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We study the pointed or copointed liftings of Nichols algebras
associated to affine racks and constant cocycles for any finite
group admitting a principal YD-realization of these racks. In the
copointed case we complete the classification for the six affine
racks whose Nichols algebra is known to be of finite dimension.
In the pointed case our method allows us to finish four of them. In
all of the cases the Hopf algebras obtained turn out to be cocycle
deformations of their associated graded Hopf algebras. All of them
are new examples of finite-dimensional copointed or pointed Hopf
algebras over non-abelian groups.
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1. Introduction

Let k be an algebraically closed field of characteristic zero and let H be a semisimple Hopf algebra
over k. This work is in the framework of the classification of finite-dimensional Hopf algebras whose
coradical is a Hopf subalgebra isomorphic to H . Let FH be the family of such Hopf algebras. This
problem has two interrelated sub-problems:

• To determine all V ∈ H
HYD such that the Nichols algebra B(V ) is finite-dimensional and give a

presentation of B(V ).
• To classify the lifting Hopf algebras of B(V ) over H .
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If A ∈ FH is generated in degree one, then A is a lifting of a Nichols algebra over its coradical. It was
conjectured that this holds when H is a group algebra [9]. These steps compose the Lifting Method
of [11].

First defined by Nichols, and also called quantum symmetric algebras, Nichols algebras are de-
termined by a profound combinatorial behavior which is no yet fully understood. They are not Hopf
algebras in the usual sense, but rather Hopf algebras in the category of Yetter–Drinfeld modules H

HYD.
Let G be a finite group. If G is abelian, all V ∈ kG

kGYD with dimB(V ) < ∞ have been determined in
[31] and the presentation of B(V ) together with a positive answer to the conjecture in [9] were given
in [14,15]. If G is non-abelian, it has been shown that for many (simple) groups most V ∈ kG

kGYD yield
Nichols algebras of infinite dimension [2,3]. Furthermore, only a few examples of finite-dimensional
Nichols algebras are known, see below. Up to date, it is very complicated to find the relations defin-
ing the Nichols algebras and to compute their dimension, even using the computer, see [27]. Notice
that Nichols algebras in kG

kGYD and kG
kGYD coincide since these categories are braided equivalent, see

Section 3.
Recall that the Hopf algebras in FkG are called pointed, while those in FkG are called copointed, cf.

[12].
The most prominent result in the classification of Hopf algebras is in [11] where the pointed

Hopf algebras over an abelian group of order coprime with 210 are classified. The classification of
nontrivial, i.e. different from group algebras, pointed Hopf algebras over non-abelian group is known
for: S3 [7], S4 [25] and D4t [18]. Also they have been classified the cases An , n � 5, and most simple
sporadic groups but all turn out to be group algebras [2,3,19]. In the copointed case the classification
is known only for S3 [12]. The Hopf algebras obtained in the above results are all liftings of Nichols
algebras over their coradical and cocycle deformations of each other [37,18,13,22,21].

Also, in [16] the liftings of the quantum line over four families of nontrivial semisimple Hopf
algebras are classified, and in [8] another approach for the lifting problem is proposed.

Nichols algebras of finite dimension over non-abelian groups appear associated to racks and
2-cocycles, see [5]. It is worth mentioning that racks appear also in the calculus of knot invari-
ants [29]. Next, we list all pairs of non-abelian indecomposable racks and cocycles whose associated
Nichols algebras are known to be finite-dimensional, see for instance [27].

(1) Racks of the conjugacy classes On
m of m-cycles in Sn:

• The rack On
2 and constant 2-cocycle −1, n = 3,4,5.

• The rack On
2 and a non-constant 2-cocycle χ , n = 4,5.

• The rack O4
4 and constant 2-cocycle −1.

Their Nichols algebras were studied in [38,20,5,25]. In [40] it is shown that the Nichols algebras
associated to On

2 with constant and non-constant 2-cocycle are twist equivalent. All of these racks
can be realized over the symmetric groups and their duals. The families FS3 and FS4 were classified
in [7,25] respectively, and F

k
S3 in [12].

(2) The affine racks:

• (F3,2), (F4,ω), (F5,2), (F5,3), (F7,3) and (F7,5) with constant 2-cocycle −1 [38,26,5].1

• (F4,ω) and a non-constant 2-cocycle ζ [33] with ζii a third root of 1 for i ∈ F4.

The aim of this work is to study both the pointed and copointed lifting of the Nichols algebras associ-
ated to these affine racks (Fb, N) with constant 2-cocycle −1. In this case no liftings are known, apart
from the case (F3,2), see [6, Theorem 3.8]. In [1] a general strategy to classify the family FH is de-
veloped showing at the same time that they are cocycle deformations of the bosonization B(V )# H .
We adapt the ideas there to compute the pointed, and copointed, liftings of these Nichols algebras
over any group G . We also give results which apply to other racks.

The classification in the pointed case is given by the next theorem.

1 As racks (F3,2) � O3
2 , (F5,2)∗ � (F5,3) and (F7,3)∗ � (F7,5).
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Main Theorem 1. Let G be a finite group. The pointed Hopf algebras over kG whose infinitesimal braiding
arises from a principal YD-realization of an affine rack X with the constant 2-cocycle q ≡ −1 are classified in

(i) Theorem 6.2, if X = (F3,2).
(ii) Theorem 6.3, if X = (F4,ω).

(iii) Theorem 6.4, if X = (F5,2).
(iv) Theorem 6.5, if X = (F5,3).

All of these liftings are cocycle deformations of B(X,−1)#kG.

The first item is already in [6, Theorem 3.8], without the statement about cocycle deformations.
It is important to remark that in some of these new examples, some of the relations are not only
deformed by elements in the coradical, but also by elements in higher terms of the coradical filtration.
This phenomenon is quite new, and was only present previously in some deformations in [32] for the
abelian case.

The classification in the copointed case is given by the next theorem.

Main Theorem 2. Let G be a finite group. The copointed Hopf algebras over kG whose infinitesimal braiding
arises from a principal YD-realization of an affine rack X with the constant 2-cocycle q ≡ −1 are classified in

(i) Theorem 7.3, if X = (F3,2).
(ii) Theorem 7.5, if X = (F4,ω), (F5,2), (F5,3), (F7,3) or (F7,5).

All of these liftings are cocycle deformations of B(X,−1)#k
G .

We explicitly define biGalois objects to prove the last assertion. These liftings are new examples
of Hopf algebras.

The Hopf algebras found are presented as quotients of bosonizations of tensor algebras. Hence the
greatest obstacle to achieve our principal results is to show that these quotients have the right di-
mension, or just to show that they are nonzero. The same issue is present in the rest of the works
cited above. We are able to avoid this obstacle by showing that the quotient is a cocycle deformation,
as proposed in [1]. However, some very complicated computations are necessary at an intermediate
step and we are forced to appeal to computer program [23]. However, we find that the computer
is not always enough and some examples cannot be attacked with this method. The same computa-
tional impediment is present in the calculation of Nichols algebras themselves. Hence, new tools are
required to attack these problems, such as representation theory, see for instance [13,25,18].

The paper is organized as follows: In Section 2 we give some conventions and notations. In Sec-
tion 3 we give the correspondence between Nichols algebras in braided equivalent categories of
Yetter–Drinfeld modules. We recall the notions of rack and Yetter–Drinfeld realization of a rack over a
group. In Section 4, we introduce the known examples of finite-dimensional Nichols algebras attached
to an affine rack and give some properties of these which will be useful for us. In Section 5 we go
through the ideas in [1] and adapt them to prove new results that apply in our setting. In Sections 6
and 7 we use these results to prove our main theorems. We also include Appendix A with the ideas
behind some of the computations.

2. Preliminaries

We work over an algebraically closed field k of characteristic zero; k∗ := k \ {0}. If X is a set, then
kX denotes the free vector space over X . If A is an algebra and X ⊂ A, then 〈X〉 is the two-sided
ideal generated by X .

Let G be a finite group. We denote by e the identity element of G , by kG its group algebra and
by k

G the function algebra on G . The usual basis of kG is {g: g ∈ G} and {δg : g ∈ G} is its dual
basis in k

G , i.e. δg(h) = δg,h for all g,h ∈ G . If M is a k
G -module and g ∈ G , the isotypic component
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of weight g is M[g] = δg · M . We write supp M = {g ∈ G : M[g] 
= 0} and M× = ⊕
g 
=e M[g]. The

symmetric group in n letters is denoted by Sn and sgn : Sn → Z2 denotes the morphism given by the
sign.

Let H be a Hopf algebra. Then �, ε, S denote respectively the comultiplication, the counit and
the antipode. We use Sweedler’s notation for comultiplication and coaction but dropping the sum-
mation symbol. We denote by {H[i]}i�0 the coradical filtration of H and by gr H = ⊕

n�0 grn H =⊕
n�0 H[n]/H[n−1] the associated graded Hopf algebra of H with H[−1] = 0.

Assume S is bijective and let H
HYD be the category of Yetter–Drinfeld modules over H . If V ∈

H
HYD, then the dual object V ∗ ∈ H

HYD is defined by 〈h · f , v〉 = 〈 f ,S(h) · v〉 and f(−1)〈 f(0), v〉 =
S−1(v(−1))〈 f , v(0)〉 for all v ∈ V , f ∈ V ∗ and h ∈ H , where 〈 , 〉 denotes the standard evaluation.

2.1. Galois objects

Let H be a Hopf algebra with bijective antipode and A be a right H-comodule algebra with right
H-coinvariants Aco H = k.

If there exist a convolution-invertible H-colinear map γ : H → A, then A is called a right cleft
object. The map γ can be chosen so that γ (1) = 1, in which case it is called a section. In turn, A is
called a right H-Galois object if the following linear map is bijective:

can : A ⊗ A 
→ A ⊗ H, a ⊗ b 
→ ab(0) ⊗ b(1).

Analogously, left H-Galois objects are defined. Let L be another Hopf algebra. An (L, H)-bicomodule
algebra is an (L, H)-biGalois object if it is simultaneously a left L-Galois object and a right H-Galois
object.

Assume A is a right H-Galois object. There is an associated Hopf algebra L(H, A) such that A is
an (L(A, H), H)-biGalois object, see [39, Section 3]. L(A, H) is a subalgebra of A ⊗ Aop. Moreover, if
L is a Hopf algebra such that A is (L, H)-biGalois then L ∼= L(A, H). More precisely, if δ, δL stand for
the coactions of L(A, H) and L in A, there is a Hopf algebra isomorphism F : L(A, H) → L such that
δL = (F ⊗ id)δ and

F
(∑

ai ⊗ bi

)
⊗ 1A =

∑
λL(ai)(1 ⊗ bi),

∑
ai ⊗ bi ∈ L(A, H). (1)

Thus, one can use Galois objects to find new examples of Hopf algebras. Furthermore, L(H, A) is a
cocycle deformation of H [39, Theorem 3.9].

3. Nichols algebras and racks

From now on C denotes a category of (left, right or left–right) Yetter–Drinfeld modules over a
finite-dimensional Hopf algebra H . Then C is a braided monoidal category. Let c be the canonical
braiding of C . See e.g. [35] for details about braided monoidal categories.

Let V ∈ C . The tensor algebra T (V ) is an algebra in C . Also, T (V ) ⊗ T (V ) is an algebra with
multiplication (m ⊗ m) ◦ (id ⊗ c ⊗ id). Hence T (V ) becomes a Hopf algebra in C extending by the
universal property the following maps

�(v) = v ⊗ 1 + 1 ⊗ v, ε(v) = 0 and S(v) = −v, v ∈ V .

