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Representation Equivalent Bieberbach
Groups and Strongly Isospectral Flat
Manifolds
Emilio A. Lauret

Abstract. Let Γ1 and Γ2 be Bieberbach groups contained in the full isometry group G of Rn. We prove
that if the compact flat manifolds Γ1\Rn and Γ2\Rn are strongly isospectral, then the Bieberbach
groups Γ1 and Γ2 are representation equivalent; that is, the right regular representations L2(Γ1\G)
and L2(Γ2\G) are unitarily equivalent.

1 Introduction

Let X = G/K be a homogeneous Riemannian manifold, where G = Iso(X) is the
full isometry group of X and where K ⊂ G is a compact subgroup. Let Ĝ denote the
unitary dual group of G. Let Γ1 and Γ2 be discrete cocompact subgroups of G acting
on X without fixed points. The right regular representation RΓi on L2(Γi\G) splits as
a direct sum

(1.1) L2(Γi\G) =
∑

(π,Hπ)∈Ĝ

nΓi (π) Hπ,

where all the multiplicities nΓi (π) of π in L2(Γi\G) are finite and only countably
many are not zero. The groups Γ1 and Γ2 are called representation equivalent if the
representations RΓ1 and RΓ2 are equivalent, that is, nΓ1 (π) = nΓ2 (π) for every π ∈ Ĝ.

A generalized version of Sunada’s theorem (see [Go09, §3] and the references
therein) says that if the groups Γ1 and Γ2 are representation equivalent, then the
compact manifolds Γ1\X and Γ2\X are strongly isospectral, that is, for any natural
bundle E of X and for any strongly elliptic natural operator D acting on sections of
E, the associated operators DΓ1 and DΓ2 acting on sections of the bundles Γ1\E and
Γ2\E have the same spectrum.

One may ask whether the converse holds. Actually, little is known about this prob-
lem. In [Pe95], H. Pesce proved that the converse is true for spherical space forms
(X = Sn) and for compact hyperbolic manifolds (X = Hn). Our goal is to complete
the picture within the class of spaces of constant curvature by extending Pesce’s result
to the flat case (X = Rn).

In his proof, Pesce only used the isospectrality with respect to certain natural oper-
ators. More precisely, for (τ ,Vτ ) ∈ K̂, one associates the vector bundle Eτ = G×τ Vτ
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(see §3). Thus, the Laplace operator acting on sections of Eτ induces the operator
∆τ ,Γ1 and ∆τ ,Γ2 acting on sections of Γ1\Eτ and Γ2\Eτ respectively. We will say that
the manifolds Γ1\X and Γ2\X are τ -isospectral if these operators have the same spec-
trum.

In our case, the isometry group of X = Rn is G = O(n) n Rn, and a discrete
cocompact subgroup of G acting without fixed points is usually called a Bieberbach
group. We state the theorem in a way analogous to [Pe95].

Theorem 1.1 Let Γ1 and Γ2 be Bieberbach groups contained in the full isometry group
G of Rn. The following assertions are equivalent:

(i) Γ1 and Γ2 are representation equivalent;
(ii) Γ1\Rn and Γ2\Rn are strongly isospectral;
(iii) Γ1\Rn and Γ2\Rn are τ -isospectral for every τ ∈ K̂.

As we mentioned above, (i)⇒(ii) is well known and (ii)⇒(iii) holds trivially. It
suffices to show (iii)⇒(i) (see page 362). The techniques used here are similar to
those in [LMR12], where the p-spectrum of any constant curvature space form is
determined in terms of the multiplicities in (1.1).

2 Preliminaries

2.1 Irreducible Representations of Orthogonal Groups

In this subsection we describe the unitary dual group of the orthogonal group O(n).
Furthermore, we recall the branching laws to O(n− 1).

We write n = 2m if n is even or n = 2m + 1 if n is odd. We fix the Cartan
subalgebra of so(n,C) as

h =

{
H =

m∑
j=1

ih j(E2 j−1,2 j − E2 j,2 j−1) : h j ∈ C

}
.

For H ∈ h, set ε j(H) = h j for 1 ≤ j ≤ m. The highest weight theorem gives a
one-to-one correspondence between the irreducible representations of SO(n) and the
elements in P(SO(n)), that is, the dominant analytically integral linear functionals on
h. The correspondence being that Λ is the highest weight of the representation. We
have

P
(

SO(2m + 1)
)

=

{ m∑
i=1

aiεi : ai ∈ Z ∀i, a1 ≥ a2 ≥ · · · ≥ am ≥ 0

}
,

P
(

SO(2m)
)

=

{ m∑
i=1

aiεi : ai ∈ Z ∀i, a1 ≥ · · · ≥ am−1 ≥ |am|
}
.

For Λ ∈ P(SO(n)), let (τΛ,VΛ) denote the irreducible representation of SO(n) with
highest weight Λ.



