J (3,2, —1) is generated by

Xl»z, XiXj + X2j_iXj +XjX2j_i, 1,]JeFs. (13)
This Nichols algebra has dimension 12 and was computed in [38,20].
4.1.2. The Nichols algebra B4, w, —1)

Let @ € F4 be such that w? + w + 1 = 0. The ideal 7 (4, w, —1) is generated by Z@4,0,—1) =
(XwX1X0)? + (X1X0Xw)? + (X0XoX1)? and

X2, XiXj+ X4 D)itwiXi + XX otito; Vi j€Fa. (14)
This Nichols algebra was computed in [26]; dim*®B(4, w, —1) =72.

4.1.3. The Nichols algebra 5(5, 2, —1)
The ideal 7 (5,2, —1) is generated by z(s 2, —1) := (X1X0)? + (X0X1)? and

X2, XiXj+X_iy2jXi +X3i-2jX—iy2j + XjX3i—2j Vi, j €Fs. (15)
This Nichols algebra was computed in [5]; dim*B(5, 2, —1) = 1280.

4.1.4. The Nichols algebra 5(5, 3, —1)
Since Aff(Fs, 3) is the dual rack of Aff(IF5,2) and the 2-cocycle is —1 we can apply Proposition 3.8.
Then the ideal (5,3, —1) is generated by z(s5 3 _1) := (x1X0)% + (x0x1)? and

2 . .
Xi, XjXi + XiX_jt12j + X—i12jX3i—2j + X3i—2jX] Vi, j € Fs. (16)

4.1.5. The Nichols algebra 95(7, 3, —1)
The ideal [7(7,3, —1) is generated by z(73,—1) := (X2X1X0)? + (X1X0X2)? + (XoX2%1)? and

X2, XiXj+X_2i43jXi +XjX_2iy3j Vi, jeF7. (17)
This Nichols algebra was computed in [27]; dim25(7, 3, —1) = 326592.

4.1.6. The Nichols algebra 5(7,5, —1)
As in 4.1.4 we apply Proposition 3.8 since Aff(IFi;) is the dual rack of Aff(IF7,3). Then the ideal
J(7,5,—1) is generated by z(7,5,—1) := X2X4X0X5X3X0 + X1X3X4X5X3X2 + X0X3X6X0X4X1 and

2 ..
X, XjXi + XiX_2i+3j + X—2i+3jX] Vi, jeF7. (18)
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4.1.7. The Nichols algebra 6 (4, w, ¢)
Let & ek be a root of unity of order 3. Then Aff(F4, w) admits the 2-cocycle

E & & ¢
¢ = (Giji,jeF, = g _i% _; :g . (19)
& —¢& & ¢

The Nichols algebra 98(4, w, ¢), see [33, Proposition 7.9], has dimension 5184 and its ideal of relations

; 3,3 .3 L3
is generated by x3, X7, X, X0

52 XoX1 + &€ X1X — XpX0, 52 XoXe + & XwX2 — X,2X0,
£2 x1X0 — EX0X2 — X, 2X1, £2 XpX1 + & X1X 2 + X2 X0,
plus an extra degree six relation
Z4w,) = x(z)xlxwx% + x0x1xwx%x0 + x1xwx%x% + xwx%x%m + x%x%)qxw
+ x1xéx1xwx1 —+ X1XwX1 X%Xw + XpX1X0X1X0Xw + XwX%XOXon.
4.2. About the top degree relation z, n.q)
In the rest of the section, the pair (X, q) denotes one of the followings
(Aff(F3, 2), —1), (Aff(F4, ), —1), (Aff(Fs, 2), —1), (Aff(Fs, 3), —1),
(Aff(IE‘7, 3), —1), (Aff(IF7, 5), —1) or (Aff(]F4, w), ;).
We fix n =2 for the first six pairs and n = 3 for the last one. We set m, : T(X,q) — ﬁ(x,q) the
natural projection.
Let z=zp N be the top degree defining relation of ®B(X,q). Since J(X,q) is generated by z

and elements of degree < degz, ki, (z) € ﬁgyp via a central t; € G and a multiplicative character
Xz : G — k*, that is

7Tn(2)(—1) ® Tn(2)0) =t; ® Tn(z) and g - 7n(2) = Xz(8)7n(2) (20)
for all g € G. Moreover, 7, (z) is primitive in %\H(X,q) and therefore

A(Tn(2) = (@) @1+t @Tn(2) in Bn(X,q) #kG. (21)

Lemma 4.2. For alli € X, x,(gi) = 1. If q is constant, then x, = Xgegz'

Proof. By Lemma 3.6(b), G acts by rack automorphisms on Aff(F,, N). Let t be the automorphism
defined by t € G. Let K C G be the subgroup generated by {g;: i € X} and Z(K) be its center. By [5,
Lemma 1.9 (2)] and (12), K/Z(K) = Inny Aff(Fy, N) =y xn Corg v = Aut Aff(Fp, N). Thus there is a
multiplicative character A : Auty Aff(F, N) — k* such that

Xz(OTn(2) =t - T (2) = X(OAB)Tr(2),
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where X is given by the 1-cocycle {x;}iex. If q is constant, then ¥, = Xélegz. If g is not constant, then

it is easy to check that X = ¢. Therefore, to finish we have to prove that A =¢. Let M =kG -z C
T(X, .
Case Aff(Fs, w). Let O ={(®10), 1w®?), (01w?), (0w? )} C F; and

X(abe) := (XaXpXe)® + (XpXcXa)? + (XcXaXp)?, (abc) € O.

Then z= X109y and M =k{Xs}oeco. Let Y =) .0 X5 and C=k{Xs —X;:0,7 € O}. Then M =C®
kY is a sum of simple F4 x, C3-submodules. Thus 72(C) =0 and (M) ~KkY as F4 x, C3-modules.
Case Aff(Fs,2). Here z = (x1X0)% + (xox1)%. By (15), it holds that

7T2((X0X2)2) = m2(—X0(X3X2 + X1X3 + X0X1)X2) = T2 (—X0X1X3X2) and

7T2((X2X0)2) = 772((><1X0)2 + (x0x1)? + X0X1X3X2).

Hence 75 ((x2%0)2 + (X0X2)%) = m2(z) and thus (0 x t)- 72 (2) = m2(2). Since (0xt)(1x1) = (2 x 1)(0xt)
in F5 X2 C4 = ((0 x t), (1 x 1)), mp(M) is the trivial F5 x5 C4-module.