Let J (V ) be the largest Hopf ideal of T (V ) generated as an ideal by homogeneous elements of
degree � 2.

Definition 3.1. (See [10, Proposition 2.2].) The Nichols algebra of V (in C) is B(V ) = T (V )/J (V ).
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See [10] for details about Nichols algebras. Let n ∈ N; we denote by J n(V ), respectively Bn(V ), the
homogeneous component of degree n of J (V ), respectively of B(V ). We set Jn(V ) = 〈⊕n

l=2 J l(V )〉
and B̂n(V ) = T (V )/Jn(V ).

Let A be Hopf algebra such that gr A is isomorphic to B(V )# H . Then A is called a lifting of
B(V ) over H . The infinitesimal braiding of A is V ∈ H

HYD with the braiding of H
HYD. Recall from [12,

Proposition 2.4] that there exists a lifting map φ : T (V )# H → A, that is an epimorphism of Hopf
algebras such that

φ|H = id, φ|V # H is injective and φ
(
(k⊕ V )# H

) = A[1]. (2)

We recall another characterization of J (V ), see e.g. [4,10]. Fix n ∈ N. Let Bn be the Braid group:
It is generated by {σi: 1 � i < n} subject to the relations σiσi+1σi = σi+1σiσi+1 and σiσ j = σ jσi
for all 1 � i, j < n such that |i − j| > 1. The projection Bn � Sn , σi 
→ (i i + 1), 1 � i < n, admits
a set-theoretical section s : Sn → Bn defined by s(i i + 1) = σi , 1 � i < n, and s(τ ) = σi1 · · ·σi
 , if
τ = (i1i1 + 1) · · · (i
 i
 + 1) with 
 minimum; this is the Matsumoto section. The quantum symmetrizer
is:

Sn =
∑
τ∈Sn

s(τ ) ∈ kBn.

The group Bn acts on V ⊗n via the assignment σi 
→ ci,i+1, 1 � i < n, where ci,i+1 : V ⊗n → V ⊗n is the
morphism

id ⊗ c ⊗ id : V ⊗i−1 ⊗ V ⊗2 ⊗ V ⊗n−i−1 → V ⊗i−1 ⊗ V ⊗2 ⊗ V ⊗n−i−1.

Then the homogeneous components of J (V ) are given by

J k(V ) = ker Sk, k ∈N.

3.1. Correspondence between Nichols algebras in braided equivalent categories

Let H , C be as above. Let H ′ be a finite-dimensional Hopf algebra, C′ be a category of Yetter–
Drinfeld modules over H ′ . Assume there is a functor (F , η) : C → C′ of braided monoidal categories,
i.e. F : C → C′ is a functor and η : ⊗ ◦ F 2 → F ◦ ⊗ is a natural isomorphism such that the diagrams

F (U ) ⊗ F (V ) ⊗ F (W )
η ⊗ id

id ⊗ η

F (U ⊗ V ) ⊗ F (W )

η

F (U ) ⊗ F (V ⊗ W )
η

F (U ⊗ V ⊗ W ),

(3)

F (U ) ⊗ F (V )
cF (U ),F (V )

η

F (V ) ⊗ F (U )

η

F (U ⊗ V )
F (cU ,V )

F (V ⊗ U ),

(4)

commute for each U , V , W ∈ C .
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Fix V ∈ C . For m,n ∈N, set ηm,n = ηV ⊗m,V ⊗n and

ηn = ηn−1,1(ηn−2,1 ⊗ id) · · · (η2,1 ⊗ id)(η ⊗ id) : F (V )⊗n → F
(

V ⊗n).
By abuse of notation, we still write η = η1,1 = η2. By (3), it holds that

ηm+n+k = ηm,n+k (id ⊗ ηn,k)(ηm ⊗ ηn ⊗ ηk), m,n,k ∈N. (5)

Note that Bn acts on F (V ⊗n) via σi 
→ F (ci,i+1). Then the commutative diagram (4) implies that η
is an isomorphism of B2-modules. Moreover, combining (3) and (4) with the fact that η is a natural
isomorphism, we obtain that ηn : F (V )⊗n → F (V ⊗n) is an isomorphism of Bn-modules in C′ . As a
consequence we have the next lemma.

Lemma 3.2. Assume (F , η) : C → C′ is exact. Let V ∈ C with dim V < ∞. The ideals defining the Nichols
algebras B(V ) and B(F (V )) are related by

J n(F (V )
) = η−1

n F
(
J n(V )

)
for all n ∈N.

If F preserves dimensions, then dimBn(V ) = dimBn(F (V )) for all n ∈ N.

Proof. Recall that J n(F (V )) is the kernel of Sn acting on F (V )⊗n , n ∈ N. Since F is exact and ηn is
an isomorphism, the theorem follows. �

We can apply the above result to the categories H
HYD and H∗

H∗YD. In fact, by [4, Proposition 2.2.1]
they are braided equivalent monoidal categories via the functor (F , η) defined as follows: F (V ) = V
as a vector space,

f · v = 〈
f ,S(v(−1))

〉
v(0), δ(v) = f i ⊗ S−1(hi)v and

η : F (V ) ⊗ F (W ) 
→ F (V ⊗ W ), v ⊗ w 
→ w(−1)v ⊗ w(0) (6)

for every V , W ∈ H
HYD, f ∈ H∗ , v ∈ V , w ∈ W . Here {hi} and { f i} are dual bases of H and H∗ .

Lemma 3.3. Let V ∈ H
HYD of finite dimension and M ⊂ V ⊗n in H

HYD. Let N = ⊕
m∈N Nm with Nm ⊂ V ⊗m

in H
HYD, m ∈N. Then

(a) F (V )⊗m ⊗ η−1
n F (M) ⊗ F (V )⊗k = (ηm+n+k)

−1 F (V ⊗m ⊗ M ⊗ V ⊗k).

(b) 〈η−1
n F (M)〉 = ∑

m,k(ηm+n+k)
−1 F (V ⊗m ⊗ M ⊗ V ⊗k).

(c) Let M ⊂ T (V )/〈N〉. In T (F (V ))/〈⊕m η−1
m F (Nm)〉 it holds that η−1

n F (M) = η−1
n F (M).

Proof. (a) Let x ∈ V ⊗m , r ∈ M and y ∈ V ⊗k . By (5), there exist x′ ∈ V ⊗m , r′ ∈ M and y′ ∈ V ⊗k such
that (ηm+n+k)

−1(x ⊗ r ⊗ y) = η−1
m (x′) ⊗ η−1

n (r′) ⊗ η−1
k (y′). Also by (5), there exist x′′ ∈ V ⊗m , r′′ ∈ M

and y′′ ∈ V ⊗k such that ηm+n+k(x ⊗ r ⊗ y) = x′′ ⊗ r′′ ⊗ y′′ . Since (ηm+n+k)
±1
|V ⊗m⊗M⊗V ⊗k are injective

morphisms the statement follows. (b) and (c) are straightforward. �
Lemma 3.3c is useful to find deformations of Nichols algebras. Next lemma is a consequence of

Lemma 3.3(a).

Lemma 3.4. Let M = ⊕
m∈N Mm with Mm ⊂ V ⊗m in H

HYD, m ∈ N. Assume that M generates J (V ) as an
ideal. Then
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(a)
⊕

m∈N η−1
m F (Mm) ∈ H∗

H∗YD generates J (F (V )) as an ideal.

(b) Jk(F (V )) = 〈⊕k
l=2 η−1

l F (J l(V ))〉 for all k ∈N. �
3.2. Racks

A rack is a nonempty set X with an operation � : X × X → X such that

φi : X 
→ X, j 
→ i � j,

is a bijective map and φi( j � k) = φi( j) � φi(k) for all i, j,k ∈ X . The subgroup of SX generated by
{φi}i∈X is denoted Inn� X , it is a subgroup of the group of rack automorphisms Aut� X .

A function q : X × X → k
∗ , (i, j) 
→ qij , is a (rack) 2-cocycle if qi, j�kq j,k = qi� j,i�kqi,k for all

i, j,k ∈ X . We refer to [5] for details about racks.

Definition 3.5. (See [6, Definition 3.2], [38, Subsection 5].) Let X be a rack and q be a 2-cocycle on X .
A principal YD-realization of (X,q) over a finite group G is a collection (·, g, {χi}i∈X ) where

• · is an action of G on X ;
• g : X 
→ G , i 
→ gi , is a function such that gh·i = hgih−1 and gi · j = i � j for all i, j ∈ X and h ∈ G;
• {χi}i∈X is a 1-cocycle – that is a family of maps χi : G → k

∗ such that χi(ht) = χt·i(h)χi(t) for all
i ∈ X , h, t ∈ G – satisfying χi(g j) = q ji for all i, j ∈ X .

We will assume that all realizations are faithful, that is g is injective.

These data define an object V (X,q) ∈ kG
kGYD [6]. Namely, as a vector space V (X,q) = k{xi}i∈X , the

action and coaction are

t · xi = χi(t)xt·i and λ(xi) = gi ⊗ xi, t ∈ G, i ∈ X . (7)

We denote by T (X,q) the tensor algebra of V (X,q), its Nichols algebra is denoted by B(X,q) and
the defining ideal is J (X,q).

Let W (q, X) be the object in k
G

kGYD obtained by applying the functor (6) to the above Yetter–
Drinfeld module V (X,q) over kG . Then

δt · xi = δt,g−1
i

xi and λ(xi) =
∑
t∈G

χi
(
t−1)δt ⊗ xt−1·i, t ∈ G, i ∈ X . (8)

We denote by T (q, X) the tensor algebra of W (q, X), its Nichols algebra is denoted by B(q, X) and
the defining ideal is J (q, X).

Note that the smash product Hopf algebra T (X,q)#kG satisfies

txi = χi(t)xt·it and �(xi) = xi ⊗ 1 + gi ⊗ xi, t ∈ G, i ∈ X . (9)

The smash product Hopf algebra T (q, X)#k
G satisfies for all t ∈ G , i ∈ X

δt xi = xiδgit and �(xi) = xi ⊗ 1 +
∑

χi
(
t−1)δt ⊗ xt−1·i . (10)
t∈G
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To find all the groups G supporting a principal YD-realization of (X,q) presents hard computa-
tional aspects [6, Section 3], see e.g. Lemma 3.6(c) below. A possible approach is the following. Let
F (X) be the free group generated by {gi}i∈X . The enveloping group G X of X , see [17,34], is

G X = F (X)/〈gi g j − gi� j gi: i, j ∈ X〉. (11)

If X is finite and indecomposable, then the order n of φi does not depend on i ∈ X and is called
the degree of the rack, see [33, Definition 2.18], also [28]. Thus, there is a series of finite versions
of G X , given by

Gk
X = G X/

〈
gkn

i , i ∈ X
〉
, k ∈N.

G1
X is denoted by G X and called the finite enveloping group of X in [33].

Lemma 3.6. Let X be a faithful and indecomposable rack of degree r with a 2-cocycle q. Let (·, g, {χi}i∈X ) be
a principal YD-realization of (X,q) over a finite group G and K ⊂ G be the subgroup generated by {gi: i ∈ X}.
Then

(a) K is normal and a quotient of Gr
X .

(b) (See [6, Lemma 3.3(c)].) G acts by rack automorphisms on X.
(c) (See [6, Lemma 3.3(d)].) If q is constant, then there exists a multiplicative character χG : G → k

∗ such that
χG = χi for all i ∈ X.

