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a b s t r a c t

The aim of this paper is to classify Ricci soliton metrics on 7-dimensional nilpotent Lie
groups. It can be considered as a continuation of our paper in Fernández Culma (2012).
To this end, we use the classification of 7-dimensional real nilpotent Lie algebras given
by Ming-Peng Gong in his Ph.D thesis and some techniques from the results of Michael
Jablonski (2010, 2012) and of Yuri Nikolayevsky (2011). Of the 9 one-parameter families
and 140 isolated 7-dimensional indecomposable real nilpotent Lie algebras, we have 99 nil-
solitonmetrics given in an explicit form and 7 one-parameter families admitting nilsoliton
metrics.

Our classification is the result of a case-by-case analysis, so many illustrative examples
are carefully developed to explain how to obtain the main result.

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

The Ricci flow, introduced by Richard Hamilton in the early 1980s, is a geometric evolution equation which smoothly
deforms an initial metric g0 on a Riemannian manifoldM in the direction of minus two times its Ricci tensor:

∂
∂t g = −2 ricg ,
g(0) = g0.

The ‘‘philosophy’’ behind this tool of geometric analysis is to try to evolve the geometry of (M, g0) to one which looks more
uniform (although in practice, it is not always possible).

A Ricci soliton is a complete Riemannian metric g0 such that the solution to the Ricci flow g(t) with g(0) = g0 changes g0
only by diffeomorphisms and scaling as time goes on, that is g(t) = c(t)ϕ∗

t g0, where c(t) ∈ R+ and ϕt is a one-parameter
group of diffeomorphisms ofM; a Ricci soliton is not ‘‘improved’’ by the Ricci flow. These distinguishedmetrics are important
in the study of the Ricci flow because they may be limiting cases for the Ricci flow near singularities and are a natural
generalization of an Einstein metric [1].

In the theory of Ricci flow, homogeneous Riemannian manifolds provide a rich source of explicit examples for some
concepts and behaviors. Moreover, many of the known examples of Ricci solitons correspond to algebraic Ricci solitons:
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these are given by a left-invariant metric g on a simply-connected Lie group G satisfying

Ric(g) = c Id+D, for some c ∈ R and D ∈ Der(g) (1.1)

where g = Lie(G) and Ric is the Ricci operator of g .
Such metrics are indeed Ricci solitons and in the particular case that G is solvable (respectively nilpotent) are called

solvsolitons (respectively nilsolitons).
Our aim in this paper is to classify nilsolitons on 7-dimensional simply connected nilpotent Lie groups. In general, it

is difficult to know if a nilpotent Lie algebra admits a nilsoliton (inner product) and it is very difficult to get such metric
when it exists. Nilsolitonmetrics have been completely classified only up to dimension 6 by Jorge Lauret and CynthiaWill in
[2,3] (with a minor correction in [4]). In [5], Trayce Payne and Hülya Kadioğlu have introduced a computational method for
classifying nilsoliton metrics in the family of nilpotent Lie algebras with simple pre-Einstein derivation and nonsingular Gram
matrix. Theirmethod does not rely on any preexisting classifications of nilpotent Lie algebras. They classify nilsolitonswithin
this family, which has 33 algebras in dimension 7 and 159 algebras in dimension 8. In [6], we gave a complete classification
of all seven-dimensional (complex) nilpotent Lie algebras n such that a real form of n admits a nilsoliton inner product. In
order, to prove [6, Theorem 7], we make heavy use of results proved by Yuri Nikolayevsky in [7] (some of such results were
independently proved by Michael Jablonski in [8,9] in a more general form).

In these notes, we use the classification of seven-dimensional real nilpotent Lie algebras given by Ming-Peng Gong in his
Ph.D thesis [10], results from complex (and real) Geometric Invariant Theory [11,8,9,12] and calculations given in [13].

Following [10], the indecomposable 7-dimensional real Lie algebras can be seen as 9 one-parameter families of nilpotent
Lie algebras plus 140 isolated nilpotent Lie algebras; i.e. 140 algebras that are not in any of such one-parameter families. We
focus our attention on isolated algebras and on the family (147E)[0 < t < 1] where we can give a nilsoliton metric for each
t . So, we have 99 nilsoliton metrics and 7 one-parameter families admitting nilsoliton metrics. The methods explained here
can also be used to study any fixed member in a one-parameter family.