Case Aff(Fs,3). As in 3.3, we denote by {yi}icr; the basis of V(5,3,—1) and recall that
«(2(5,2,-1)) = 2(5,3,—1)- Let ¥ : (B2(5,2, —1) #kG)P — B>(5,3, —1)#kG be the Hopf algebra map
given by ¥ (x; #g) =y #gig for all i € X, g € G. Then ¥(g; - m2(2(5.2.-1))) = & - W2(2(5,3,-1)) #1255 _,
since the action is induced by the adjoint action. Hence A = ¢ because before we proved that

)

9(8i - m2(2(5,2,-1))) = ¥ (M2(2(5,2,-1))) = T2(2(5,3,1)) #lz50. 1)

Cases Aff(IF7,3) and (Aff(IF4, ), ¢). In both cases, (0 x t) - w2(z) = m(z), using [23,24]. Then we
proceed as for Aff(Fs, 2).
Case Aff(IF7,5) is similar to Aff(Fs, 3) since Aff(IF7, 5)* >~ Aff(F7,3). O

In the following, %\H(X, q) #kG is a right B(X, q) #kG-comodule via the natural projection.

Lemma 4.3. It holds that 7, (2) is central in %}(x, q) and the subalgebra of right 5(X, q) # kG-coinvariants
is the polynomial algebra k[, (z)t;1 ].

Proof. We check that m,(z) is central using [23] together with the package [24] in all the cases
except for Aff(F5, 3) and Aff(IF;, 2). For these we keep the notation of the previous proof and proceed
as follows. If i € Fp,

0= (xim2(zp,N,~1)) — T2(Z(b,N,—1))Xi)
= (yi #gi)(WZ(Z(b,N—1,_1))#tz(bva,l)) - (7T2(Z(b,1v—1,_1))#tz(b_N,,l))(J’i#gi)

= (y,'JTz(Z(byN—ly_l)) - NZ(Z(b,N—l,_U)Yi) #lzpn_1)8i

here we use the above lemma and that ¢z, , _,, is central. Thus the first part of the lemma is proved.

Then m(2)t; 1 generates a normal subalgebra which forms the coinvariants by [1, Remark 5.5]. It is a
polynomial algebra by [1, Lemma 5.13]. O
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4.3. The Nichols algebras 95(q, b, N) € tg YD

For each (X, q) as above, consider the object W(q, X) € ]ﬁigyl) as in (8). From now on, T(q, b, N)
and ®B(q, b, N) denote respectively its tensor algebra and the Nichols algebra with ideal of relations

J(@q,b,N). Let T, : T(q, X) — ﬁ«,(q, X) be the natural projection.
Proposition 4.4.

(a) Theideal J(—1, 3, 2) is generated by (13).
(b) Theideal 7 (—1, 4, w) is generated by

2 ..
Xi,  XjXi + XiX(o+Ditoj T X(o+)itojXj, 1, JE€Fs

andz_y 4, = (XX y2%0) + (X1X,2X0)% + (X0X,2X1)2.
(c) Theideal 7 (—1,5, 2) is generated by

2 . .
X, XjXi +XiX_jy2j +X_i12jX3i—2j + X3i2jXj, 1,j€Fs5

and 22_1,5’2) 1= X0X2X3X1 + X1X4X3X0.
(d) Theideal J(—1,5, 3) is generated by

2 . .
Xi,  XiXj+ X—i12jXi +X3i-2jX—it2j + XjX3i—2j, I, €5

and 2271‘53) 1= X1X3X2X0 + X0X3X4X].
(e) Theideal J(—1,7,3) is generated by
X2, XjXi +XiX_2it3j +X_2i43jXj, i, j€F7

and 22_1’7,3) 1= X2XgX4X2X5X0 + X1X5X2X3X6X2 + X0X6X4X5X6X1-
(f) The ideal J(—1,7,5) is generated by

2 ..
X, XiXj+X_2iy3jXi +XjX_2iy3j, I, J€T

and 22—1.7,5) 1= X0X5X2X4X6X2 + X2X6X3X2X5X1 + X1X6X5X4X6X0-
(g) Theideal J (¢, 4, w) is generated by x3, X3, X3, X

w?’
2 2
EXwX1 — X0Xow — §°X1Xo0, EXp2Xw — X0X42 — E7XwX0,
EX,2X0 — X1X,2 +E2X0X1,  EXpX1 + XpX2 +E2X1X, and

2 2,2

/ 2 2 2 2,2 2
Z(;,4,a)) 1= XpX,2X0X] + X0XwX0X, > X0 + X1X0X,,Xg + XwX 2 XpX1 — X1X,X0Xw

2 2 2
+ X1 X 2 XwX2X1 + X1 XXX 2 X — XwX,2X0X1X 2 X + XX, XwX1X0.

(14')

(157

(16))

(a7)

(18)

Proof. In (a), (b), (c), (e) and (g) we apply the functor (F, ) given by (6) and use Lemma 3.4. In (d),
respectively (f), we apply Proposition 3.9 since it corresponds to the dual case of (c), respectively (e),

and the 2-cocycle is —1. O

— G
Set Z/ = z/(q‘b’N) = ’7de1gz(b,N,,,) (Zb,n,g))- Then kmy(2') € Kcyp as follows

T (Z) 1y ® T (Z) oy = %z ' ®@7n(Z) and S -7tn(2) =8, 1 Tn(2)

(22)



A. Garcia Iglesias, C. Vay / Journal of Algebra 397 (2014) 379-406 393

for all g € G by Lemma 3.3(c) and Lemma 4.2. Also, 77,(2") is primitive in %\n(q, X) and therefore

A(mn(2)) =7a(2) @ 14 x5 ' @ (7)) in Bu(g, X) #kC. (23)
In the following, ﬁ(q, X)#KkC is a right B(q, X) #k¢-comodule via the natural projection.

Lemma 4.5. It holds that 1, (Z') is central in %\n (q, X) and the subalgebra of right B(q, X) #kC -coinvariants
is the polynomial algebra k[, (Z) x.).

Proof. If i € Iy, then nnn;l(x,-z — zx;) =0 by Lemma 4.3 and Lemma 3.4(b). By (5), n;l(x,-z — ZXj) =
X,-1,Z — Z'Xi = x;Z' — Z'x;, here we use Lemma 4.2 and that ¢, is central. Hence m,(z') is central

in %\n(q, X). The lemma follows using [1, Remark 5.5, Lemma 5.13] as in Lemma 4.3. O
5. Lifting via cocycle deformation

Let H be a semisimple Hopf algebra and V € Z)}D, dimV < oco. Assume that the ideal 7(V)
defining the Nichols algebra 5(V) is finitely generated and let G be a minimal set of homogeneous
generators of 7(V). In [1] a strategy was developed to compute all the liftings of 2B(V) over H as
cocycle deformations of B(V) # H. We briefly recall this strategy, see [1, Section 5] for details.