Proof. (a) Clearly K is normal. As X is faithful, the map g : X → G is injective and thus we have an
epimorphism F (X) → K . Since the relations defining Gr

X are satisfied in K , the epimorphism factor-
izes through Gr

X . �
Lemma 3.7. Let (X,q), (·, g, {χi}i∈X ) and K be as in the above lemma.

(a) If i � j 
= j, then g

i 
= g j for all 
 ∈ Z. In particular, gi g j 
= e.

(b) Let i, j ∈ X and 
 ∈ Z be such that φ

i ( j) 
= j. Then g


i 
= e.

Assume q ≡ ξ is constant, for an nth root of unity ξ .

(c) If n1 + · · · + na 
≡ m1 + · · · + mb mod n, then gn1
i1

· · · gna
ia


= gn1
j1

· · · gnb
jb

.
(d) (χG|K )n = ε.

Proof. (a)–(b) We show that if the equality holds then gi = g j . Notice that gi g j = gi� j gi for all
i, j ∈ X . If g j = g


i , then g j = gi(g

i )g−1

i = gi g j g−1
i = gi� j but j 
= i � j. In particular, g−1

i 
= g j and
hence e 
= gi g j . If e = g


i , then g j = g

i g j = gφ


i ( j) g

i = gφ


i ( j) but j 
= φ

i ( j). (c) Apply the multiplicative

character χG . (d) is immediate. �
3.3. The dual rack

Fix a finite rack (X,�). The dual rack X∗ is the pair (X,�−1) where

i �−1 j = φ−1
i ( j) for all i, j ∈ X .

Fix a 2-cocycle q on X and a principal YD-realization (·, g, {χi}i∈X ) of (X,q) over a finite group G . Let
q∗ : X × X → k

∗ be the 2-cocycle on X∗ given by

q∗
i, j = qi,i�−1 j for all i, j ∈ X .
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Then the dual object to V (X,q) in kG
kGYD (resp. W (q, X) in k

G

kGYD) is isomorphic to the ob-

ject V (X∗,q∗) in kG
kGYD (resp. W (q∗, X∗) in kG

kGYD) attached to the principal YD-realization

(·, g−1, {χ−1
i }i∈X ) over G , see for example [25, Eq. (1)].

We set q−∗ := (q∗)−1. It is easy to see that q−∗ is a 2-cocycle on X∗ and that (·, g−1, {χi}i∈X ) is a
principal YD-realization of (X∗,q−∗) over G .

Let V (X,q), V (X∗,q−∗) ∈ kG
kGYD be defined by (7) for (·, g, {χi}i∈X ) and (·, g−1, {χi}i∈X ), re-

spectively. We denote by {yi}i∈X the basis of V (X∗,q−∗). We define the linear map c : T (X,q) →
T (X∗,q−∗) as follows: c(1) = 1,

c(xi) = yi if i ∈ X and

c(mr) = c(m(0))
(
m(−1) · c(r)) if m, r ∈ T (X,q).

It is easy to see that c is well defined.

Proposition 3.8. Let S be a set of generators of the defining ideal J (X,q) of B(X,q) ∈ kG
kGYD. Then the

defining ideal of B(X∗,q−∗) ∈ kG
kGYD satisfies J (X∗,q−∗) = c(J (X,q)) and it is generated by c(S).

Proof. We consider the co-opposite Hopf algebra (B(X,q)#kG)cop. As kG is cocommutative,
(B(X,q)#kG)cop � R #kG for some graded braided Hopf algebra R ∈ kG

kGYD. Moreover, R is the
Nichols algebra of P(R) ∈ kG

kGYD because (B(X,q)#kG)cop is generated as an algebra by the first
term of its coradical filtration which is (B(X,q)#kG)[1] .

Now, P(R) = k{xi # g−1
i }i∈X with coaction λ(xi # g−1

i ) = g−1
i ⊗ xi # g−1

i and action g · (xi # g−1
i ) =

gxi # g−1
i g−1 = χi(g)xg·i # g−1

g·i for all i ∈ X , g ∈ G . Then P(R) � V (X∗,q−∗) in kG
kGYD via the assign-

ment xi # g−1
i 
→ yi for all i ∈ X . Therefore

ϑ : (B(X,q)#kG
)cop →B

(
X∗,q−∗)#kG, xi # g 
→ yi # gi g, i ∈ X, g ∈ G

is a Hopf algebra isomorphism. Let m ∈J (X,q) be such that m(−1) ⊗m(0) = gm ⊗m. Then 0 = ϑ(m) =
c(m)# gm and hence c(m) ∈ J (X∗,q−∗). This shows that c(J (X,q)) ⊆ J (X∗,q−∗) and the other in-
clusion is proved in a similar way. The definition of c implies the last statement. �

Now, we consider W (q, X), W (q−∗, X∗) ∈ k
G

kGYD according to (8). Let ( )op : T (q, X) → T (q−∗, X∗)op

be the algebra map given by xopi = yi for all i ∈ X , here T (q−∗, X∗)op is the opposite algebra of
T (q−∗, X∗).

Proposition 3.9. Let S be a set of generators of the defining ideal J (q, X) of B(q, X) ∈ k
G

kGYD. Then the

defining ideal of B(q−∗, X∗) ∈ kG

kGYD satisfies J (q−∗, X∗) = (J (q, X))op and is generated by Sop.

Proof. We consider the opposite Hopf algebra (B(q, X)#k
G)op. As k

G is commutative, we can see
that

ϑ : (B(q, X)#k
G)op →B

(
q−∗, X∗)#k

G , xi # δg 
→ yi # δg, i ∈ X, g ∈ G.

is a Hopf algebra isomorphism. If m ∈ J (q, X), then 0 = ϑ(m) = mop and hence (J (q, X))op ⊆
J (q−∗, X∗). The other inclusion is proved in a similar way and the definition of ( )op implies the
last statement. �
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Proposition 3.10. The following maps are bijective correspondences.{
Liftings of B(X,q) over kG

} 
→ {
Liftings of B

(
X∗,q−∗) over kG

}
A 
→ Acop,{

Liftings of B(q, X) over kG} 
→ {
Liftings of B

(
q−∗, X∗) over kG}

A 
→ Aop.

Proof. We only prove the pointed case. The copointed case is similar.
Let A be a lifting of B(X,q) over kG . It is enough to prove that Acop is a lifting of B(X∗,q−∗)

over kG since (Acop)cop = A. Clearly Acop is generated as an algebra by A[1] and gr(Acop) = (gr A)cop.
Then Acop is a lifting of a Nichols algebra B(V ) for some V ∈ kG

kGYD. As in Proposition 3.8, we can
see that V � V (X∗,q−∗) ∈ kG

kGYD. �
4. Nichols algebras attached to affine racks

Let A be an abelian group and T ∈ Aut A. The affine rack Aff(A, T ) is the set A with operation

a � b = T (b) + (id −T )(a) for all a,b ∈ A,

see [5]. The dual rack Aff(A, T )∗ is the affine rack Aff(A, T −1).
We define a family of principal YD-realizations for Aff(A, T ) and a constant 2-cocycle. Let Cn be

the cyclic group of order n ∈ N generated by t . If ord T divides n, then A �T Cn is the semidirect
product of A and Cn with respect to T where t · a = T (a) for a ∈ A. Let ξ be a primitive root of 1 and

 = [ord T ,ord(ξ)] be the minimum common multiple of ord T and ord ξ .

Proposition 4.1. Let k,m ∈ N with 0 � k < m. Consider the affine rack X = Aff(A, T ) with constant
2-cocycle ξ . Let

• g : A 
→ A �T Cm
 be the map a 
→ ga = a × tk
+1;
• · : (A �T Cm
) × A → A be the assignment h · a = b, if hgah−1 = gb;
• χa : A �T Cm
 → k

∗ be the map χa(b × ts) = ξ s , for a,b ∈ A, s ∈ N.

Then (g, ·, {χa}a∈A) is a faithful Yetter–Drinfeld realization of (X, ξ) over A �T Cm
 .

A realization (g, ·, {χa}a∈A) as in Proposition 4.1 is called an (m,k)-affine realization of (Aff(A, T ), ξ).

Proof. Clearly, g is injective. If h = a × ts ∈ A �T Cm
 and b ∈ A, then hgbh−1 = ((id−T )(a) + T s(b)) ×
tk
+1. Thus the action · is well defined since the image of g is a conjugacy class and ga · b = a � b.
Also χa(gb) = ξ and χa = χb is a group morphism for all a,b ∈ A. Then {χa} is a 1-cocycle. �

We denote by Fb the finite field of b elements. The multiplication by N ∈ F
∗
b is an automorphism

which we also denote by N . Then Aff(Fb, N) is faithful and indecomposable and satisfies

Inn� Aff(Fb, N) = Fb �N Cord N = Aut� Aff(Fb, N), (12)

the first equality is easy; the second one is by [5, Corollary 1.25].
Let q be a 2-cocycle on Aff(Fb, N) and let (·, g, {χi}i∈X ) be a principal YD-realization of

(Aff(Fb, N),q) over a finite group G . If q is constant, pick i ∈ X and set χG = χi , cf. Lemma 3.6(c).
From now on, we denote V (b, N,q) ∈ kG

kGYD the corresponding Yetter–Drinfeld module as in (7). Also,
T (b, N,q) and B(b, N,q) denote respectively its tensor algebra and the Nichols algebra with ideal of
relations J (b, N,q).
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4.1. The Nichols algebras B(b, N,q) ∈ kG
kGYD

We list all the known finite-dimensional Nichols algebras attached to an affine rack Aff(Fb, N) and
a 2-cocycle q, see e.g. [27].

4.1.1. The Nichols algebra B(3,2,−1)

Its ideal J (3,2,−1) is generated by

x2
i , xi x j + x2 j−i xi + x jx2 j−i, i, j ∈ F3. (13)

This Nichols algebra has dimension 12 and was computed in [38,20].

4.1.2. The Nichols algebra B(4,ω,−1)

Let ω ∈ F4 be such that ω2 + ω + 1 = 0. The ideal J (4,ω,−1) is generated by z(4,ω,−1) :=
(xωx1x0)

2 + (x1x0xω)2 + (x0xωx1)
2 and

x2
i , xi x j + x(ω+1)i+ω jxi + x jx(ω+1)i+ω j ∀i, j ∈ F4. (14)

This Nichols algebra was computed in [26]; dimB(4,ω,−1) = 72.

4.1.3. The Nichols algebra B(5,2,−1)

The ideal J (5,2,−1) is generated by z(5,2,−1) := (x1x0)
2 + (x0x1)

2 and

x2
i , xix j + x−i+2 j xi + x3i−2 j x−i+2 j + x jx3i−2 j ∀i, j ∈ F5. (15)

This Nichols algebra was computed in [5]; dimB(5,2,−1) = 1280.

4.1.4. The Nichols algebra B(5,3,−1)

Since Aff(F5,3) is the dual rack of Aff(F5,2) and the 2-cocycle is −1 we can apply Proposition 3.8.
Then the ideal J (5,3,−1) is generated by z(5,3,−1) := (x1x0)

2 + (x0x1)
2 and

x2
i , x jxi + xi x−i+2 j + x−i+2 j x3i−2 j + x3i−2 j x j ∀i, j ∈ F5. (16)

4.1.5. The Nichols algebra B(7,3,−1)

The ideal J (7,3,−1) is generated by z(7,3,−1) := (x2x1x0)
2 + (x1x0x2)

2 + (x0x2x1)
2 and

x2
i , xi x j + x−2i+3 j xi + x jx−2i+3 j ∀i, j ∈ F7. (17)

This Nichols algebra was computed in [27]; dimB(7,3,−1) = 326592.