Our classification is the result of a case-by-case analysis, so many illustrative examples are carefully developed to
explain how to obtain the main result. Some nilsoliton metrics here were obtained in [13], we refer the reader to [6] for
more details. All calculations are performed using MapleTM 14; more particularly, we use the (nice) MapleTM packages
DifferentialGeometry and LieAlgebras.

2. Preliminaries

In this section, we give a brief exposition on nilsoliton metrics and real (and complex) geometric invariant theory. There
is an intriguing interplay between the Ricci flow on nilpotent Lie groups and the gradient flow of the norm squared of the
moment map associated to the natural action of GLn(R) on V = Λ2(Rn)∗ ⊗ Rn. It is known that if n := (Rn, µ) is a nilpotent
Lie algebra and ⟨·, ·⟩ is the canonical inner product of Rn, then the Ricci operator of (Rn, µ, ⟨·, ·⟩) satisfies

4 Ric = m(µ) (2.1)

where m is the moment map. It follows that to minimize the norm of the Ricci tensor among all left-invariant metrics of n

with the same scalar curvature is equivalent to minimize ∥m∥
2/∥µ∥

4 along the GLn(R)-orbit of µ (here, the inner products
on gln(R) and V , which are denoted by ⟨·, ·⟩ and ⟨·, ·⟩ respectively, are those induced by the canonical inner product of Rn).

Theorem 2.1 (Jorge Lauret). (See for instance [14, Theorem 4.2]) The nilpotent Lie algebra n := (Rn, µ) admits a nilsoliton (inner
product) if and only if the GLn(R)-orbit of µ is distinguished; i.e. GLn(R) · µ contains a critical point of ∥m∥

2, or equivalently, if
and only if there exists a g ∈ GLn(R) such that

m(µ) = c Id+D for some c ∈ R and D ∈ Der(n) (2.2)

whereµ := g · µ andn := (Rn,µ).
There is at most one nilsoliton metric on a nilpotent Lie group (up to isometry and scaling).

A pointµ satisfying Eq. (2.2) is called a distinguished point (see [9, Definition 2.6]) and the derivation D is usually called
Einstein derivation (in connection with Einstein solvmanifolds) or nilsoliton derivation.

It is known from [15] that the eigenvalues of an Einstein derivation are all positive integers without a common divisor
(up to a rational factor) and that it is, up to conjugation by an automorphism, positively proportional to the pre-Einstein
derivation, which is defined by Yuri Nikolayevsky in [7, Definition 2].

Before stating the techniques to classify the nilsoliton metrics, let us first recall some notations.

Notation 2.2. Let a denote the maximal abelian subalgebra of gln(R) contained in the vector space of symmetric matrices p

given by

a = {Diag(x1, . . . , xn) : xi ∈ R}

and set A := exp(a).
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Let Φ be a finite subset of a. The convex hull of Φ will be denoted by CH(Φ) while by Aff(Φ) we denote the affine space
generated by Φ . The notation mcc(Φ) denotes the minimal convex combination of Φ; i.e. the unique vector closest to the
origin in CH(Φ). The notation int(CH(Φ)) represents the interior of CH(Φ) relative to the usual topology of Aff(Φ).

Given a nilpotent Lie algebra n := (Rn, µ), we denote by R(µ) the (ordered) set of weights related with µ to the action
of GLn(R) on V , i.e. if {Ck

i,j} are the structural constants of n in the basis {e1 . . . en} then

R(µ) = {Ek,k − Ei,i − Ej,j : Ck
i,j ≠ 0}

where {Ei,j} is the canonical basis of gln(R).