Set T(V)=T(V)#H and H=B(V)#H. Let G=Gy UG U---UGp be an adapted stratification of
G [1, 5.1]. Among other things, this ensures that

By =DBy_1/{Gk-1), 1<k<N+1,

are braided Hopf algebras in Z)JD where B9 = T(V). Then we have a chain of subsequent quotients
of Hopf algebras

T(V)—»%1#H—»~--—»%N#H—>->H=%N+1#H.
The strategy basically consists in the following two steps:

(1) To compute at each level a family of cleft objects of B, # H as quotients of cleft objects of
By_1 # H, following the results in [30].

To do this, we start with the trivial cleft object for 7 (V). In the final level, we have a set A of cleft
objects of H and hence a list of cocycle deformations L, which arise as L >~ L(A, H), for A€ A as
in [39].

(2) To check that any lifting of ®8(V) over H is obtained as one of these deformations.

In [39] a series of tools to deduce this was developed. In particular, it was studied in [1, Section 4] the
shape of all the possible liftings. We refine the results there for copointed liftings in Subsection 5.2.

We use the Strategy to prove the main theorems. In that order, we carry out the Strategy in the
next subsection under certain general conditions which are satisfied in our case.

5.1. Pointed Lifting of Nichols algebras with a single top degree relation

Let X be an indecomposable rack with a 2-cocycle q. Let G be a finite group and (-, g, {Xi}iex)
be a principal YD-realization of (X, q). Let V =k{x;}icx be the corresponding Yetter-Drinfeld module
over G, see (7). Assume that the Nichols algebra B(V) is finite-dimensional.

Let n € N be such that ordq;; =n > 2. Then x? e J(V) forallieX.
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Recall from [25] that the space of quadratic relations in (V) is spanned by {bc}cer’ Where R’ is
a subset of the set R = X x X/~ of classes of the equivalence relation generated by (i, j) ~ (it j, i).

More precisely, C = {(iz, i1), .. ., (in(c), 1)} € R’ iff ]_[Z(:Cf Qipyr,in = (=™ and then

n(c)

be =Y Mn(C)Xiyy, Xiy» (24)
h=1

where 71(C) =1 and 74 (C) = (=1 i, Gisiy - - - Qiyip_y» h > 2.
Set T(V)=T(V)#kG and m, : T(V) — B,(V). We assume that there is a generator z € 7 (V)
with degz > n such that

o kiry(2) € ﬁgyp, that is, there exist a central t; € G and a multiplicative character x;:G — k*
such that (20) holds;

e 1,(2) is primitive in %\Q_(\V) and hence (21) is satisfied in ﬁ,(V)#]kG;
o the following holds in B,(V)#kG:

XiTn(2) =mn(2)x;, ieX and t,m,(2) = m(2)t;. (25)

We assume that the ideal [7(V) admits an adapted stratification:

Go={x[:ieX}, G1=|bc: Ce’R/}\{xiz:ieX}, Go = {z} (26)
and apply the Strategy in this setting. Set H; =*B;_1/(Gi—1) #kG for i =1, 2,3 with By =T(V). We

also assume that

gl #gj and g #gigj, foreveryi,j keX, (27)
tz # 8i, for every i e X. (28)

Notice that (27) is not a relevant restriction by Lemma 3.7. In particular, this lemma applies to affine
racks.
We shall consider scalars A1, A2, A3 € k subject to the following conditions

M =0 ifx/'#eVi, h=0 if xixj#¢eVi,j, A3=0 if xy,#e. (29)

Let 11, A2 € k subject to (29) and let b¢ be as in (24). Set

A1) =T V) /(x =21 i € X), (30)
Az (h,22) = A1(A)/(bc — A2: C€R/). (31)

Note that Aq (A1) #0. In fact, A; (A1) = T(V)/{x] —A1: i€ X) ® kG as vector spaces by the choice of
A1 in (29) and we can define a nonzero algebra map F : T(V)/(x',.1 —M:ieX)—>kby F(x) = A}/"
for all i € X.

Set also L1(A1) =T (V)/(x}! =21 (1 —g): i€ X) and

Lo(h1,h2) = L1(AM)/(bc —A2(1 — gigj): Ce R/, (i, j) € C).

It is straightforward to see that L is a Hopf algebra quotient of 7(V) and A, is naturally an
(L, Hy)-bicomodule algebra with coactions s, 8%‘3 induced by the comultiplication in 7 (V).
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Proposition 5.1. Let A1 = A1 (\1), Az = A2(M, A2), L1 = L1(A1) and Ly = L3(A1, A2). Assume A, # 0.
Then

(a) Ay is a right Galois object of H,.
(b) There is a section v, : Hy — Ay with Yijke = 1d.
(c) L(Ag, Hy) = Ly. Hence Ly, is a cocycle deformation of H.

Proof. (a) follows by [30, Theorem 8] applied to a suitable right coideal subalgebra Y. If k=1, we
take Y; to be generated by x['g;™" for some i € X. If k =2, this is done in several steps, one for each
C € R/, up to conjugacy, taking Y, ¢ as the subalgebra generated by bcgj’]gi’] for (i, j) € C.

(b) This is [1, Lemma 5.8 (b)].

(c) follows by applying [1, Proposition 5.10]. O

It is possible to use [23,24] in specific examples to check that A(A1,A2) # 0. We do this in the
next section to prove Main Theorem 1. We now compute Galois objects for H = H3 = B(V) #kG.

Proposition 5.2. Assume that A3 (A1, A2) # 0 for some A1, Aa.

(a) There exists ax € Az(A1, A2) and A3 € k subject to (29) such that

A=A, A2, 23) = Az(A1, A2) /{z — ax — A3).

is a Galois object of Hs.
(b) L(A, H3) = L3(A1, A2, A3) where

L3(h1, A2, 23) = L2(A1, k2) /(2 — sx — A3(1 — 1))

and sx € L3(A1, Ay) is such that

(z—sx)®1=61(y(2) —t:®y(2). (32)

Proof. Set H' =Hy, A'=Ay(M,22), L' =Lr(A,12), Yy =y2: H — A'. We consider H' as a right
H-comodule via the natural projection. We use [30, Theorem 4] to find cleft objects of H. For that,
we have to compute the subalgebra ' ™ of right {-coinvariants and the set Alg% (H' ©H, A" of
algebra maps from 7' ©* to A’ in YD

Let Y be the subalgebra of #’' generated by zt;1. Then Y is normal, by (25), and a polynomial
algebra, by [1, Lemma 5.13] and (25). Hence Y = H’°* by [1, Remark 5.5]. By [1, Remark 5.11]
fe Alg%:(Y, Ay if and only if f(zt;1) =y (zt;1) — Ast; ! for some A3 k.