4.1.6. The Nichols algebra B(7,5,−1)

As in 4.1.4 we apply Proposition 3.8 since Aff(F5
7) is the dual rack of Aff(F7,3). Then the ideal

J (7,5,−1) is generated by z(7,5,−1) := x2x4x0x5x3x0 + x1x3x4x5x3x2 + x0x3x6x0x4x1 and

x2
i , x jxi + xix−2i+3 j + x−2i+3 jx j ∀i, j ∈ F7. (18)
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4.1.7. The Nichols algebra B(4,ω, ζ )

Let ξ ∈ k be a root of unity of order 3. Then Aff(F4,ω) admits the 2-cocycle

ζ = (ζi j)i, j∈F4 =
⎡⎢⎣

ξ ξ ξ ξ

ξ ξ −ξ −ξ

ξ −ξ ξ −ξ

ξ −ξ −ξ ξ

⎤⎥⎦ . (19)

The Nichols algebra B(4,ω, ζ ), see [33, Proposition 7.9], has dimension 5184 and its ideal of relations
is generated by x3

0, x3
1, x3

ω , x3
ω2 ,

ξ2 x0x1 + ξ x1xω − xωx0, ξ2 x0xω + ξ xωxω2 − xω2 x0,

ξ2 x1x0 − ξ x0xω2 − xω2 x1, ξ2 xωx1 + ξ x1xω2 + xω2 xω,

plus an extra degree six relation

z(4,ω,ζ ) := x2
0x1xωx2

1 + x0x1xωx2
1x0 + x1xωx2

1x2
0 + xωx2

1x2
0x1 + x2

1x2
0x1xω

+ x1x2
0x1xωx1 + x1xωx1x2

0xω + xωx1x0x1x0xω + xωx2
1x0xωx0.

4.2. About the top degree relation z(b,N,q)

In the rest of the section, the pair (X,q) denotes one of the followings

(
Aff(F3,2),−1

)
,

(
Aff(F4,ω),−1

)
,

(
Aff(F5,2),−1

)
,

(
Aff(F5,3),−1

)
,(

Aff(F7,3),−1
)
,

(
Aff(F7,5),−1

)
or

(
Aff(F4,ω), ζ

)
.

We fix n = 2 for the first six pairs and n = 3 for the last one. We set πn : T (X,q) � B̂n(X,q) the
natural projection.

Let z = z(b,N,q) be the top degree defining relation of B(X,q). Since J (X,q) is generated by z
and elements of degree < deg z, kπn(z) ∈ kG

kGYD via a central tz ∈ G and a multiplicative character
χz : G → k

∗ , that is

πn(z)(−1) ⊗ πn(z)(0) = tz ⊗ πn(z) and g · πn(z) = χz(g)πn(z) (20)

for all g ∈ G . Moreover, πn(z) is primitive in B̂n(X,q) and therefore

�
(
πn(z)

) = πn(z) ⊗ 1 + tz ⊗ πn(z) in B̂n(X,q)#kG. (21)

Lemma 4.2. For all i ∈ X, χz(gi) = 1. If q is constant, then χz = χ
deg z
G .

Proof. By Lemma 3.6(b), G acts by rack automorphisms on Aff(Fb, N). Let t be the automorphism
defined by t ∈ G . Let K ⊂ G be the subgroup generated by {gi: i ∈ X} and Z(K ) be its center. By [5,
Lemma 1.9 (2)] and (12), K/Z(K ) = Inn� Aff(Fb, N) = Fb �N Cord N = Aut� Aff(Fb, N). Thus there is a
multiplicative character λ : Aut� Aff(Fb, N) → k

∗ such that

χz(t)πn(z) = t · πn(z) = χ̃z(t)λ(t)πn(z),
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where χ̃z is given by the 1-cocycle {χi}i∈X . If q is constant, then χ̃z = χ
deg z
G . If q is not constant, then

it is easy to check that χ̃z|K = ε. Therefore, to finish we have to prove that λ = ε. Let M = kG · z ⊂
T (X,q).

Case Aff(F4,ω). Let O = {(ω 1 0), (1ωω2), (0 1ω2), (0ω2 ω)} ⊂ F
3
4 and

X(abc) := (xaxbxc)
2 + (xbxcxa)

2 + (xcxaxb)
2, (a b c) ∈ O.

Then z = X(ω10) and M = k{Xσ }σ∈O . Let Y = ∑
σ∈O Xσ and C = k{Xσ − Xτ : σ ,τ ∈O}. Then M = C ⊕

kY is a sum of simple F4 �ω C3-submodules. Thus π2(C) = 0 and π2(M) � kY as F4 �ω C3-modules.
Case Aff(F5,2). Here z = (x1x0)

2 + (x0x1)
2. By (15), it holds that

π2
(
(x0x2)

2) = π2
(−x0(x3x2 + x1x3 + x0x1)x2

) = π2(−x0x1x3x2) and

π2
(
(x2x0)

2) = π2
(
(x1x0)

2 + (x0x1)
2 + x0x1x3x2

)
.

Hence π2((x2x0)
2 +(x0x2)

2) = π2(z) and thus (0×t) ·π2(z) = π2(z). Since (0×t)(1×1) = (2×1)(0×t)
in F5 �2 C4 = 〈(0 × t), (1 × 1)〉, π2(M) is the trivial F5 �2 C4-module.

Case Aff(F5,3). As in 3.3, we denote by {yi}i∈F5 the basis of V (5,3,−1) and recall that
c(z(5,2,−1)) = z(5,3,−1) . Let ϑ : (B̂2(5,2,−1)#kG)cop → B̂2(5,3,−1)#kG be the Hopf algebra map
given by ϑ(xi # g) = yi # gi g for all i ∈ X , g ∈ G . Then ϑ(gi · π2(z(5,2,−1))) = gi · π2(z(5,3,−1))# tz(5,2,−1)

since the action is induced by the adjoint action. Hence λ = ε because before we proved that

ϑ
(

gi · π2(z(5,2,−1))
) = ϑ

(
π2(z(5,2,−1))

) = π2(z(5,3,−1))# tz(5,2,−1)
.

Cases Aff(F7,3) and (Aff(F4,ω), ζ ). In both cases, (0 × t) · π2(z) = π2(z), using [23,24]. Then we
proceed as for Aff(F5,2).

Case Aff(F7,5) is similar to Aff(F5,3) since Aff(F7,5)∗ � Aff(F7,3). �
In the following, B̂n(X,q)#kG is a right B(X,q)#kG-comodule via the natural projection.

Lemma 4.3. It holds that πn(z) is central in B̂n(X,q) and the subalgebra of right B(X,q)#kG-coinvariants
is the polynomial algebra k[πn(z)t−1

z ].

Proof. We check that πn(z) is central using [23] together with the package [24] in all the cases
except for Aff(F5,3) and Aff(F7,2). For these we keep the notation of the previous proof and proceed
as follows. If i ∈ Fb ,

0 = ϑ
(
xiπ2(z(b,N,−1)) − π2(z(b,N,−1))xi

)
= (yi # gi)

(
π2(z(b,N−1,−1))# tz(b,N,−1)

) − (
π2(z(b,N−1,−1))# tz(b,N,−1)

)
(yi # gi)

= (
yiπ2(z(b,N−1,−1)) − π2(z(b,N−1,−1))yi

)
# tz(b,N,−1)

gi

here we use the above lemma and that tz(b,N,−1)
is central. Thus the first part of the lemma is proved.

Then π2(z)t−1
z generates a normal subalgebra which forms the coinvariants by [1, Remark 5.5]. It is a

polynomial algebra by [1, Lemma 5.13]. �
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4.3. The Nichols algebras B(q,b, N) ∈ k
G

kGYD

For each (X,q) as above, consider the object W (q, X) ∈ k
G

kGYD as in (8). From now on, T (q,b, N)

and B(q,b, N) denote respectively its tensor algebra and the Nichols algebra with ideal of relations
J (q,b, N). Let πn : T (q, X) � B̂n(q, X) be the natural projection.

Proposition 4.4.

(a) The ideal J (−1,3,2) is generated by (13).
(b) The ideal J (−1,4,ω) is generated by

x2
i , x jxi + xix(ω+1)i+ω j + x(ω+1)i+ω jx j, i, j ∈ F4 (14’)

and z′
(−1,4,ω) := (xωxω2 x0)

2 + (x1xω2 xω)2 + (x0xω2 x1)
2 .

(c) The ideal J (−1,5,2) is generated by

x2
i , x jxi + xi x−i+2 j + x−i+2 j x3i−2 j + x3i−2 j x j, i, j ∈ F5 (15’)

and z′
(−1,5,2) := x0x2x3x1 + x1x4x3x0 .

(d) The ideal J (−1,5,3) is generated by

x2
i , xix j + x−i+2 j xi + x3i−2 j x−i+2 j + x jx3i−2 j, i, j ∈ F5 (16’)

and z′
(−1,5,3) := x1x3x2x0 + x0x3x4x1 .

(e) The ideal J (−1,7,3) is generated by

x2
i , x jxi + xi x−2i+3 j + x−2i+3 jx j, i, j ∈ F7 (17’)

and z′
(−1,7,3) := x2x6x4x2x5x0 + x1x5x2x3x6x2 + x0x6x4x5x6x1 .

(f) The ideal J (−1,7,5) is generated by

x2
i , xi x j + x−2i+3 j xi + x jx−2i+3 j, i, j ∈ F7 (18’)

and z′
(−1,7,5) := x0x5x2x4x6x2 + x2x6x3x2x5x1 + x1x6x5x4x6x0 .

(g) The ideal J (ζ,4,ω) is generated by x3
0 , x3

1 , x3
ω , x3

ω2 ,

ξxωx1 − x0xω − ξ2x1x0, ξxω2 xω − x0xω2 − ξ2xωx0,

ξxω2 x0 − x1xω2 + ξ2x0x1, ξxω2 x1 + xωxω2 + ξ2x1xω and

z′
(ζ,4,ω) := x2

0xω2 x0x2
1 + x0xωx0x2

ω2 x0 + x1x0x2
ωx2

0 + xωx2
ω2 x2

ωx1 − x2
1x2

ωx0xω

+ x1x2
ω2 xωxω2 x1 + x1x0xωx2

ω2 xω − xωxω2 x0x1xω2 xω + xωx2
ω2 xωx1x0.

Proof. In (a), (b), (c), (e) and (g) we apply the functor (F , η) given by (6) and use Lemma 3.4. In (d),
respectively (f), we apply Proposition 3.9 since it corresponds to the dual case of (c), respectively (e),
and the 2-cocycle is −1. �

Set z′ = z′
(q,b,N)

= η−1
deg z(b,N,q)

(z(b,N,q)). Then kπn(z′) ∈ k
G

kGYD as follows

πn
(
z′) ⊗ πn

(
z′) = χ−1

z ⊗ πn
(
z′) and δg · πn(z) = δ −1 πn(z) (22)
(−1) (0) g,tz



A. García Iglesias, C. Vay / Journal of Algebra 397 (2014) 379–406 393
for all g ∈ G by Lemma 3.3(c) and Lemma 4.2. Also, πn(z′) is primitive in B̂n(q, X) and therefore

�
(
πn

(
z′)) = πn

(
z′) ⊗ 1 + χ−1

z ⊗ πn
(
z′) in B̂n(q, X)#k

G . (23)

In the following, B̂n(q, X)#k
G is a right B(q, X)#k

G -comodule via the natural projection.