Recall that Nikolayevsky’s nice basis criterion [7, Theorem 3] says that a nilpotent Lie algebra n := (Rn, µ) which is
written in a nice basis [7, Definition 3] admits a nilsoliton metric if and only if the equation

Ux = [1]m (2.3)

has at least one solution x with positive coordinates, where m = #(R(µ)) and U is the Gram matrix of (R(µ), ⟨·, ·⟩). This
result gives us an easy-to-check convex geometry condition for a nilpotent Lie algebra with a nice basis to be an Einstein
nilradical.

If one carefully reads the proof of the above theoremone sees that it gives us a technique to find a nilsoliton on a nilpotent
Lie algebra which is written in a nice basis and admits such distinguished metric; a nilsoliton can be found in an A-orbit. So,
Nikolayevsky’s nice basis criterion can be rewritten as

Theorem 2.3 (Nikolayevsky’s Nice Basis Criterion). Let n := (Rn, µ) be a nilpotent Lie algebra such that n is written in a nice
basis. Then n admits a nilsoliton if and only if there exists g ∈ A such that

m(g · µ) = mcc(R(µ)), (2.4)

and, consequently,µ := g · µ is a distinguished point in the GLn(R)-orbit of µ.

To find a nilsoliton metric for a nilpotent Lie algebra admitting such metric and which is written in a nice basis is easy in
practice. We must calculate the vector mcc(R(µ)), which is given by

1
xp


xpR(µ)p


where [xi] is any positive solution to Eq. (2.3) and we solve Eq. (2.4) for g ∈ A. We refer the reader to [8, Corollary 3.4] or
[12, Section 3] for further information on results related with Theorem 2.3.

Another application from geometric invariant theory in the study of nilsoliton metrics is the following result, which was
proven independently by Michael Jablonski in [8, Theorem 6.5] and Yuri Nikolayevsky in [7, Theorem 6].

Theorem 2.4. Let n1 and n2 be two (real) nilpotent Lie algebras whose complexifications are isomorphic as complex nilpotent Lie
algebras. If n1 is an Einstein nilradical then so is n2, with the same eigenvalue type.

Consider the natural action of the complex reductive Lie group GLn(C) onΛ2(Cn)∗ ⊗Cn and its momentmap m̌ as in [11]
(see [16]). Theorem 2.4 can be derived by comparing the distinguished orbits of thementioned actionwith the distinguished
orbits of the natural action of GLn(R) on Λ2(Rn)∗ ⊗ Rn. We can rephrase Theorem 2.4 as saying that

Theorem 2.5 ([8, Theorem 4.7]). Let n := (Rn, µ) be a nilpotent Lie algebra. Then n admits a nilsoliton metric if and only if the
GLn(C)-orbit of µ is distinguished of the action of GLn(C) on Λ2(Cn)∗ ⊗ Cn.

Theorem 2.5 provides us with another technique. It is easy to see that Nikolayevsky’s nice basis criterion is also true in
the complex case (see [12, Remark 3.2]); i.e. given a complex nilpotent Lie algebra (Cn, µ) which is written in a nice basis
for the action of GLn(C) on Λ2(Cn)∗ ⊗ Cn (m̌(A · µ) ⊆ a), then GLn(C) · µ is distinguished if and only if Eq. (2.3) has at least
one solution x with positive coordinates where m = #(R(µ)) and U is the Gram matrix of (R(µ), ⟨·, ·⟩) (here, ⟨·, ·⟩ is the
usual Hermitian inner product on gln(C)).

A real nilpotent Lie algebra n := (Rn, µ) could fail to admit a nice basis for the action of GLn(R) on Λ2(Rn)∗ ⊗ Rn

(see [4, Proposition 2.1.] or [6, Section 2]). However, it may happen that n admits a nice basis for the action of GLn(C) on
Λ2(Cn)∗ ⊗ Cn. Suppose that (Cn,µ) is written in a nice basis with µ ∈ GLn(C) · µ and GLn(C) · µ being a distinguished
orbit; consequently, (Rn, µ) admitting a nilsoliton metric. One can easily find a distinguished point µ in the A-orbit of µ
as above. By results of Linda Ness [11, Theorem 6.2], it is well known that any distinguished point in GLn(C) · µ is in the
C∗U(n)-orbit ofµ, hence to find a distinguished point in the GLn(R)-orbit of µ, we study the real forms in C∗U(n) ·µ which
are isomorphic over R to µ.
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3. The classification

In this section, we give the classification of nilsolitonmetrics on 7-dimensional (isolated) nilpotent Lie algebras. By using
that any nilpotent Lie algebra of dimension less than or equal to 6 is an Einstein nilradical, one obtains that any decomposable
7-dimensional nilpotent Lie algebra is an Einstein nilradical and it is easy to give a nilsoliton metric in each case; therefore
we focus on studying indecomposable algebras.