Representation Equivalent Bieberbach Groups 359

We now describe the irreducible representations of the full orthogonal group O(n)
in terms of the irreducible representations of SO(n). We let

g0 =

{
−Idn if n is odd,[

Idn−1

−1

]
if n is even,

thus O(n) = SO(n) ∪ g0 SO(n).

It suffices to define the representations of O(n) on each connected component.
We first consider n odd. For Λ ∈ P(SO(2m + 1)) and δ = ±1 we define a repre-

sentation (τΛ,δ,VΛ) of O(2m + 1) by setting

τΛ,δ(g)(v) =

{
τΛ(g)(v) if g ∈ SO(2m + 1),

δ τΛ(g0g)(v) if g ∈ g0 SO(2m + 1).

Clearly τΛ,δ|SO(2m+1)
∼= τΛ. These representations are irreducible, and every irre-

ducible representation can be constructed in this way, thus

̂O(2m + 1) =
{
τΛ,δ : Λ ∈ P

(
SO(2m + 1)

)
, δ ∈ {±1}

}
.

The even case is more complicated (see [LMR12, Subsection 2.2] for more details).
Set Λ =

∑m−1
i=1 ai εi − amεm if Λ =

∑m
i=1 ai εi ∈ P(SO(2m)). For Λ ∈ P(SO(2m))

satisfying Λ = Λ (i.e., am = 0) and δ ∈ {±1}, one associates τΛ,δ ∈ Ô(2m) on the
vector space VΛ. Again we have that τΛ,δ|SO(2m)

∼= τΛ. The parameter δ depends on a
certain intertwining operator TΛ (see [Pe95, p. 372] and [LMR12, (2.7)]). In the case
Λ 6= Λ (i.e. am 6= 0), there is a single representation τΛ,0 ∈ Ô(2m) defined on the
vector space VΛ ⊕VΛ, which satisfies πΛ,0|SO(2m)

∼= πΛ ⊕ πΛ. Hence,

Ô(2m) =

{
τΛ,δ : Λ =

m∑
i=1

ai εi ∈ P
(

SO(2m)
)
, am = 0, δ ∈ {±1}

}
.

⋃ {
τΛ,0 : Λ =

m∑
i=1

ai εi ∈ P
(

SO(2m)
)
, am > 0

}
.

We shall use the notation τΛ,δ in both cases, with the understanding that either δ =
±1 or δ = 0 according to am = 0 or am 6= 0 respectively.

One can check that τΛ,δ ' τΛ,−δ ⊗ det ' τ∗Λ,δ for any τΛ,δ ∈ Ô(n).
We conclude this subsection by stating the branching laws from O(n) to O(n− 1).

Theorem 2.1 Let τΛ,δ ∈ Ô(2m) with Λ =
∑m

i=1 ai εi and δ ∈ {0,±1}. If am > 0

(resp. am = 0), then τΛ,δ|O(2m−1) =
∑

σµ,κ, where the sum is over all µ =
∑m−1

i=1 biεi

such that

a1 ≥ b1 ≥ a2 ≥ b2 ≥ · · · ≥ am−1 ≥ bm−1 ≥ am

and any κ ∈ {±1} (resp. a single value of κ ∈ {±1}).
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Theorem 2.2 Let τΛ,δ ∈ ̂O(2m + 1), where Λ =
∑m

i=1 ai εi and δ ∈ {±1}. Then
τΛ,δ|O(2m) =

∑
σµ,κ, where the sum is over all µ =

∑m
i=1 biεi such that

a1 ≥ b1 ≥ a2 ≥ b2 ≥ · · · ≥ am−1 ≥ bm−1 ≥ am ≥ bm ≥ 0

and, a single value of κ ∈ {±1} if bm = 0 or κ = 0 if bm > 0.

Note that in both cases the branching is multiplicity free, that is, the multiplicity
[σµ,κ :τΛ,δ] := dimO(n−1)(Wσ,Vτ ) is always equal to 0 or 1.

2.2 Unitary Dual of Iso(Rn)

Here we describe the unitary irreducible representations of O(n)nRn ' Iso(Rn) (see
[LMR12, §4] for more details). We write any element g ∈ O(n) n Rn as g = BLb,
where B ∈ O(n) is called the rotational part, and Lb denotes translation by b ∈ Rn.
From now on, we fix the following notation:

G = O(n) n Rn,

K = O(n),

M =
{(

B
det(B)

)
: B ∈ O(n− 1)

}
.

(2.1)

An element (τ ,Wτ ) ∈ K̂ induces a representation τ̃ of G on Wτ given by

τ̃ (BLb)(w) = τ (B)(w).