Lemma 4.5. It holds that πn(z′) is central in B̂n(q, X) and the subalgebra of right B(q, X)#k
G -coinvariants

is the polynomial algebra k[πn(z′)χz].

Proof. If i ∈ Fb , then πnη
−1
7 (xi z − zxi) = 0 by Lemma 4.3 and Lemma 3.4(b). By (5), η−1

7 (xi z − zxi) =
xt−1

z ·i z
′ − z′xi = xi z′ − z′xi , here we use Lemma 4.2 and that tz is central. Hence πn(z′) is central

in B̂n(q, X). The lemma follows using [1, Remark 5.5, Lemma 5.13] as in Lemma 4.3. �
5. Lifting via cocycle deformation

Let H be a semisimple Hopf algebra and V ∈ H
HYD, dim V < ∞. Assume that the ideal J (V )

defining the Nichols algebra B(V ) is finitely generated and let G be a minimal set of homogeneous
generators of J (V ). In [1] a strategy was developed to compute all the liftings of B(V ) over H as
cocycle deformations of B(V )# H . We briefly recall this strategy, see [1, Section 5] for details.

Set T (V ) = T (V )# H and H = B(V )# H . Let G = G0 ∪ G1 ∪ · · · ∪ GN be an adapted stratification of
G [1, 5.1]. Among other things, this ensures that

Bk = Bk−1/〈Gk−1〉, 1 � k � N + 1,

are braided Hopf algebras in H
HYD where B0 = T (V ). Then we have a chain of subsequent quotients

of Hopf algebras

T (V ) � B1 # H � · · · �BN # H � H = BN+1 # H .

The strategy basically consists in the following two steps:

(1) To compute at each level a family of cleft objects of Bk # H as quotients of cleft objects of
Bk−1 # H , following the results in [30].

To do this, we start with the trivial cleft object for T (V ). In the final level, we have a set Λ of cleft
objects of H and hence a list of cocycle deformations L, which arise as L � L(A,H), for A ∈ Λ as
in [39].

(2) To check that any lifting of B(V ) over H is obtained as one of these deformations.

In [39] a series of tools to deduce this was developed. In particular, it was studied in [1, Section 4] the
shape of all the possible liftings. We refine the results there for copointed liftings in Subsection 5.2.

We use the Strategy to prove the main theorems. In that order, we carry out the Strategy in the
next subsection under certain general conditions which are satisfied in our case.

5.1. Pointed Lifting of Nichols algebras with a single top degree relation

Let X be an indecomposable rack with a 2-cocycle q. Let G be a finite group and (·, g, {χi}i∈X )

be a principal YD-realization of (X,q). Let V = k{xi}i∈X be the corresponding Yetter–Drinfeld module
over G , see (7). Assume that the Nichols algebra B(V ) is finite-dimensional.

Let n ∈ N be such that ord qii = n � 2. Then xn
i ∈J (V ) for all i ∈ X .
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Recall from [25] that the space of quadratic relations in J (V ) is spanned by {bC }C∈R′ where R′ is
a subset of the set R= X × X/ ∼ of classes of the equivalence relation generated by (i, j) ∼ (i � j, i).
More precisely, C = {(i2, i1), . . . , (in(C), i1)} ∈R′ iff

∏n(C)

h=1 qih+1,ih = (−1)n(C) and then

bC :=
n(C)∑
h=1

ηh(C)xih+1 xih , (24)

where η1(C) = 1 and ηh(C) = (−1)h+1qi2 i1 qi3 i2 . . .qihih−1 , h � 2.
Set T (V ) = T (V )#kG and πn : T (V ) → B̂n(V ). We assume that there is a generator z ∈ J (V )

with deg z > n such that

• kπn(z) ∈ kG
kGYD, that is, there exist a central tz ∈ G and a multiplicative character χz : G → k

∗
such that (20) holds;

• πn(z) is primitive in B̂n(V ) and hence (21) is satisfied in B̂n(V )#kG;
• the following holds in B̂n(V )#kG:

xiπn(z) = πn(z)xi, i ∈ X and tzπn(z) = πn(z)tz. (25)

We assume that the ideal J (V ) admits an adapted stratification:

G0 = {
xn

i : i ∈ X
}
, G1 = {

bC : C ∈ R′} \ {
x2

i : i ∈ X
}
, G2 = {z } (26)

and apply the Strategy in this setting. Set Hi = Bi−1/〈Gi−1〉#kG for i = 1,2,3 with B0 = T (V ). We
also assume that

gn
i 
= g j and gk 
= gi g j, for every i, j,k ∈ X, (27)

tz 
= gi, for every i ∈ X . (28)

Notice that (27) is not a relevant restriction by Lemma 3.7. In particular, this lemma applies to affine
racks.

We shall consider scalars λ1, λ2, λ3 ∈ k subject to the following conditions

λ1 = 0 if χn
i 
= ε ∀i, λ2 = 0 if χiχ j 
= ε ∀i, j, λ3 = 0 if χz 
= ε. (29)

Let λ1, λ2 ∈ k subject to (29) and let bC be as in (24). Set

A1(λ1) = T (V )/
〈
xn

i − λ1: i ∈ X
〉
, (30)

A2(λ1, λ2) = A1(λ1)/
〈
bC − λ2: C ∈ R′〉. (31)

Note that A1(λ1) 
= 0. In fact, A1(λ1) � T (V )/〈xn
i − λ1: i ∈ X〉 ⊗ kG as vector spaces by the choice of

λ1 in (29) and we can define a nonzero algebra map F : T (V )/〈xn
i − λ1: i ∈ X〉 → k by F (xi) = λ

1/n
1

for all i ∈ X .
Set also L1(λ1) = T (V )/〈xn

i − λ1(1 − gn
i ): i ∈ X〉 and

L2(λ1, λ2) = L1(λ1)/
〈
bC − λ2(1 − gi g j): C ∈ R′, (i, j) ∈ C

〉
.

It is straightforward to see that Lk is a Hopf algebra quotient of T (V ) and Ak is naturally an
(Lk,Hk)-bicomodule algebra with coactions δk

L , δk
R induced by the comultiplication in T (V ).
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Proposition 5.1. Let A1 = A1(λ1), A2 = A2(λ1, λ2), L1 = L1(λ1) and L2 = L2(λ1, λ2). Assume A2 
= 0.
Then

(a) Ak is a right Galois object of Hk.
(b) There is a section γk :Hk →Ak with γk |kG = id.
(c) L(Ak,Hk) ∼=Lk. Hence Lk is a cocycle deformation of Hk.

Proof. (a) follows by [30, Theorem 8] applied to a suitable right coideal subalgebra Yk . If k = 1, we
take Y1 to be generated by xn

i g−n
i for some i ∈ X . If k = 2, this is done in several steps, one for each

C ∈R′ , up to conjugacy, taking Y2,C as the subalgebra generated by bC g−1
j g−1

i for (i, j) ∈ C .
(b) This is [1, Lemma 5.8 (b)].
(c) follows by applying [1, Proposition 5.10]. �
It is possible to use [23,24] in specific examples to check that A2(λ1, λ2) 
= 0. We do this in the

next section to prove Main Theorem 1. We now compute Galois objects for H =H3 = B(V )#kG .

Proposition 5.2. Assume that A2(λ1, λ2) 
= 0 for some λ1, λ2 .

(a) There exists aX ∈A2(λ1, λ2) and λ3 ∈ k subject to (29) such that

A = A(λ1, λ2, λ3) = A2(λ1, λ2)/〈z − aX − λ3〉.
is a Galois object of H3 .

(b) L(A,H3) ∼=L3(λ1, λ2, λ3) where

L3(λ1, λ2, λ3) = L2(λ1, λ2)/
〈
z − sX − λ3(1 − tz)

〉
and sX ∈L2(λ1, λ2) is such that

(z − sX ) ⊗ 1 = δL
(
γ (z)

) − tz ⊗ γ (z). (32)

Proof. Set H′ = H2, A′ = A2(λ1, λ2), L′ = L2(λ1, λ2), γ = γ2 : H′ → A′ . We consider H′ as a right
H-comodule via the natural projection. We use [30, Theorem 4] to find cleft objects of H. For that,
we have to compute the subalgebra H′ coH of right H-coinvariants and the set AlgH

′
H′ (H′ coH,A′) of

algebra maps from H′ coH to A′ in YDH′
H′ .

Let Y be the subalgebra of H′ generated by zt−1
z . Then Y is normal, by (25), and a polynomial

algebra, by [1, Lemma 5.13] and (25). Hence Y = H′ coH by [1, Remark 5.5]. By [1, Remark 5.11]
f ∈ AlgH

′
H′ (Y ,A′) if and only if f (zt−1

z ) = γ (zt−1
z ) − λ3t−1

z for some λ3 ∈ k.
Therefore (a) follows with aX = z − γ (z) by [30, Theorem 4]. Now (b) follows by [1, Corollary

5.12]. �
We need to compute γ2(z), δ2

R(z) and δ2
L (γ2(z)) to apply the above proposition. We explain in

Appendix A how we can do this using [23,24].
The pointed liftings of B(V ) are given by the next theorem.

Theorem 5.3. Let L be a lifting of B(V ) over kG. Then there exist scalars λ1, λ2, λ3 ∈ k such that L ∼=
L3(λ1, λ2, λ3) and hence L is a cocycle deformation of B(V )#kG.

Proof. Consider the lifting map φ : T (V ) → L defined by (2). If r ∈ G0 ∪G1, then r is a skew-primitive
in T (V ) and thus φ(r) ∈ L[1] . Moreover, φ(r) ∈ L[0] by (27). Hence φ induces φ′ : L2(λ1, λ2) � L for
some λ1, λ2 ∈ k.



396 A. García Iglesias, C. Vay / Journal of Algebra 397 (2014) 379–406
It follows that z = z − sX is a (1, tz)-primitive in L2(λ1, λ2) and thus φ′(z) ∈ L[1] . By (28) we see
that φ′(z) ∈ L[0] and therefore there is λ3 ∈ k such that φ′(z) = λ3(1 − tz). Therefore φ′ induces φ′′ :
L(λ1, λ2, λ3) � L and this is an isomorphism since both algebras have dimension dimB(V )|G|. �

To avoid repetitions, we further normalize the scalars λ1, λ2, λ3 by

λ1 = 0 if gn
i = 1, λ2 = 0 if gi g j = 1, λ3 = 0 if tz = 1, (33)

and consider the set

SX = {
(λ1, λ2, λ3) ∈ k

3
∣∣ satisfying (29) and (33)

}
. (34)

Proposition 5.4. If (λ1, λ2, λ3), (λ
′
1, λ

′
2, λ

′
3) ∈ SX then L3(λ1, λ2, λ3) ∼= L3(λ

′
1, λ

′
2, λ

′
3) if and only if

(λ1, λ2, λ3) = μ(λ′
1, λ

′
2, λ

′
3) for some μ ∈ k.

Proof. Follows as [25, Lemma 6.1]. �
The results above restrict to the case in which there is no relation z as in (26), that is when J (V )

admits an adapted stratification G0 ∪G1. We collect this information in the following corollary. In this
case we also denote

SX = {
(λ1, λ2) ∈ k

2
∣∣ satisfying (29) and (33)

}
. (34’)

Corollary 5.5. Let J (V ) be as above. Let L be a lifting of B(V ) over kG.