The general outline of our classification could be presented as follows:

• If the Lie algebra (R7, µ) is written in a nice basis and it admits a nilsoliton metric, then such distinguished metric can
be found in the A-orbit of µ. We illustrate this technique in Example 3.2.

• If the Lie algebra (R7, µ) is not written in a nice basis but it admits a nice basis (C7,µ) for the action of GLn(C) on
Λ2(Cn)∗ ⊗ Cn. A nilsoliton metric for (R7, µ) (if such metric exists) can be found in the real forms of C∗U(n)A ·µ which
are isomorphic over R to µ (see Example 3.4).

• If the Lie algebra (R7, µ) is not written in a nice basis but it is possible to give a nilsoliton metric by solving the system
of polynomial equations defined by the pre-Einstein derivation and the nilsoliton condition (see [6, Corollary 3]). We
explain this technique in Example 3.3 (see also [6, Example 1]).

Following [10], there are 5 one-parameter families and 41 isolated nilpotent Lie algebras which are not written in a
nice basis. We will use the exclamation mark to indicate such algebras (see List in Section 3.1), and where we have an
extra exclamation mark, such algebra has a non-positive pre-Einstein derivation; and hence it does not admit any nilsoli-
ton metric. The one-parameter families (147E1)[t], (1357S)[t] and the isolated algebras (257J1), (247E), (247G), (247H),
(247H1), (247R), (1357Q ), (1357Q1), (1357R), (12457L) can be worked out as Examples 3.3 and 3.4, while the remaining
algebras were studied in [13] (to obtain [6, Theorem 7], we give in some cases nilsoliton metrics which are considered here
again).

Theorem 3.1. The classification of 7-dimensional nilsoliton metrics on isolated nilpotent Lie algebras (plus (147E)[0 < t < 1])
is given according to the notation in [10] by the list in Section 3.1.

Example 3.2. Consider the one-parameter family (1357QRS1)[t ∈ R] given by (R7, µt) with

µt :=


[e1, e2] = e3, [e1, e3] = e5, [e1, e4] = e6, [e1, e5] = e7,
[e2, e3] = −e6, [e2, e4] = e5, [e2, e6] = te7, [e3, e4] = (1 − t)e7.

The basis {e1, . . . , e7} is a nice basis to (1357QRS1)[t ∈ R] for any t . If t ≠ 0, 1, the Gram matrix U is given by

3 0 1 1 0 1 1 −1
0 3 1 0 1 1 0 1
1 1 3 1 1 1 −1 1
1 0 1 3 0 −1 1 1
0 1 1 0 3 1 0 1
1 1 1 −1 1 3 1 1
1 0 −1 1 0 1 3 1

−1 1 1 1 1 1 1 3


.

The general solution to the problem Ux = [1]8 is given by

x =
1
11

(1 + 11 a1, 2, −1 + 11 a2, 5 − 11 a1 − 11 a2, 2, 4 − 11 a1 − 11 a2, 11 a2, 11 a1)T .

By taking a1 and a2 such that 0 < 11a1 < 3 and 1 < 11a2 < 4 − 11a1, we get a solution with positive coordinates. Hence,
(1357QRS1)[t ∈ R] with t ≠ 0, 1 admits a nilsoliton metric [7, Theorem 3].