Therefore (a) follows with ax =z — y(z) by [30, Theorem 4]. Now (b) follows by [1, Corollary
512]. O

We need to compute y,(2), 6% (z) and 8%(7/2(2)) to apply the above proposition. We explain in
Appendix A how we can do this using [23,24].
The pointed liftings of ®B(V) are given by the next theorem.

Theorem 5.3. Let L be a lifting of B(V) over kG. Then there exist scalars A1, A2, A3 € k such that L =
L3(M1, A2, A3) and hence L is a cocycle deformation of B(V) #kG.

Proof. Consider the lifting map ¢ : 7 (V) — L defined by (2). If r € Go UGy, then r is a skew-primitive
in 7(V) and thus ¢(r) € Lj1}. Moreover, ¢(r) € Lig; by (27). Hence ¢ induces ¢’ : £L(A1, A2) — L for
some A1, A2 €k.
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It follows that z=z — sx is a (1,t;)-primitive in £3(A1, ;) and thus ¢’(2) € Ly;. By (28) we see
that ¢'(Z) € Ljo) and therefore there is A3 € k such that ¢’(z) = A3(1 — t;). Therefore ¢’ induces ¢” :
L(A1, A2, A3) — L and this is an isomorphism since both algebras have dimension dimB(V)|G|. O

To avoid repetitions, we further normalize the scalars A1, A2, A3 by

A =0 ifg?:l, r=0 ifgigj=1, A3=0 ift,=1, (33)

and consider the set

Sx = { (A1, 22, 23) €k | satisfying (29) and (33)}. (34)

Proposition 5.4. If (A1, A2,13), (A}, A5, A5) € Sx then L3(A1, A2, A3) = L3(A],25,15) if and only if
(M1, A2, A3) = (A}, Ay, AS) for some p € k.

Proof. Follows as [25, Lemma 6.1]. O

The results above restrict to the case in which there is no relation z as in (26), that is when 7 (V)
admits an adapted stratification Go U G1. We collect this information in the following corollary. In this
case we also denote

Sx = {(n1,22) € k? | satisfying (29) and (33)}. (34)
Corollary 5.5. Let .7 (V) be as above. Let L be a lifting of B(V) over kG.
(a) There exist (A1, A2) € Sx such that L = L5(A1, A2).
(b) If (A1, 12), (A}, 15) € Sx, then La(h1, 12) = La(A], Ay) if and only if (A1, X2) = L(A], 1)) for some
nek
(c) If A2 (A1, A2) # 0, then L is a cocycle deformation of B (V) #kG.
5.2. The shape of copointed liftings
Let G be a finite group and V € ﬁg)}D, dimV < oo. If {v;}, {o;} are dual bases of V and V*, set
fii 'KG =k, h> (aj,h-vy). By (6), V €50 VD via
fv=(SH.vinve and av)=> S (fiN®vV; (35)
j
for all f ek®, v e V. This definition is independent of the basis {v;}. We say that {eij: = 8‘1(fjl-)} is
the comatrix basis associated to V and {v;}.

In particular, let - be an action of G on a set X and let {x;: G — k}icx be a 1-cocycle, see page
385. Then kX with basis {m;}icx is a G-module via

g-mj=xi(g)mg; foralieX, geG (36)

and the comatrix basis {e;;} associated to kX and {m;}icx is

ejj = 25]‘,};.,‘ X,‘(g)8g71 foralli, j e X.
geG
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Let A be a lifting of B (V) over k¢ with a lifting map ¢ : T(V) #k® — A, recall (2). We consider the
first term of the coradical filtration Ay € ¥ YD in such a way that ¢,y #yc 1 (k® V) #KC — Ay

is an isomorphism in ﬁ'i YD, cf. [1, Section 4]. Then we identify both modules.
The following lemma is a particular case of [1, Lemma 4.8]. It helps us to describe the image by ¢
of a submodule M of T(V) in ggﬁ YD compatible with ¢ |1, Definition 4.7], that is

A(pm) =¢p(m) @ 1+m_1) @ ¢p(m()) forallme M.

Then ¢(m) € (k ® V) #kC. We define the ideal of T(V)
I =(m—¢(@m):me M). (37)

Note that if M € gzﬁ YD, then M[e] and M* are submodules of M in tﬁ YD such that M = M[e] ®

M*. In fact, tﬁy@ is a semisimple category and the supports of the simple objects are conjugacy
classes of G [4, Proposition 3.1.2].

Lemma 5.6. Let G, V, A and ¢ be as above. Let M C T (V') be compatible with ¢ and {e;;} be the comatrix
basis associated to M[e] and {m; ,T:]. Then

() ¢jmx : M* — V is a morphism in tﬁy@.

(b) Assume that M = M* is a simple object in ﬁz YD and V ~ M™ @& P with m maximum. Then there exist
M, ..., Am € k such that

P =A1idy - B Apidy 0.

In particular, ¢y = 0 if supp M Nsupp V = 0.
(c) Ife ¢ supp V, then there exist ai, ..., a, € k such that

.
o (m;) =aq; _Zajcij foralli=1,...,r.

j=1

(d) Ife ¢ supp V and M = M{[e] with the G-action on M satisfying (36), then there exist (a;)icx € kX such
that

d(m;) = Z(a,- — Xi(8)ag.i)8g-1 forallieX.

geG

(e) Let ¢' : T(V)#KkC — A’ be a lifting map and © : A — A’ be an isomorphism of Hopf algebras. If e ¢
supp V, then @¢ (V) =¢'(V). O

Proof. The lemma follows from [1, Lemma 4.8] since ¢(M*) C ¢(V #k®), ¢ (M[e]) C Ai[e] and
Aile]=kC ife¢suppV. O

Under certain conditions, it is showed in [1, Section 4] that Zy; defines the lifting A. We recall this
in our case.

A good module of relations [1, Definition 4.10] is a graded submodule M = @Ll M" of T(V) in
ﬁgyp, M™ C V@ such that it generates J(V) and for all s=1,...,t —1 and me M™+: ns <ngyq,
M"s #£0 and
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AMm) —m@1—m_®mp) €Iy T(V)#K® + T(V)#k* @ Iy

where N = ;_; M™ and M turn out to be compatible with ¢ by [1, Lemma 4.9]. The next result is
[1, Theorem 4.11]. Recall (37).