(a) There exist (λ1, λ2) ∈ SX such that L ∼=L2(λ1, λ2).
(b) If (λ1, λ2), (λ

′
1, λ

′
2) ∈ SX , then L2(λ1, λ2) ∼= L2(λ

′
1, λ

′
2) if and only if (λ1, λ2) = μ(λ′

1, λ
′
2) for some

μ ∈ k.
(c) If A2(λ1, λ2) 
= 0, then L is a cocycle deformation of B(V )#kG.

5.2. The shape of copointed liftings

Let G be a finite group and V ∈ kG
kGYD, dim V < ∞. If {vi}, {αi} are dual bases of V and V ∗ , set

f ji : kG → k, h 
→ 〈α j,h · vi〉. By (6), V ∈ k
G

kGYD via

f · v = 〈
S( f ), v(−1)

〉
v(0) and λ(vi) =

∑
j

S−1( f ji) ⊗ v j (35)

for all f ∈ k
G , v ∈ V . This definition is independent of the basis {vi}. We say that {ei j: = S−1( f ji)} is

the comatrix basis associated to V and {vi}.
In particular, let · be an action of G on a set X and let {χi: G → k}i∈X be a 1-cocycle, see page

385. Then kX with basis {mi}i∈X is a G-module via

g · mi = χi(g)mg·i for all i ∈ X, g ∈ G (36)

and the comatrix basis {ei j} associated to kX and {mi}i∈X is

eij =
∑
g∈G

δ j,g·i χi(g)δg−1 for all i, j ∈ X .
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Let A be a lifting of B(V ) over kG with a lifting map φ : T (V )#k
G → A, recall (2). We consider the

first term of the coradical filtration A[1] ∈ k
G

kGYD in such a way that φ|(k⊕V ) # kG : (k⊕ V )#k
G → A[1]

is an isomorphism in k
G

kGYD, cf. [1, Section 4]. Then we identify both modules.
The following lemma is a particular case of [1, Lemma 4.8]. It helps us to describe the image by φ

of a submodule M of T (V ) in k
G

kGYD compatible with φ [1, Definition 4.7], that is

�
(
φ(m)

) = φ(m) ⊗ 1 + m(−1) ⊗ φ(m(0)) for all m ∈ M.

Then φ(m) ∈ (k⊕ V )#k
G . We define the ideal of T (V )

IM = 〈
m − φ(m) : m ∈ M

〉
. (37)

Note that if M ∈ kG

kGYD, then M[e] and M× are submodules of M in kG

kGYD such that M = M[e] ⊕
M× . In fact, kG

kGYD is a semisimple category and the supports of the simple objects are conjugacy
classes of G [4, Proposition 3.1.2].

Lemma 5.6. Let G, V , A and φ be as above. Let M ⊂ T (V ) be compatible with φ and {ei j} be the comatrix
basis associated to M[e] and {mi}r

i=1 . Then

(a) φ|M× : M× → V is a morphism in k
G

kGYD.

(b) Assume that M = M× is a simple object in kG

kGYD and V � Mm ⊕ P with m maximum. Then there exist
λ1, . . . , λm ∈ k such that

φ|M = λ1 idM ⊕· · · ⊕ λm idM ⊕0.

In particular, φ|M = 0 if supp M ∩ supp V = ∅.
(c) If e /∈ supp V , then there exist a1, . . . ,ar ∈ k such that

φ(mi) = ai −
r∑

j=1

a jci j for all i = 1, . . . , r.

(d) If e /∈ supp V and M = M[e] with the G-action on M satisfying (36), then there exist (ai)i∈X ∈ k
X such

that

φ(mi) =
∑
g∈G

(
ai − χi(g)ag·i

)
δg−1 for all i ∈ X .

(e) Let φ′ : T (V )#k
G → A′ be a lifting map and Θ : A → A′ be an isomorphism of Hopf algebras. If e /∈

supp V , then Θφ(V ) = φ′(V ). �
Proof. The lemma follows from [1, Lemma 4.8] since φ(M×) ⊂ φ(V #k

G), φ(M[e]) ⊂ A1[e] and
A1[e] = k

G if e /∈ supp V . �
Under certain conditions, it is showed in [1, Section 4] that IM defines the lifting A. We recall this

in our case.
A good module of relations [1, Definition 4.10] is a graded submodule M = ⊕t

i=1 Mni of T (V ) in
k

G

kGYD, Mni ⊂ V ⊗ni , such that it generates J (V ) and for all s = 1, . . . , t − 1 and m ∈ Mns+1 : ns < ns+1,
Mns 
= 0 and
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�(m) − m ⊗ 1 − m(−1) ⊗ m(0) ∈ IN ⊗ T (V )#k
G + T (V )#k

G ⊗ IN

where N = ⊕s
i=1 Mni and M turn out to be compatible with φ by [1, Lemma 4.9]. The next result is

[1, Theorem 4.11]. Recall (37).

Theorem 5.7. Let A be a lifting of B(V ) over kG with lifting map φ . Let M be a good module of relations for
B(V ). Then A � T (V )#k

G/IM . �
6. Pointed Hopf algebras over affine racks

Let Aff(Fb, N) be one of the affine racks Aff(F3,2), Aff(F4,ω), Aff(F5,2) or Aff(F5,3). Through
this section, we fix a finite group G together with a principal YD-realization (·, g, {χi}i∈X ) of
(Aff(Fb, N),−1). Let B(b, N,−1) be the Nichols algebra of V = k{xi}i∈Fb in kG

kGYD given by (7). In
this section we prove Main Theorem 1 using the Strategy of [1] described in 5.1.

Recall from Subsection 4.1 a set of generators of the ideal J (b, N,−1) and set z = z(b,N,−1) the
top degree generator. Then the hypotheses of Subsection 5.1 hold for these Nichols algebras. Namely,

• J (b, N,−1) admits a stratification as in (26).
• z satisfies (21) and also (25) by Lemmas 4.2 and 4.3.
• Eqs. (27) and (28) hold by Lemma 3.7.

Therefore we can apply Theorem 5.3 to compute the liftings of B(b, N,−1) over kG once we have
proved that

• The algebras in (31) are nonzero.

In the next subsections, we do this using [23,24]. We stick to the notation in Subsection 5.1. Recall
the definition of the sets SX in (34), (34’).

6.1. Pointed Hopf algebras over Aff(F3,2)

Let (λ1, λ2) ∈ SAff(F3,2) . Let A(λ1, λ2) be the quotient of T (V )#kG by the ideal generated by

x2
0 − λ1 and x0x1 + x1x2 + x2x0 − λ2.

Let H(λ1, λ2) be the quotient of T (V )#kG by the ideal generated by

x2
0 − λ1

(
1 − g2

0

)
and x0x1 + x1x2 + x2x0 − λ2(1 − g0 g1).

Remark 6.1. The pointed Hopf algebras over S3 were classified in [7,6]. These are isomorphic either to
S3 or to some H(λ1, λ2). In [22] it was shown that the nontrivial liftings are cocycle deformations of
the bosonization B(3,2,−1)#kS3. We give a different proof of this facts in Theorem 6.2. Also, items
(a) and (d) of this theorem are already in [6, Theorem 3.8], by different methods.

Theorem 6.2. Let H be a lifting of B(3,2,−1) over kG.

(a) There exists (λ1, λ2) ∈ SAff(F3,2) such that H ∼= H(λ1, λ2).
(b) A(λ1, λ2) is an (H(λ1, λ2),B(3,2,−1)#kG)-biGalois object for every (λ1, λ2) ∈ SAff(F3,2) .
(c) H is a cocycle deformation of B(3,2,−1)#kG.
(d) H(λ1, λ2) is a lifting of B(3,2,−1) over kG for every (λ1, λ2) ∈ SAff(F3,2) .
(e) H(λ1, λ2) ∼= H(λ′

1, λ
′
2) iff (λ1, λ2) = μ(λ′

1, λ
′
2) for some μ ∈ k.
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Proof. Follows by Corollary 5.5. We consider the stratification of J (3,2,−1) given by G0 = {x2
i :

i ∈ F3} and G1 = {xi x j + x−i+2 j xi + x j x−i+2 j: i, j ∈ F3} and then we use Diamond Lemma to see
that A(λ1, λ2) 
= 0. �
6.2. Pointed Hopf algebras over Aff(F4,ω)

Let (λ1, λ2, λ3) ∈ SAff(F4,ω) . Let A(λ1, λ2, λ3) be the quotient of T (V )#kG by the ideal generated
by

x2
0 − λ1, x0x1 + x1x2 + x2x0 − λ2 and

(x0x1x2)
2 + (x1x2x0)

2 + (x2x0x1)
2 − aX − λ3

for aX = λ2(x1x0x2x1 + x0x2x1x0 + x2x1x0x2) + λ2(λ2 − λ1)(x2x1 + x1x0 + x0x2).
Let H(λ1, λ2, λ3) be the quotient of T (V )#kG by the ideal generated by

x2
0 − λ1

(
1 − g2

0

)
, x0x1 + x1x2 + x2x0 − λ2(1 − g0 g1) and

x2x1x0x2x1x0 + x1x0x2x1x0x2 + x0x2x1x0x2x1 − sX − λ3
(
1 − g3

0 g3
1

)
where

sX = λ2(x2x1x0x2 + x1x0x2x1 + x0x2x1x0) − λ3
2

(
g0 g1 − g3

0 g3
1

)
+ λ2

1 g2
0

(
g2

3(x2x3 + x0x2) + g1 g3(x2x1 + x1x3) + g2
1(x1x0 + x0x3)

)
− 2λ2

1 g2
0(x0x3 − x2x3 − x1x2 + x1x0) − 2λ2

1 g2
2(x2x3 − x1x3 + x0x2 − x0x1)

− 2λ2
1 g2

1(x2x1 + x1x3 + x1x2 − x0x3 + x0x1)

+ λ2λ1
(

g2
2x0x3 + g2

1x2x3 + g2
0x1x3

) + λ2
2 g0 g1(x2x1 + x1x0 + x0x2 − λ1)

− λ2λ
2
1

(
3g3

0 g3 − 2g0 g3
1 − g2

0 g2
2 − 2g3

0 g1 + g2
2 − g2

1 + g2
0

)
− λ2(λ1 − λ2)

(
λ1 g2

0

(
g2

3 + g1 g3 + g2
1 + 2g0 g3

1

) + x2x1 + x1x0 + x0x2
)
.

Theorem 6.3. Let H be a lifting of B(4,ω,−1) over kG.

(a) There exists (λ1, λ2, λ3) ∈ SAff(F4,ω) such that H ∼= H(λ1, λ2, λ3).
(b) A(λ1, λ2, λ3) is an (H(λ1, λ2, λ3),B(4,ω,−1)#kG)-biGalois object for every (λ1, λ2, λ3) ∈ SAff(F4,ω) .
(c) H is a cocycle deformation of B(4,ω,−1)#kG.
(d) H(λ1, λ2, λ3) is a lifting of B(4,ω,−1)#kG for all (λ1, λ2, λ3) ∈ SAff(F4,ω) .
(e) H(λ1, λ2, λ3) ∼= H(λ′

1, λ
′
2, λ

′
3) iff (λ1, λ2, λ3) = μ(λ′

1, λ
′
2, λ

′
3) for some μ ∈ k.