In other words, τ̃ = τ ⊗ IdWτ
. Clearly, τ̃ is finite dimensional, unitary, and irre-

ducible.
We identify R̂n with Rn via the correspondenceα 7→ ξα( · ) = e2πi〈α, · 〉 forα ∈ Rn.

Under the notation given by (2.1), given r > 0 and (σ,Vσ) ∈ M̂, we consider the
induced representation of G given by

(πσ,r,Hσ,r) := IndKnRn

MnRn (σ ⊗ ξren ).

It is well known that πσ,r is unitary and irreducible.

Finally, a full set of representatives of Ĝ is given by

Ĝ = {τ̃ : τ ∈ K̂} ∪ {πσ,r : σ ∈ M̂, r > 0}.

3 Main Theorem

In this section we prove Theorem 1.1. We still use the notation in (2.1) for the groups
G, K, and M, and {e1, . . . , en} denotes the canonical basis of Rn.

We recall some notions on homogeneous vector bundles on Rn and compact flat
manifolds (see [Wa73, §5.2] or [LMR12, Subsection 2.1]). Let (τ ,Vτ ) be a unitary
representation of K of finite dimension. The homogeneous vector bundle Eτ =
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G ×τ Vτ of X is constructed as G × Vτ/ ∼, where (x, v) ∼ (xk, τ (k−1)v) for ev-
ery k ∈ K. The group G acts on Eτ by g · [x, v] = [gx, v], where [x, v] denotes
the class of equivalence of (x, v). The space of smooth sections Γ∞(Eτ ) of Eτ is in
correspondence with the set C∞(G; τ ), the smooth functions f : G → Vτ such that
f (xk) = τ (k−1) f (x) for every k ∈ K and x ∈ G. The element

C := e2
1 + · · · + e2

n ∈ U (g)

defines a differential operator ∆τ on Γ∞(Eτ ). For example, if τ = 1, the trivial
representation of K, then

∆1 =
∂2

∂x2
1

+ · · · + ∂2

∂x2
n

is just the Laplace operator on Rn. Furthermore, the element C commutes with every
irreducible representation of G contained in C∞(G; τ ), thus by Schur’s lemma, C acts
by an scalar λ(π,C) on Vπ for every π ∈ Ĝ such that Vπ ⊂ C∞(G; τ ).

The quotient Γ\Eτ is a homogeneous vector bundle over the compact flat mani-
fold Γ\Rn, and again, the element C defines a differential operator ∆τ ,Γ acting on the
sections of Γ\Eτ . Given Γ1 and Γ2, two Bieberbach groups in G, the spaces Γ1\Rn

and Γ2\Rn are said to be τ -isospectral if ∆τ ,Γ1 and ∆τ ,Γ2 have the same spectrum.
We now determine the τ -spectrum for any τ ∈ K̂ as in [LMR12]. Recall that

nΓ(π) (π ∈ Ĝ) denotes the multiplicity of π in L2(Γ\G) as we stated in (1.1). We
shall use the following notation:

Ĝ(0) = {τ̃ : τ ∈ K̂}, Ĝ(σ) = {πσ,r : r > 0}for σ ∈ M̂,

thus
Ĝ = Ĝ(0) ∪

⋃
σ∈M̂

Ĝ(σ).

Theorem 3.1 Let τ ∈ K̂ and λ ∈ R. The multiplicity dλ(τ ,Γ) of λ in the spectrum
of ∆τ ,Γ is given by

(3.1) dλ(τ ,Γ) =


0 if λ < 0,

nΓ(τ̃ ) if λ = 0,∑
σ∈M̂: [σ : τ |M ]>0 nΓ(πσ,

√
λ/2π) if λ > 0.

Proof For any locally symmetric space we have that (see [LMR12, Prop. 2.4])

dλ(τ ,Γ) =
∑
π∈Ĝ

λ(C,π)=λ

nΓ(π) [τ∗ :π|K ].

Note that the sum is already over the elements in

Ĝτ∗ = Ĝτ :=
{
π ∈ Ĝ : [τ :π|K ] > 0

}
,
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since τ∗ ' τ . Since τ̃0|K = τ0 for any τ0 ∈ K̂, it follows that Ĝτ ∩ Ĝ(0) = {τ̃}.
On the other hand, [τ :πσ,r|K ] = [τ : IndK

M(σ)] = [σ :τ |M] by Frobenius reciprocity.
Then

Ĝτ = {τ̃} ∪
⋃
σ∈M̂

[σ : τ |M ]>0

Ĝ(σ).

The branching rules given in Theorems 2.1 and 2.2 give a complete description of Ĝτ

in terms of highest weights. Moreover, they also ensure that [τ :π|K ] = 1 for every
π ∈ Ĝτ .

Finally, by Schur’s lemma, the element C acts by a scalar λ(C, π) on each Hπ . We
have (see [LMR12, Lem. 4.2])

λ(C, π) =

{
0 for π ∈ Ĝ(0),

−4π2r2 for π = πσ,r ∈ Ĝ(σ),

which concludes the proof.