Theorem 5.7. Let A be a lifting of B(V) over k® with lifting map ¢. Let M be a good module of relations for
B(V). Then A~T(V)#KkC/Iy. O

6. Pointed Hopf algebras over affine racks

Let Aff(IFp, N) be one of the affine racks Aff(IF3, 2), Aff(F4, w), Aff(Fs,2) or Aff(Fs,3). Through
this section, we fix a finite group G together with a principal YD-realization (-, g, {xi}iex) of
(Aff(Fp, N), —1). Let B(b, N, —1) be the Nichols algebra of V = k{x;}ier, in ]ﬁig)}D given by (7). In
this section we prove Main Theorem 1 using the Strategy of [1] described in 5.1.

Recall from Subsection 4.1 a set of generators of the ideal J (b, N, —1) and set z =z n,—1) the
top degree generator. Then the hypotheses of Subsection 5.1 hold for these Nichols algebras. Namely,

e J(b,N,—1) admits a stratification as in (26).
e z satisfies (21) and also (25) by Lemmas 4.2 and 4.3.
e Egs. (27) and (28) hold by Lemma 3.7.

Therefore we can apply Theorem 5.3 to compute the liftings of B(b, N, —1) over kG once we have
proved that

e The algebras in (31) are nonzero.

In the next subsections, we do this using [23,24]. We stick to the notation in Subsection 5.1. Recall
the definition of the sets Sx in (34), (34).

6.1. Pointed Hopf algebras over Aff(IF3, 2)

Let (A1, A2) € Safr;,2)- Let A(A1, A2) be the quotient of T(V)#kG by the ideal generated by

x% — X1 and  XpX1 + X1X2 + X2X0 — A2.

Let H(A1, A2) be the quotient of T(V)#KkG by the ideal generated by

X2 — (1- g(2,) and Xoxq + X1X2 + XX — A2(1 — g081).

Remark 6.1. The pointed Hopf algebras over S3 were classified in [7,6]. These are isomorphic either to
S3 or to some H(A1, A2). In [22] it was shown that the nontrivial liftings are cocycle deformations of
the bosonization B(3, 2, —1) #kS3. We give a different proof of this facts in Theorem 6.2. Also, items
(a) and (d) of this theorem are already in [6, Theorem 3.8], by different methods.

Theorem 6.2. Let H be a lifting of *B(3, 2, —1) over kG.

(a) There exists (A1, A2) € Safi(r,,2) such that H = H(Aq, A2).

(b) A(r1,A2) isan (H(r1, A2),B(3, 2, —1) #kG)-biGalois object for every (A1, A2) € Safi(r;,2)-
(c) H is acocycle deformation of B(3, 2, —1) #kG.

d) H(xy, Ap) is alifting of B(3, 2, —1) over kG for every (A1, 12) € Safi(r;,2)-

)

(
(e) H(r1, A2) = H(AY, AY) iff (A1, A2) = (], AY) for some o e k.
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Proof. Follows by Corollary 5.5. We consider the stratification of 7(3,2,—1) given by G = {x,.2:
i € F3} and G1 = {xixj + X_j12jX; + XjX_i42j: i, j € F3} and then we use Diamond Lemma to see
that A(A1,A2) #0. O

6.2. Pointed Hopf algebras over Aff(F4, w)

Let (A1, A2, A3) € Saff(Fy,0)- L€t A(A1, A2, A3) be the quotient of T(V)#kG by the ideal generated
by

x% — A, XoX1 + X1X2 + X2X9 — A and

(X0X1%2)% 4 (X1%2X0)? + (X2X0X1)? — ax — A3

for ax = A2 (X1x0X2X1 + XoX2X1X0 + X2X1X0X2) + A2(A2 — A1) (X2X1 + X1X0 + X0X2).
Let H(A1, A2, A3) be the quotient of T(V)#kG by the ideal generated by

X5 —r1(1—-g3),  Xox1+x1x2 +x2x0 — A2(1 — gog1) and

3,3
X2X1X0X2X1X0 + X1X0X2X1X0X2 + X0X2X1X0X2X1 — SX — A3 (1 - gogl)

where

Sx = A2(X2X1X0X2 + X1X0X2X1 + X0X2X1X0) — A3 (2081 — 8383)
+ )»%g% (g§ (X2X3 + X0X2) + 2183 (X2X1 + X1X3) + g% (x1X0 + X0x3))
— 222 g3 (XoX3 — XoX3 — X1X2 + X1X0) — 202 g3 (X2X3 — X1X3 + X0X2 — X0X1)
— 22282 (x2X1 + X1X3 + X1X2 — XoX3 -+ X0X1)
+ A1 (g§X0X3 + g%xpg + g3X1X3) + }»%gogl (X2X1 + X1X0 + X0X2 — A1)
— 1227 (38083 — 28087 — €585 — 28381 + & — &1 + &)

— ka1 — A2)(185(85 + 8183 + 7 +28087) + XaX1 + X1X0 + XoX2).

Theorem 6.3. Let H be a lifting of B(4, w, —1) over kG.

(a) There exists (A1, A2, A3) € Saff(r,,w) SUch that H = H (A1, X2, A3).

(b) A(x1,A2,A3) isan (H(A1, A2, A3), B(4, w, —1) #KkG)-biGalois object for every (A1, A2, A3) € Saf(F,,w)-
(c) H is acocycle deformation of B4, w, —1) #kG.

(d) H(x1, A2, A3) is a lifting of B (4, w, —1) #KG for all (A1, A2, A3) € Saff(F,.0)-

(€) H(r1, A2, A3) = H(AY, A, M%) iff (A1, A2, A3) = (], Ay, AL) for some € k.