Proof. The algebras H(λ1, λ2, λ3) are found following the strategy described in Subsection 5.1. We
check that the algebras A2(λ1, λ2) are nonzero using [23,24]. We compute γ2(z), for γ2 : H2 →
A2(λ1, λ2) as in Proposition 5.1 (b), again using [23,24], as explained in Appendix A. We end up with
the liftings H(λ1, λ2, λ3) using Proposition 5.2, which states (b) and (d), consequently (c) and (e). Now
(a) follows from Theorem 5.3. �
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6.3. Pointed Hopf algebras over Aff(F5,2)

Let (λ1, λ2, λ3) ∈ SAff(F5,2) . Let A(λ1, λ2, λ3) be the quotient of T (V )#kG by the ideal generated
by

x2
0 − λ1, x0x1 + x2x0 + x3x2 + x1x3 − λ2,

(x0x1)
2 + (x1x0)

2 − λ2(x1x0 + x0x1) − λ3.

Let H(λ1, λ2, λ3) be the quotient of T (V )#kG by the ideal generated by

x2
0 − λ1

(
1 − g2

0

)
, x0x1 + x2x0 + x3x2 + x1x3 − λ2(1 − g0 g1) and

x1x0x1x0 + x0x1x0x1 − sX − λ3
(
1 − g2

0 g1 g2
)
,

for sX = λ2(x1x0 + x0x1) + λ1 g2
1(x3x0 + x2x3) − λ1 g2

0(x2x4 + x1x2) + λ2λ1 g2
0(1 − g1 g2).

Theorem 6.4. Let H be a lifting of B(5,2,−1) over kG.

(a) There exists (λ1, λ2, λ3) ∈ SAff(F5,2) such that H ∼= H(λ1, λ2, λ3).
(b) A(λ1, λ2, λ3) is an (H(λ1, λ2, λ3),B(5,2,−1)#kG)-biGalois object for every (λ1, λ2, λ3) ∈ SAff(F5,2) .
(c) H is a cocycle deformation of B(5,2,−1)#kG.
(d) H(λ1, λ2, λ3) is a lifting of B(5,2,−1)#kG for every (λ1, λ2, λ3) ∈ SAff(F5,2) .
(e) H(λ1, λ2, λ3) ∼= H(λ′

1, λ
′
2, λ

′
3) iff (λ1, λ2, λ3) = μ(λ′

1, λ
′
2, λ

′
3) for some μ ∈ k.

Proof. Set z = (x0x1)
2 + (x1x0)

2 ∈ A′ = A2(λ1, λ2), tz = g2
0 g1 g2 ∈ G . Using [23,24],2 the coaction of z

in A′ is δ2
R(z) = z ⊗ 1 + tz ⊗ z plus:

λ2 g0 g3 ⊗ x1x0 + λ2 g0 g1 ⊗ x0x1 − λ2 g1x3 ⊗ x1 + λ2 g1x0 ⊗ x1 − λ2 g0x3 ⊗ x0 + λ2 g0x1 ⊗ x0.

If z′ = x1x0 + x0x1 we get δ2
R(z −λ2z′) = (z −λ2z′)⊗ 1 + tz ⊗ z. Thus γ2(z) = z −λ2z′ and the theorem

follows as Theorem 6.3. �
6.4. Pointed Hopf algebras over Aff(F5,3)

Let (λ1, λ2, λ3) ∈ SAff(F5,3) . Let A(λ1, λ2, λ3) be the quotient of T (V )#kG by the ideal generated
by

x2
0 − λ1, x1x0 + x0x2 + x2x3 + x3x1 − λ2,

(x0x1)
2 + (x1x0)

2 − λ2(x0x1 + x1x0) − λ3.

Let H(λ1, λ2, λ3) be the quotient of T (V )#kG by the ideal generated by

x2
0 − λ1

(
1 − g2

0

)
, x1x0 + x0x2 + x2x3 + x3x1 − λ2(1 − g0 g1) and

x0x2x3x1 + x1x4x3x0 − sX − λ3
(
1 − g2

0 g1 g3
)
,

for sX = λ2(x0x1 + x1x0) − λ1 g2
1(x3x2 + x0x3) − λ1 g2

0(x3x4 + x1x3) + λ1λ2(g2
1 + g2

0 − 2g2
0 g1 g3).

2 See log files in http://www.mate.uncor.edu/~aigarcia/publicaciones.htm.

http://www.mate.uncor.edu/~aigarcia/publicaciones.htm
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Theorem 6.5. Let H be a lifting of B(5,3,−1) over kG.

(a) There exists (λ1, λ2, λ3) ∈ SAff(F5,3) such that H ∼= H(λ1, λ2, λ3).
(b) A(λ1, λ2, λ3) is an (H(λ1, λ2, λ3),B(5,3,−1)#kG)-biGalois object for every (λ1, λ2, λ3) ∈ SAff(F5,3) .
(c) H is a cocycle deformation of B(5,3 − 1)#kG.
(d) H(λ1, λ2, λ3) is a lifting of B(5,3,−1)#kG for every (λ1, λ2, λ3) ∈ SAff(F5,3) .
(e) H(λ1, λ2, λ3) ∼= H(λ′

1, λ
′
2, λ

′
3) iff (λ1, λ2, λ3) = μ(λ′

1, λ
′
2, λ

′
3) for some μ ∈ k.

Proof. Analogous to Theorem 6.5 mutatis mutandis. �
6.5. Proof of Main Theorem 1

Assume X = Aff(F3,2). Let H be a pointed Hopf algebra over G whose infinitesimal braiding is
given by a principal YD-realization V ∈ kG

kGYD of (X,−1). Then H is generated in degree one by [6,
Theorem 2.1]. Therefore H is a lifting of B(V ) over kG and Main Theorem 1(i) follows by Theo-
rem 6.2.

The proof of items (ii), (iii), (iv) is analogous, again using the fact that any such H is generated in
degree one by [6, Theorem 2.1] and Theorems 6.3, 6.4 or 6.5, depending on each case. �
7. Copointed Hopf algebras over affine racks

Through this section, we consider the affine racks Aff(Fb, N) with constant 2-cocycle −1. We fix a
finite group G and a principal YD-realization (·, g, {χi}i∈X ) of (Aff(Fb, N),−1) over G . Let B(−1,b, N)

be the Nichols algebra of W (−1,b, N) = k{xi}i∈Fb in k
G

kGYD given by (8). We give the classification of

the lifting Hopf algebras of B(−1,b, N) over k
G and therefore the proof of Main Theorem 2.

7.1. Copointed Hopf algebras over Aff(F3,2)

This subsection is inspired by [12,13] where the case G = S3 was considered. Recall that
Inn� Aff(F3,2) = S3 = Aut� Aff(F3,2) by (12). Let G → S3, t 
→ t be the epimorphism given by
Lemma 3.6(b). We consider the group Γ = k

∗ × S3 acting on

A = {
a = (a0,a1,a2) ∈ k

F3 : a0 + a1 + a2 = 0
}

via (μ, θ) � a = μ(aθ0,aθ1,aθ2). The equivalence class of a under this action is denoted by [a]. Given
a ∈ A, we define

f i =
∑
t∈G

(ai − at−1·i)δt ∈ k
G , i ∈ F3.

Definition 7.1. Set AG,[0] = B(−1,3,2)#k
G . Let a ∈A and assume that g2

i = e ∀i ∈ F3. We define the
Hopf algebra AG,[a] = T (−1,3,2)#k

G/Ja where Ja is the ideal generated by

x2
i − f i, xi x j + x−i+2 j xi + x jx−i+2 j, i, j ∈ F3,

and the algebra KG,[a] = T (−1,3,2)#k
G/Ia where Ia is generated by

x2
i + f i − ai, xi x j + x−i+2 j xi + x jx−i+2 j, i, j ∈ F3.

The algebras AG,[a] and KG,[a] are nonzero by the next lemma.
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Lemma 7.2. Consider the k
G -module M = k{mt}t∈G , mt ∈ M[t]. Then for all a ∈ A, M is an AG,[a]-module

and a KG,[a]-module via

xi · mt =
{

mg−1
i t if sgn t = −1,

λi,t mg−1
i t if sgn t = 1,

where λi,t = (ai − at−1·i) for AG,[a] and λi,t = −at−1·i for KG,[a] .

Proof. We check that the action of KG,[a] is well defined; for AG,[a] it is similar. Notice that sgn(gi) =
−1. We start by δhxi = xiδgih , cf. (10):

δh(xi · mt) = δh(λmg−1
i t) = λδgih(t)mg−1

i t = xi · (δgih · mt)

for a certain λ ∈ k. Clearly xi · (xi · mt) = λi,t mt . Since a ∈ A, then (xi x j + x−i+2 j xi + x j x−i+2 j) · mt =
−(a0 + a1 + a2)mg−1

i g−1
j t = 0. �

The following theorem presents all the liftings of B(−1,3,2) over k
G .

Theorem 7.3. Let H be a lifting of B(−1,3,2) over kG .

(a) If g2
i 
= e for some (and thus all) i ∈ F3 , then H �AG,[0] .

(b) If g2
i = e for some (and thus all) i ∈ F3 , then there is a ∈ A such that H �AG,[a] .

(c) KG,[a] is an (AG,[0],AG,[a])-biGalois object for all a ∈A.
(d) AG,[a] is a cocycle deformation of AG,[b] for all a,b ∈A.
(e) AG,[a] is a lifting of B(−1,3,2) over kG for all a,b ∈ A.
(f) AG,[a] �AG,[b] if and only if [a] = [b].

Proof. Let φ : T (−1,3,2)#k
G → H be a lifting map and let

W = {
x2

i , xi x j + x−i+2 j xi + x jx−i+2 j: i, j ∈ F3
}

be the set of quadratic relations defining the Nichols algebra B(−1,3,2), see Proposition 4.4. Let
M ⊂ T (−1,3,2) be the Yetter–Drinfeld submodule generated by W . Then φ(M[g−1

i g−1
j ]) = 0 by

Lemma 5.6(b) using Lemma 3.7(a) and (c). Hence:
(a) follows from Lemma 5.6(b) and Theorem 5.7 using Lemma 3.7(a).
(b) follows from Lemma 5.6(d) and Theorem 5.7.
(c) follows from [36, Theorem 2]. In fact, fix a ∈ A and let K be the braided Hopf subalgebra of

T (−1,3,2) generated by W . Then K #k
G is a Hopf subalgebra of T (−1,3,2)#k

G . By [13, Lemma 28],
we can define an algebra map ψ = ψK ⊗ ε : K #k

G → k where

ψK
(
x2

i

) = −ai and ψK (xi x j + x−i+2 jxi + x jx−i+2 j) = 0 ∀i, j ∈ F3.