We are now in a position to prove the main theorem.

Proof of Theorem 1.1 We have to prove that

(3.2) nΓ1 (π) = nΓ2 (π)

for every π ∈ Ĝ, by assuming that dλ(τ ,Γ1) = dλ(τ ,Γ2) for every λ ∈ R and every
τ ∈ K̂. From (3.1) for the eigenvalue λ = 0, it follows that (3.2) holds for every
π ∈ Ĝ(0).

It remains to prove that, for any σ ∈ M̂, (3.2) holds for every π ∈ Ĝ(σ). We shall
do this by the repeated application of the following lemmas. We write n = 2m if n is
even and n = 2m+1 if n is odd. For µ1 =

∑m
i=1 biεi and µ2 =

∑m
i=1 ciεi in P(SO(n))

with bm, cm ≥ 0, we write µ1 < µ2 if c1 − b1 ≥ c2 − b2 ≥ · · · ≥ cm − bm ≥ 0, and set
`(µ) = p if bp 6= 0 and bi = 0 for all i > p.

Lemma 3.2 Let Γ1 and Γ2 be Bieberbach groups in G and let µ0 ∈ P(SO(n− 1)).
If Γ1\Rn and Γ2\Rn are τµ0,δ-isospectral and nΓ1 (π) = nΓ2 (π) for every π ∈⋃
µ<µ0

Ĝ(σµ,κ), then nΓ1 (π) = nΓ2 (π) for every π ∈ Ĝ(σµ0,κ).

Proof Write µ0 =
∑m

i=1 biεi ∈ P(SO(n− 1)), with the convention that bm = 0 if n
is even, since n − 1 = 2m − 1. Let Λ =

∑m
i=1 biεi ∈ P(SO(n)). Theorems 2.1 and

2.2 ensure that [σµ,κ : τΛ,δ|M] > 0 if and only if µ =
∑m

i=1 ciεi satisfies

b1 ≥ c1 ≥ b2 ≥ c2 ≥ · · · ≥ bm ≥ cm ≥ 0,

and for a single value of κ ∈ {0,±1}. Now, by (3.1) we have that

d4π2r2 (τΛ,±δ,Γi) = nΓi (πσµ0 ,±κ0 ,r
) +

∑
[σµ,κ : τΛ,δ]>0

µ6=µ0

nΓi (πσµ,±κµ ,r)
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for every r > 0. It is clear that if [σµ,κ :τΛ,δ|M] > 0, then µ = µ0 or µ < µ0.
Hence nΓ1 (πσµ0 ,±κ0 ,r

) = nΓ2 (πσµ0 ,±κ0 ,r
) for every r > 0, since we are assuming that

d4π2r2 (τΛ,±δ,Γ1) = d4π2r2 (τΛ,±δ,Γ2) (τµ0,κ-isospectrality) and

nΓ1 (πσµ,±κµ ,r) = nΓ2 (πσµ,±κµ ,r)

for every µ < µ0 and every r > 0.

For example, by applying Lemma 3.2 to µ0 = 0, we obtain that (3.2) holds for
every π ∈ Ĝ(σ0,κ), which is the same result as [Pe96, Prop. 3.2 (c)].

Lemma 3.3 Let Γ1 and Γ2 be Bieberbach groups in G and let 1 ≤ p < m. If Γ1\Rn

and Γ2\Rn are τµ,δ-isospectral for every µ ∈ P(SO(n)) such that `(µ) = p + 1 and
nΓ1 (π) = nΓ2 (π) for every π ∈ Ĝ(σµ,κ) such that `(µ) ≤ p, then nΓ1 (π) = nΓ2 (π) for

every π ∈ Ĝ(σµ,κ) such that `(µ) = p + 1.

Proof We begin by considering the first case µ0 = ε1 + · · ·+εp+1 ∈ P(SO(n)). Every
µ ∈ P(SO(n)) such that µ < µ0 satisfies `(µ) ≤ p, thus nΓ1 (π) = nΓ2 (π) for every
π ∈ ∪µ<µ0 Ĝ(σµ,κ). Hence nΓ1 (π) = nΓ2 (π) for every π ∈ Ĝ(σµ0,κ) by Lemma 3.2.

We continue in this fashion obtaining that nΓ1 (π) = nΓ2 (π) for every π ∈ Ĝ(σµ0,κ)
for any µ0 =

∑p
i=1 biεi + εp+1 ∈ P(SO(n)), since the ordering < is complete. We

now proceed by induction on bp+1, and the proof is complete.

By proceeding by induction on p with repeated applications of Lemma 3.3, we
have that (3.2) holds for every π ∈ Ĝ(σµ,κ) for any µ ∈ P(SO(n)). This completes
the proof.
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