To give a nilsoliton metric for each t in a simultaneous manner, it is incredibly difficult. But, if we fix the value of t , say
t = −1, it is easy to give the nilsoliton metric for (1357QRS1)[t = −1]. To find such metric, we solve the problem

m(g · µ−1) = mcc(R(µ−1))

=
1
13

Diag(−7, −7, −3, −3, 1, 1, 5)

for g ∈ A (Theorem 2.3). Let g = Diag(1, 1, 2
√
39

39 , 2
√
13

13 , 2
√
3

39 , 2
√
3

39 ,
√
130
507 ), the change of basis given by g defines µ−1 :=

g · µ−1 = gµ−1(g−1
·, g−1

·)

µ−1 :=


[e1, e2] =

2
√
39

39
e3, [e1, e3] =

√
13
13

e5, [e1, e4] =

√
39
39

e6, [e1, e5] =

√
390
78

e7,

[e2, e3] = −

√
13
13

e6, [e2, e4] =

√
39
39

e5, [e2, e6] = −

√
390
78

e7, [e3, e4] =

√
390
78

e7.
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Since,

m(µ−1) =
1
13

Diag(−7, −7, −3, −3, 1, 1, 5)

= −
11
13

Id+
4
13

Diag(1, 1, 2, 2, 3, 3, 4)  
Derivation

(3.1)

the canonical inner product of R7 defines a nilsolitonmetric on (R7,µ−1). Note that (1357QRS1)[t = −1] becomes (1357R)
over C, therefore (1357R) also admits nilsoliton metrics (Theorem 2.5).

We study (1357QRS1)[t = 1] (∼=C(1357Q ) ∼=C(1357Q1)) and (1357QRS1)[t = 0] (∼=C(2357D) ∼=C(2357D1) ∼=C(1357)[t
= 1]) in an entirely analogous way.

Example 3.3. In this example, we show how to find the nilsoliton metric for (1357R) given by (R7, µ) with

µ :=


[e1, e2] = e3, [e1, e3] = e5, [e1, e6] = e7,
[e2, e3] = e6, [e2, e4] = e6, [e2, e5] = e7, [e3, e4] = e7.

As we explained previously, (1357R) must admit such a metric. Furthermore, there must exist a g ∈ GL7(R) such that
m(g · µ) satisfies Eq. (3.1).

It is easy to see that the pre-Einstein derivation of (R7, µ) is equal to 4
11 Diag(1, 1, 2, 2, 3, 3, 4) and as the pre-Einstein

derivation of g · µ must be positively proportional to the Einstein derivation, 4
13 Diag(1, 1, 2, 2, 3, 3, 4), we can try to find

such g in the group

G =


g ∈ GL7(R) : g = Diag


m1,1 m1,2
m2,1 m2,2


,


m3,3 m3,4
m4,3 m4,4


,


m5,5 m5,6
m6,5 m6,6


,m7,7


which commutates with the Einstein derivation. By solving

m(g · µ) =
1
13

Diag(−7, −7, −3, −3, 1, 1, 5)

with g ∈ G, we find

g = Diag


1

√
13
2

1 −

√
13
2

 ,

−
2
√
3

3
−

√
3
3

0 1

 ,

−
2
√
39

39

√
3
3

−
2
√
39

39
−

√
3
3

 , −

√
130
39


which definesµ = g · µ

µ :=


[e1, e2] =

2
√
39

39
e3, [e1, e3] =

√
13
13

e6, [e1, e4] =

√
39
39

e5, [e1, e6] =

√
390
78

e7,

[e2, e3] =

√
13
13

e5, [e2, e4] =

√
39
39

e6, [e2, e5] = −

√
390
78

e7, [e3, e4] =

√
390
78

e7

where the canonical inner product of R7 defines a nilsoliton metric on (R7,µ).

Example 3.4. For a final example, we consider the one-parameter family (1357S)[t ∈ R \ {0, 1}] given by (R7, µt) with

µt =


[e1, e2] = e3, [e1, e3] = e5, [e1, e5] = e7, [e1, e6] = e7, [e2, e3] = e6, [e2, e4] = e6,
[e2, e5] = e7, [e2, e6] = te7, [e3, e4] = e7.

It is easily seen that (1357S)[t] (with t ≠ 0, 1) is a real form of the (complex) Lie algebra (1357QRS1)[λ] with λ :=
t+

√
t

t−
√
t
.