If J = 〈W 〉 ⊂ K #k
G , then ψ−1 ⇀ J ↼ ψ =Ja and ψ−1 ⇀ J = Ia . By Lemma 7.2, KG,[a] 
= 0 and [36,

Theorem 2] asserts (c); hence (d) and (e).
(f) Fix a,b ∈ A. Let φa and φb be lifting maps of AG,[a] and AG,[b] . Let Θ : AG,[a] → AG,[b] be an

isomorphism of Hopf algebras. Then (Θ|kG )∗ induces a group automorphism θ of G . By Lemma 5.6(e)
and using the adjoint action of kG , we see that θ is a rack automorphism of Aff(F3,2) and Θφa(xi) =
μiφb(xθ i) with μi ∈ k

∗ for all i ∈ F3. Since Θ is a coalgebra map, using (10) we obtain that μi =
μ for all i ∈ F3. Therefore a = (μ2, θ) � b. The proof of the converse statement is easy, recall that
Inn� Aff(F3,2) = S3. �
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7.2. Copointed Hopf algebras over Aff(Fb, N)

Here Aff(Fb, N) denotes one the racks Aff(F4,ω), Aff(F5,2), Aff(F5,3), Aff(F7,3) or Aff(F7,5).
Recall that χG = χi is a multiplicative character for all i ∈ X by Lemma 3.6(c). Let π2 : T (−1,b, N) �
B̂2(−1,b, N) be the natural projection. Set z′ = z′

(−1,b,N)
and χz = χ

deg z
G , recall (22).

Definition 7.4. Set AG,0 =B(−1,b, N)#k
G . If z′ ∈ T (−1,b, N)[e] and λ ∈ k

∗ , then we define the Hopf
algebra

AG,λ = B̂2(−1,b, N)#k
G/

〈
π2

(
z′) − λ

(
1 − χ−1

z

)〉
and the algebra KG,λ = B̂2(−1,b, N)#k

G/〈π2(z′) − λ〉.

The following theorem presents all the liftings of B(−1,b, N) over k
G .

Theorem 7.5. Let H be a lifting of B(−1,b, N) over kG .

(a) If G is generated by {g−1
i : i ∈ Fb} or χz = ε, then H �AG,0 .

(b) If z′ ∈ T (−1,b, N)× , H �AG,0 .
(c) If z′ ∈ T (−1,b, N)[e], then H �AG,λ for some λ ∈ k.
(d) KG,λ is an (AG,0,AG,λ)-biGalois object for all λ ∈ k.
(e) AG,λ is a cocycle deformation of AG,λ′ , for all λ,λ′ ∈ k.
(f) AG,λ is a lifting of B(−1,b, N) over kG for all λ,λ′ ∈ k.
(g) AG,λ �AG,1 
�AG,0 for all λ ∈ k.

Proof. Let φ : T (−1,b, N)#k
G → H be a lifting map and M ⊂ T (−1,b, N) be the Yetter–Drinfeld

submodule generated by the quadratic relations defining B(−1,b, N), see Proposition 4.4. Then

M = M× =
⊕

i, j∈Fb

M
[
(gi g j)

−1] ⊕
⊕
i∈Fb

M
[

g−2
i

]
by Lemma 3.7. Moreover, φ(M×) = 0 by Lemma 5.6(b) using Lemma 3.7. Therefore φ factorizes
through B̂2(−1,b, N)#k

G and the Yetter–Drinfeld module Mz′ generated by z′ is compatible with
φ. Therefore:

(c) follows from Lemma 5.6(d) and Theorem 5.7 by (23) . (a) follows from (c) since χz =
χ

deg z
G = ε by Lemma 4.2. (b) follows from Lemma 5.6(b) and Theorem 5.7 since 1 = dimπ2(Mz′ ) <

dim W (−1,b, N); the equality holds by Eq. (22).
(d) Let w = π2(z′)χz . By Lemma 4.5 k[w] is the subalgebra of right B(−1,b, N)#k

G -coinvariants.
By [1, Corollaries 3.7 and 3.8] we can apply [30, Theorem 4] to the Yetter–Drinfeld algebra map

k[w] → B̂2(−1,b, N)#k
G , w 
→ w − λχz.

Hence KG,λ is an (AG,λ,AG,0)-biGalois object. (e) and (f) are consequences of (d). For (g), the map
F :AG,λ →AG,1 given by F (xi) = λ1/ deg zxi and F |kG = id|kG is an isomorphism of Hopf algebras. �
Example 7.6. There are nontrivial liftings of B(−1,b, N) isomorphic to AG,λ . In fact, suppose that
m | 
k + 1 and consider the (m,k)-affine realization of (Aff(Fb, N),−1); note that z′ ∈ T (−1,b, N)[e].
Let G ′ be a finite group with a multiplicative character χG ′ : G ′ → k

∗ such that χ
deg z
G ′ 
= ε. Then

G = (Fb � Cm
) × G ′ acts on W (−1,b, N) via (h × g′) · xi = χG ′(g′)h · xi and thus the (m,k)-affine
realization induces a principal YD-realization of (Aff(Fb, N),−1) over G such that z′ ∈ T (−1,b, N)[e]
and χz = χ

deg z
G 
= ε.
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7.3. Proof of Main Theorem 2

Let H be a copointed Hopf algebra over k
G whose infinitesimal braiding is given by a principal

YD-realization W (−1,b, N) ∈ kG

kGYD. Then H is generated in degree one. Indeed, we can repeat the
proof of [6, Theorem 2.1], mutatis mutandis, using the results of Subsection 4.3. Hence H is a lift-
ing of B(−1,b, N) over k

G and Main Theorem 2 follows by Theorem 7.3 for Aff(F3,2) or else by
Theorem 7.5. �
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Appendix A. On computations

Through Appendix A we keep the hypotheses and notation in Subsection 5.1. We explain how we
can compute using [23,24] the left and right coactions of the top degree relation of a Nichols algebra
as there.

Set H′ = H2, A′ = A2(λ,μ) and L′ = L(λ,μ); these are quotients of T (V )#kG . Let δR and δL
be the coactions on A′ over H′ and L′ , respectively; these are induced by the comultiplication of
T (V )#kG .

Let z be the top degree generator of J (V ), set 
 = deg z. It is an element of T (V ) but we still
denote by z its class in H′ , A′ or L′ . We compute

(i) The coaction δR(z) ∈A′ ⊗H′ .
(ii) The section γ2(z) ∈A′ .

(iii) The coaction δL(γ2(z)) ∈L′ ⊗A′ .

For item (i) we proceed as follows. Let θ = dim V and denote by yi , i = 1, . . . , θ the generators
of A′ . We work with 3θ + 2 variables G1, . . . , Gθ , X1, . . . , Xθ , Y1, . . . , Yθ , U , V . The variables Gi stand
for the elements gi ⊗ 1 in A′ ⊗H′ . The variables Yi and Xi stand for yi ⊗ 1 and 1 ⊗ xi , respectively.
The variables U and V are included to have a homogeneous system of generators. In most cases one
of them is enough (for instance if n = 2) and there are cases where we can omit them. We fix two
indeterminate elements s, t ∈ k, corresponding to λ, μ.

We define an ideal K of relations in the algebra generated by these variables whose generators
are, for every 1 � i, j � θ and for every class C ∈R′:

Yi X j − X j Yi, Xi G j − G j Xi, Gi G j − Gi� j Gi, Gi Y j + Yi� j Gi,

Xn
i , Y n

i − tU , bC
({Xi}i∈X

)
, bC

({Yi}i∈X
) + s V .

Also, U and V commute with all X, Y , G . Recall that bC (·) stands for a generator of the space of
quadratic relations, see (24). This ideal is homogeneous if we declare all X, Y , G of degree 1, U of
degree n and V of degree 2. We compute the (truncated, up to degree 
) Gröbner basis of K .

We define di = Yi + Gi Xi , i = 1, . . . , θ . These elements stand for the coaction of yi ∈ A′ . We can
now compute the coaction δR(z) by adding and multiplying the di ’s in a suitable way. For U , V we
consider it as 1.

We now explain how we get γ2(z) in item (ii). Let δR(z)− tz ⊗ z = ∑
Ai ⊗ Bi and let z′ be the sum

of the terms Bi of greatest degree with Ai ∈ kG . Re-write the Bi ’s in the variables Yi and consider
z1 = z − z′ . We calculate δR(z1) and repeat the proceeding: in the examples considered, the order
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of the elements we subtract decreases. When δR(zm) − tz ⊗ z ∈ A′ ⊗ kG , for some m, we get that
δR(zm) = zm ⊗ 1 + tz ⊗ z and thus γ2(z) = zm .

Finally, we find δL(γ2(z)) in (iii) in a similar way as we did for δR(z).

Example A.1. Let X = (F4,ω). We use [23,24] to see that the algebras A′ = A2(λ1, λ2) are nonzero.
See the log files in http://www.mate.uncor.edu/~aigarcia/publicaciones.htm. Set
z = (y0 y1 y2)

2 + (y1 y2 y0)
2 + (y2 y0 y1)

2 ∈ A′ , tz = g3
0 g3

1 ∈ G . Using [23,24], the coaction of z in A′ is
δR(z) = z ⊗ 1 + tz ⊗ z plus:

λ2 g2
0 g2

3 ⊗ x1x0x2x1 + λ2 g2
0 g1 g3 ⊗ x0x2x1x0 + λ2 g2

0 g2
1 ⊗ x2x1x0x2

+ λ2 g0 g1 g3(y2 − y0) ⊗ x2x1x0 + λ2 g0 g1 g3(y1 − y2) ⊗ x1x0x2

+ λ2 g0 g1 g3(y0 − y1) ⊗ x0x2x1 + λ2 g2
0 g1(y3 − y1) ⊗ x0x1x2

+ λ2 g0 g2
1(y0 − y3) ⊗ x1x2x1 + λ2 g2

0 g3(y2 − y3) ⊗ x0x1x0

+ λ2 g1 g3(y0 y2 − y1 y2 − y0 y1) ⊗ x2x1 + 2λ2λ1 g1 g3 ⊗ x2x1

+ λ2 g0 g3(y2 y1 + y1 y2) ⊗ x1x0 + λ2 g0 g2(y1 y0 + y0 y1) ⊗ x0x2

+ λ2 g0 g1(y2 y3 − y2 y1 − 2y1 y3 + y1 y0 + y0 y3) ⊗ x1x2

+ λ2 g0 g1(y0 y2 + 2y2 y3 − y2 y1 − y1 y3 − y0 y3) ⊗ x0x1

+ λ2 g0(y2 y1 y0 − y1 y2 y1 − y1 y0 y3 − y0 y1 y3) ⊗ x0

+ λ2 g1(y0 y2 y1 + y0 y1 y2 − y2 y1 y3 − y1 y2 y3) ⊗ x1

+ λ2 g2(y1 y2 y3 + y1 y0 y2 − y0 y2 y3 + y0 y1 y3 − y0 y1 y0) ⊗ x2

+ λ2(2λ1 − λ2)g0 g3 ⊗ x1x0 + λ2(2λ1 − λ2)g0 g2 ⊗ x0x2

+ λ2(λ2 − 2λ1)g0(y3 − y2) ⊗ x0 + λ2 g0(λ2 y1 − λ1 y0) ⊗ x0

+ λ2(2λ1 − λ2)g1(y0 − y3) ⊗ x1 − λ1λ2 g2(y2 + y3) ⊗ x2

+ λ2 g2(2λ1 − λ2)y1 ⊗ x2 + λ2 g2(λ2 y0 − λ1 y3) ⊗ x2.

If z1 = z − λ2z′ + λ2(λ2 − λ1)z′′ where z′ = y1 y0 y2 y1 + y0 y2 y1 y0 + y2 y1 y0 y2, z′′ = y2 y1 + y1 y0 +
y0 y2, we get δ2

R(z1t−1
z ) = z1t−1

z ⊗ t−1
z +1⊗ z. Thus, γ2(zt−1

z ) = z1t−1
z and γ2(z) = z1. The computation

of δ2
L (γ2(z)) − 1 ⊗ γ2(z) yields sX in Subsection 6.2.
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