Proof. The algebras H(Aq, A2, A3) are found following the strategy described in Subsection 5.1. We
check that the algebras .A;(A1,A2) are nonzero using [23,24]. We compute y»(z2), for y, : Hy —
A3 (A1, A2) as in Proposition 5.1 (b), again using [23,24], as explained in Appendix A. We end up with
the liftings H (11, A2, A3) using Proposition 5.2, which states (b) and (d), consequently (c) and (e). Now
(a) follows from Theorem 5.3. O
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6.3. Pointed Hopf algebras over Aff(Fs, 2)

Let (A1,A2,A3) € Safirs,2)- Let A(r1, A2, A3) be the quotient of T(V)#kG by the ideal generated
by

X% — M, X0X1 + X2X0 + X3X2 + X1X3 — A2,
(x0x1)% + (X1%0)* — A2(X1X0 + XoX1) — A3.
Let H(A1, A2, A3) be the quotient of T(V)#kG by the ideal generated by
xo—21(1—g5).  XoX1+xaXo +X3X2 + X1X3 — A2(1 — gog1) and
X1X0X1X0 + XoX1X0x1 — Sx — A3(1 — g38182).
for sx = A2(x1X0 + XoX1) + A183 (X3X0 + X2X3) — A183 (X2X4 + X1X2) + A2r183(1 — g182).
Theorem 6.4. Let H be a lifting of B (5, 2, —1) over kG.
There exists (A1, A2, A3) € SafiFs,2) Such that H = H(A1, A2, A3).
A1, Az, A3) isan (H(A1, A2, A3),B(5, 2, —1) #kG)-biGalois object for every (A1, A2, A3) € Saff(Fs,2)-

)

)

) H is a cocycle deformation of B(5, 2, —1) #kG.

) H(A1, A2, A3) is alifting of B(5, 2, —1) #KG for every (A1, A2, A3) € Satt(rs,2)-
)

Proof. Set z = (xox1)? + (x1X0)? € A’ = A (A1, A2), t; = g2g182 € G. Using [23,24],% the coaction of z
in A is §2(2) =z®1+t; ®z plus:

A28083 ® X1X0 + 228081 ® XoX1 — A281X3 @ X1 + A281X0 ® X1 — A280X3 ® X0 + A280X1 ® Xo-

If Z = x1x0 + x0X1 We get 62R (z—127)=(z—A7Z)®1+t,®2z Thus y,(z) =z— 1z’ and the theorem
follows as Theorem 6.3. O

6.4. Pointed Hopf algebras over Aff(Fs, 3)

Let (A1, A2, A3) € Saff(rs,3)- Let A(Lq, A2, A3) be the quotient of T(V)#kG by the ideal generated
by

X% — A, X1X0 + XoX2 + X2X3 + X3X1 — A2,
(x0X1)? + (X1X0)* — A2(X0X1 + X1X0) — A3.
Let H(A1, A2, A3) be the quotient of T(V)#kG by the ideal generated by
x§—r1(1—g3),  xiXo +XoX2 + Xox3 +X3%1 — A2(1 — gog1) and
XoX2X3X1 + X1Xax3%0 — Sx — A3(1 — g3.2183).

for sx = A2(xoX1 +X1X0) — A182 (X3X2 + X0X3) — A183 (X3X4 + X1X3) + MA2(g2 + g2 — 2822183).

2 See log files in http://www.mate.uncor.edu/~aigarcia/publicaciones.htm.
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Theorem 6.5. Let H be a lifting of B(5, 3, —1) over kG.

) There exists (A1, 12, A3) € Saff(rs,3) such that H = H (A1, A2, A3).

) A(A1, A2, A3) isan (H(Aq, A2, A3), B(5, 3, —1) #kG)-biGalois object for every (A1, A2, A3) € Saff(Fs,3)-
) H is a cocycle deformation of B(5,3 — 1) #kG.

(d) H(x1, A2, A3) is a lifting of ®B(5, 3, —1) #KG for every (A1, A2, A3) € Saff(Fs,3)-

(e) H(A1, A2, A3) = H(AY, A, ML) iff (M1, A2, A3) = w(A], A%, AY) for some e k.

(a
(b
(c

Proof. Analogous to Theorem 6.5 mutatis mutandis. 0O

6.5. Proof of Main Theorem 1

Assume X = Aff(F3,2). Let H be a pointed Hopf algebra over G whose infinitesimal braiding is
given by a principal YD-realization V € ﬂigyD of (X, —1). Then H is generated in degree one by [6,
Theorem 2.1]. Therefore H is a lifting of 2B(V) over kG and Main Theorem 1(i) follows by Theo-
rem 6.2.

The proof of items (ii), (iii), (iv) is analogous, again using the fact that any such H is generated in
degree one by [6, Theorem 2.1] and Theorems 6.3, 6.4 or 6.5, depending on each case. O
7. Copointed Hopf algebras over affine racks

Through this section, we consider the affine racks Aff(IF,, N) with constant 2-cocycle —1. We fix a
finite group G and a principal YD-realization (-, g, {xi}icx) of (Aff(Fp, N), —1) over G. Let ®B(—1,b, N)
be the Nichols algebra of W (—1, b, N) =k{x;}icF, in sz YD given by (8). We give the classification of
the lifting Hopf algebras of $8(—1, b, N) over kC and therefore the proof of Main Theorem 2.

7.1. Copointed Hopf algebras over Aff(F3, 2)
This subsection is inspired by [12,13] where the case G = S; was considered. Recall that

Inn Aff(F3, 2) = S3 = Auty Aff(F3,2) by (12). Let G — Ss3, t > t be the epimorphism given by
Lemma 3.6(b). We consider the group I =k* x S3 acting on

le{a:(ao,a1,a2)ek]F3: ao +ay +az =0}

via (i, 0) >a = wu(ago, Ap1, ap2). The equivalence class of a under this action is denoted by [a]. Given
ac 2, we define

fi=) @ —a-1)8 €k®, ieFs.
teG

Definition 7.1. Set A [0 = B(—1,3,2)#k°. Let a € 2 and assume that g? =e Vi € F3. We define the
Hopf algebra Ag [aj=T(-1,3, 2)#kC /7, where 7, is the ideal generated by

X2 — fi, XiXj + X_i12jXi + XjX_i12j, 1,je€F3,
and the algebra K¢ aj=T(-1,3, 2) #KkC /T, where T, is generated by
X+ fi —aj, XiXj + X_ip2jXi +XjX_it2j, 1,jeFs.

The algebras Ag [a) and K¢ [a) are nonzero by the next lemma.
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Lemma 7.2. Consider the k¢-module M = k{m;}rec, m; € M[t]. Then for all a € 2, M is an Ag.[aj-module
and a K¢ a)-module via

m if sgnt = —1,

-1
it
Xp-mp=1{ %

Xirm if sgnt =1,

gt
where A; ; = (a; — a,-1;) for Ag,ja) and Aj ¢ = —a,-1; for Kg [a).

Proof. We check that the action of K¢ [a) is well defined; for A¢ ja; it is similar. Notice that sgn(g;) =
—1. We start by 8pX; = X;8g;, cf. (10):

Sp(Xi - me) = Sp (A1) = Adgin(OM g1, = Xi - (g;h - Me)

for a certain A e k. Clearly x; - (x; - m¢) = Ajme. Since a € 2, then (XjXj +X_j12jX; + XjX_j42j) - Mt =
—(ap+ay+ay)m_-1_1,=0. O

g gt
The following theorem presents all the liftings of B(—1, 3, 2) over k°.
Theorem 7.3. Let H be a lifting of B(—1, 3, 2) over kC.