In the same manner as in Example 3.2, we can see that the GL7(C)-orbit of (1357QRS1)[λ] is distinguished for the natural
action of GL7(C) on Λ2(C7)∗ ⊗ C7 (by using Nikolayevsky’s nice basis criterion in the complex case). Consequently, the
GL7(R)-orbit of (1357S)[t] (with t ≠ 0, 1) is distinguished; i.e. such family admits nilsoliton metrics (Theorem 2.5).

We fix the value of t , say t = −3. So (1357S)[t = −3] is a real form of (1357QRS1)[ 12 −

√
3
2

√
−1] := (C7, µ) with

µ =


[e1, e2] = e3, [e1, e3] = e5, [e1, e4] = e6, [e1, e5] = e7, [e2, e3] = −e6, [e2, e4] = e5,

[e2, e6] =


1
2

−

√
3
2

√
−1


e7, [e3, e4] =


1
2

+

√
3
2

√
−1


e7.



E.A. Fernández-Culma / Journal of Geometry and Physics 86 (2014) 164–179 169

To find a nilsoliton metric for (1357S)[t = −3], we can find a distinguished point µ in the GL7(C)-orbit of µ and then to
study the real forms in the U(7)-orbit ofµ.

The pointµ can be found easily in much the same way as was done for (1357QRS1)[t = −1] in Example 3.2. So we findµ given by

µ =


[e1, e2] =

√
13
13

e3, [e1, e3] =

√
13
13

e5, [e1, e4] =

√
26
26

e6, [e1, e5] =

√
13
13

e7, [e2, e3] = −

√
13
13

e6,

[e2, e4] =

√
26
26

e5, [e2, e6] =

√
13
13


1
2

−

√
3
2

√
−1


e7, [e3, e4] =

√
26
26


1
2

+

√
3
2

√
−1


e7.

Since (1357S)[t = −3] and (C7,µ) have the ‘‘same’’ pre-Einstein derivation, 4
11 Diag(1, 1, 2, 2, 3, 3, 4), we can try to find

a distinguished point in the GL7(R)-orbit of (1357S)[t = −3] by considering the real forms in the G-orbit ofµ, where

G =


g ∈ U(7) : g = Diag


z1,1 z1,2
z2,1 z2,2


,


z3,3 z3,4
z4,3 z4,4


,


z5,5 z5,6
z6,5 z6,6


, z7,7


.

Therefore, we find

µ =


[e1, e2] =

√
13
13

e3, [e1, e3] =

√
13
13

e5, [e1, e4] = −

√
26
26

e5, [e1, e5] =

√
39
26

e7, [e1, e6] =

√
13
26

e7,

[e2, e3] =

√
13
13

e6, [e2, e4] =

√
26
26

e6, [e2, e5] =

√
13
26

e7, [e2, e6] = −

√
39
26

e7, [e3, e4] =

√
26
26

e7,

where (1357S)[t = −3] is isomorphic to (R7,µ) (over R) and the canonical inner product of R7 defines a nilsoliton metric
on (R7,µ).

By a similar argument, we can to prove that (147E1)[t > 1], which is a real form of the (complex) Lie algebra (147E)[λ]

with λ =


(1−

√
t2−1

√
−1)

t

2

, admits nilsoliton metrics.

Remark 3.5. Recently, the existence problem of nilsoliton metrics on n11 = (1357S)[t = −3], n12 = (147E1)[t = 2] and
n10 ∼=R 1.3(i)[t = 1] has been studied in [17, Proposition 3.2]. In the above example, we give a nilsoliton metric for n11, and
by a similar argument we find a nilsoliton metric for n12 given by the change of basis

g := Diag


0

√
3
2

1 −
1
2

 , 1, −
1
4
,


√
3

12

√
3
6

−
1
4

0

 , −

√
3

48


which defines

µ =


[e1, e2] =

√
3
6

e4, [e1, e3] = −

√
3
6

e6, [e1, e5] = −

√
3

12
e7, [e1, e6] =

1
4
e7,

[e2, e3] = −

√
3
6

e5, [e2, e5] =
1
4
e7, [e2, e6] =

√
3

12
e7, [e3, e4] = −

√
3
6

e7,

where the canonical inner product of R7 is a nilsoliton metric of (R7,µ) ∼=R n12. The nilpotent Lie algebra 1.3(i)[t = 1] also
admits a nilsoliton metric and it was proved in [6, Example 2]. The nilpotent Lie algebra n9 in [17, Proposition 3.2], in fact,
does not admit a nilsoliton metric and this can be proved by using Nikolayevsky’s nice basis criterion (n9 = 1.1(iv); see
[6, Table 1.]).