(a) Ifgi2 # e for some (and thus all) i € F3, then H >~ Ag 0]

(b) Ifgl.2 = e for some (and thus all) i € F3, then there is a € 2 such that H >~ Ag |a].
(c) Kq qay is an (Ag (0], Ac,[a])-biGalois object for all a € 2.

(d) Ag,a) is a cocycle deformation of A¢ p) for alla, b € 2.

(e) Ag, a) is a lifting of B(—1, 3, 2) over kS foralla,b e 4.

(f) Ag a1 = Ag,p if and only if [a] = [b].

Proof. Let ¢ : T(—1,3,2)#k% — H be a lifting map and let

2 L
W= {Xi’ XiXj + X_i12jXi +XjX—j42j: 1, ] GFg}

be the set of quadratic relations defining the Nichols algebra 2(—1, 3, 2), see Proposition 4.4. Let
M C T(—1,3,2) be the Yetter-Drinfeld submodule generated by W. Then ¢(M[gi_1gj_]]) =0 by
Lemma 5.6(b) using Lemma 3.7(a) and (c). Hence:

(a) follows from Lemma 5.6(b) and Theorem 5.7 using Lemma 3.7(a).

(b) follows from Lemma 5.6(d) and Theorem 5.7.

(c) follows from [36, Theorem 2]. In fact, fix a € 2l and let K be the braided Hopf subalgebra of
T(—1,3,2) generated by W. Then K #kC is a Hopf subalgebra of T(—1,3,2) #kC. By [13, Lemma 28],
we can define an algebra map ¥ = ¥ ® € : K#k® — k where

V(X)) =—ai and Y (iXj + X-is2)X +XjX_it2)) =0 Vi, j€F3.

If J=(W)C K#k®, then ! — J — ¢ =7, and ' — J =7,. By Lemma 7.2, K¢.[a) # 0 and [36,
Theorem 2] asserts (c); hence (d) and (e).

(f) Fix a,b € 2. Let ¢, and ¢p be lifting maps of Ag [a) and Ag p). Let © : Ag ja) = Ag.py be an
isomorphism of Hopf algebras. Then (&)c)* induces a group automorphism ¢ of G. By Lemma 5.6(e)
and using the adjoint action of k®, we see that 6 is a rack automorphism of Aff(F3,2) and @¢a(x;) =
Midp(xgi) with u; € k* for all i € F3. Since ® is a coalgebra map, using (10) we obtain that u; =
wu for all i € F3. Therefore a = (u?,6) > b. The proof of the converse statement is easy, recall that
Inns Aff(F3,2)=S3. O
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7.2. Copointed Hopf algebras over Aff(Fy, N)

Here Aff(F,, N) denotes one the racks Aff(IF4, w), Aff(Fs,2), Aff(Fs,3), Aff(F,3) or Aff(F7,5).
Recall that y¢ = x; is a multiplicative character for all i € X by Lemma 3.6(c). Let 7 : T(—1,b, N) —

%2( 1,b, N) be the natural projection. Set z’ _z( 1) and x;= Xgegz recall (22).

Definition 7.4. Set A¢ o =*B(-1,b, N)#KkC. If 2/ € T(—1,b, N)[e] and A € k*, then we define the Hopf
algebra

Ag.x =B2(=1,b, N)#kC /(m2(2) —2(1 - x;))
and the algebra K¢ , = B2 (—1,b, N)#kC/(m2(2) — 1).
The following theorem presents all the liftings of B(—1, b, N) over kC.

Theorem 7.5. Let H be a lifting of B(—1, b, N) over kC.

If G is generated by {g,.’l: ieFy}orx,=¢, then H>~ Ag.
IfZ eT(=1,b,N)*, H = Ag.o.
IfZ € T(—1,b, N)[e], then H ~ Ag  for some X € k.

()
(b)
(©)
) Kc.xisan (Ac.o, Ac,)-biGalois object for all 1 € k.
)
f)
)

a
b
c
(d

(e) Ag.» is a cocycle deformation of Ac ;/, for all », 2" € k.

() Ag., is alifting of B(—1,b, N) over k® forall », A €k.
(g) A= Ag 1% Agoforall x ek

Proof. Let ¢ : T(—1,b, N)#k® — H be a lifting map and M C T(—1,b, N) be the Yetter-Drinfeld
submodule generated by the quadratic relations defining B(—1, b, N), see Proposition 4.4. Then

M=M*= P Mg ' |o P Mg

i,jely icly

by Lemma 3.7. Moreover, ¢(M*) =0 by Lemma 5.6(b) using Lemma 3.7. Therefore ¢ factorizes
through %2( 1,b, N)#kC and the Yetter-Drinfeld module M, generated by z' is compatible with
¢. Therefore:

(c) follows from Lemma 5.6(d) and Theorem 5.7 by (23) . (a) follows from (c) since x; =
Xgegz =¢ by Lemma 4.2. (b) follows from Lemma 5.6(b) and Theorem 5.7 since 1= dimmy(My) <
dim W (-1, b, N); the equality holds by Eq. (22).

(d) Let w = m2(z) x,. By Lemma 4.5 k[w] is the subalgebra of right 8(—1, b, N) #kC-coinvariants.
By [1, Corollaries 3.7 and 3.8] we can apply [30, Theorem 4] to the Yetter-Drinfeld algebra map

k[w] — By(—1,b, N)#k®, w>w — Ax.

Hence /g, is an (Ag., Ag,0)-biGalois object. (e) and (f) are consequences of (d). For (g), the map
F:Ag.; — Ac given by F(x;) = A1/ 982x; and F¢ =idjc is an isomorphism of Hopf algebras. O

Example 7.6. There are nontrivial liftings of ®8(—1,b, N) isomorphic to A¢ . In fact, suppose that
m | £k + 1 and consider the (m, k)-affine realization of (Aff(Fp, N), —1); note that z’ € T( 1,b,N)[e].
Let G’ be a finite group with a multiplicative character x¢ : G' — k* such that x, degz # ¢. Then
G = (Fp x Cme¢) x G" acts on W(—1,b,N) via (h x g) - xi = xc(g')h - x; and thus the (m, k)-affine
realization idnduces a principal YD-realization of (Aff(F,, N), —1) over G such that z € T(—1, b, N)[e]
and x;= egz #e.
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7.3. Proof of Main Theorem 2

Let H be a copointed Hopf algebra over k¢ whose infinitesimal braiding is given by a principal
YD-realization W (—1,b,N) € ﬁﬁy@. Then H is generated in degree one. Indeed, we can repeat the
proof of [6, Theorem 2.1|, mutatis mutandis, using the results of Subsection 4.3. Hence H is a lift-
ing of B(—1,b, N) over k¢ and Main Theorem 2 follows by Theorem 7.3 for Aff(Fs,2) or else by
Theorem 7.5. O

Acknowledgments

We thank Nicolds Andruskiewitsch for suggesting us this problem and for the many useful com-
ments he shared with us in previous versions of this work. We also thank Ivan Angiono and Leandro
Vendramin for very useful discussions. In particular, the idea for computing coproducts with [23]
came up in conversations with LV. Also, A.G.I. specially thanks Giovanna Carnovale from the Univer-
sita degli Studi di Padova where part of his work was done and for her warm hospitality and help.
We are also indebted to Martin Mombelli for sharing his knowledge about braided categories with us.

Appendix A. On computations

Through Appendix A we keep the hypotheses and notation in Subsection 5.1. We explain how we
can compute using [23,24] the left and right coactions of the top degree relation of a Nichols algebra
as there.

Set H' =Hy, A =Ay(A, ) and L' = L(A, n); these are quotients of T(V)#KkG. Let §g and &
be the coactions on A’ over H' and L', respectively; these are induced by the comultiplication of
T (V) #kG.

Let z be the top degree generator of 7(V), set £ = degz. It is an element of T(V) but we still
denote by z its class in H', A’ or £'. We compute

(i) The coaction 8g(z) ¢ A’ @ H'.
(ii) The section y»(2) € A'.
(iii) The coaction 8. (y2(2)) e L' ® A'.

For item (i) we proceed as follows. Let 6 =dimV and denote by y;, i=1,...,60 the generators
of A’. We work with 36 + 2 variables G1, ..., Gg, X1,...,Xg, Y1,..., Ys, U, V. The variables G; stand
for the elements g; ® 1 in A’ ® H'. The variables Y; and X; stand for y; ® 1 and 1 ® x;, respectively.
The variables U and V are included to have a homogeneous system of generators. In most cases one
of them is enough (for instance if n =2) and there are cases where we can omit them. We fix two
indeterminate elements s, t € k, corresponding to A, u.

We define an ideal K of relations in the algebra generated by these variables whose generators
are, for every 1<1i, j <@ and for every class C € R’:

YiXj—XjYi,  XiGj—=GjXi,  GiGj—GinjGi,  GiYj+VYip G,
X, Y —tU,  bc({Xidiex).  bc({Yiliex) +sV.

Also, U and V commute with all X,Y,G. Recall that bc(-) stands for a generator of the space of
quadratic relations, see (24). This ideal is homogeneous if we declare all X,Y, G of degree 1, U of
degree n and V of degree 2. We compute the (truncated, up to degree ¢) Grébner basis of K.

We define d; = Y; + G;Xj, i=1,...,0. These elements stand for the coaction of y; € A". We can
now compute the coaction §g(z) by adding and multiplying the d;’s in a suitable way. For U, V we
consider it as 1.

We now explain how we get y,(z) in item (ii). Let Sg(z) —t;®z=>_ A; ® B; and let z’ be the sum
of the terms B; of greatest degree with A; € kG. Re-write the B;’s in the variables Y; and consider
z1 =z — 7. We calculate §g(z1) and repeat the proceeding: in the examples considered, the order
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of the elements we subtract decreases. When 8g(zn) —t, ® z € A’ ® kG, for some m, we get that
Sr(zm) =zm ® 1 +t; ® z and thus y»(2) = zp.
Finally, we find 8; (y»(2)) in (iii) in a similar way as we did for 8z (z).

Example Al. Let X = (F4, w). We use [23,24] to see that the algebras A’ = A3(Aq, ;) are nonzero.
See the log files in http://www.mate.uncor.edu/~aigarcia/publicaciones.htm. Set
z2=(Yoy1¥2)* + (y1¥2¥0)* + (y2yoy1)* € A, t; = g3 g3 € G. Using [23,24], the coaction of z in A’ is
SR(2)=z®1+t,®z plus:

228585 ® X1X0X2X1 + 42858183 ® X0X2X1X0 + 428587 ® X2X1X0X2
+ 22808183 (Y2 — Yo) ® X2X1X0 + 22808183(¥1 — Y2) ® X1X0X2
+22808183(Yo — Y1) ® XoX2X1 + A28281(Y3 — Y1) ® XoX1X2
+ 128087 (Yo — ¥3) ® X1%2X1 + 128283(¥2 — ¥3) ® XoX1X0
+228183(Yoy2 — ¥Y1¥2 — VoY1) ® X2X1 + 222118183 ® X2X1
+228083(¥2¥1 + ¥Y1Y2) ® X1%0 + 228082(¥1Y0 + YoY1) ® XoX2
+A28081(¥2¥3 — ¥2¥1 —2Y1Y3 + Y1Yo + Yoy3) @ X1X2
+228081(Yoy2 +2y2y3 — Y2y1 — ¥1¥3 — Yo¥3) ® Xox1
+2280(¥2Y1Y0 — Y1¥2¥1 — Y1Y0oY3 — YoY1Y3) ® Xo
+2281(Yoy2y1+ Yoy1y2 — Y2y1¥3 — V1¥2y3) ® x1
+A282(y1Y2Y3 + Y1Y0Y2 — YoY2¥3 + YoY1¥3 — YoV1Yo) @ X2
+A2(2A1 — 22)8083 ® X1X0 + A2(2A1 — A2)808&2 ® X0X2
+ A2(A2 — 2X1)80(¥3 — ¥2) ® X0 + A280(A2Y1 — 21Y0) ® Xo
+222%1 —22)81(Yo — ¥3) ® X1 — A1A282(¥2+ ¥3) @ X2
+ 228220 — A2)¥1 ® X2 +2282(A2Y0 — MY3) @ X2.

If 21 =z — 222’ + A2(A2 — A1)Z” where Z' = y1yoy2y1 + Yoy2y1Yo + Y2¥1¥oy2, 2" = y2y1 + y1yo +
Yoy2, we get 82(z1t; ) = z1t; ' ®t; ' +1®2z. Thus, y2(zt; ') = z1t; ! and y2(2) = z;. The computation
of 8%(7/2 (2)) — 1 ® y2(2) yields sx in Subsection 6.2.
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