3.1. Classification list

The notation in the list is as follows: dim(Der) is the dimension of the algebra of derivations, rank is the dimension of
a maximal torus of semisimple derivations. By φ we denote 4 times the Einstein derivation or the pre-Einstein derivation,
depending if the respective algebra admits or does not admit a nilsoliton metric, and ∥β∥

2 is the real number such that

4 Ric = −∥β∥
2 Id+φ.

Each Lie bracket µ given in the list is such that the canonical inner product of R7 is a nilsoliton metric of scalar curvature
equal to −

1
4 onn := (R7,µ).
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The Betti numbers provide additional information that can be used to compare Gong’s list with other classifications.

(1) (37A): dim(Der) = 25, rank = 4, Betti Numbers (4, 12, 18, 18, 12, 4, 1) (∼=R g4.2).
Einstein der. φ =

2
3 Diag(2, 1, 2, 2, 3, 3, 3), ∥β∥

2
=

5
3 ≈ 1.667

[e1, e2] =

√
6
6 e5, [e2, e3] =

√
6
6 e6, [e2, e4] =

√
6
6 e7.

(2) (37B): dim(Der) = 20, rank = 4, Betti Numbers (4, 11, 16, 16, 11, 4, 1) (∼=R g4.1).
Einstein der. φ =

1
5 Diag(5, 4, 4, 5, 9, 8, 9), ∥β∥

2
=

7
5 ≈ 1.400

[e1, e2] =

√
5
5 e5, [e2, e3] =

√
10
10 e6, [e3, e4] =

√
5
5 e7.

(3) (37B1): dim(Der) = 20, rank = 4, Betti Numbers (4, 11, 16, 16, 11, 4, 1) (∼=C g4.1).
Einstein der. φ =

1
5 Diag(4, 5, 5, 4, 9, 9, 8), ∥β∥

2
=

7
5 ≈ 1.400

[e1, e2] =

√
10
10 e5, [e1, e3] =

√
10
10 e6, [e1, e4] =

√
10
10 e7, [e2, e4] =

√
10
10 e6, [e3, e4] = −

√
10
10 e5.

(4) (37C): dim(Der) = 22, rank = 3, Betti Numbers (4, 11, 17, 17, 11, 4, 1) (∼=R g3.24).
Einstein der. φ =

1
4 Diag(5, 3, 4, 4, 8, 7, 7), ∥β∥

2
=

3
2 ≈ 1.500

[e1, e2] =

√
2
4 e5, [e2, e3] =

√
2
4 e6, [e2, e4] =

√
2
4 e7, [e3, e4] =

√
2
4 e5.

(5) (37D): dim(Der) = 19, rank = 3, Betti Numbers (4, 11, 14, 14, 11, 4, 1) (∼=R g3.12).
Einstein der. φ =

5
6 Diag(1, 1, 1, 1, 2, 2, 2), ∥β∥

2
=

4
3 ≈ 1.333

[e1, e2] =

√
3
6 e5, [e1, e3] =

√
6
6 e6, [e2, e4] =

√
6
6 e7, [e3, e4] =

√
3
6 e5.

(6) (37D1): dim(Der) = 19, rank = 3, Betti Numbers (4, 11, 14, 14, 11, 4, 1) (∼=C g3.12).
Einstein der. φ =

5
6 Diag(1, 1, 1, 1, 2, 2, 2), ∥β∥

2
=

4
3 ≈ 1.333

[e1, e2] =

√
3
6 e5, [e1, e3] =

√
3
6 e6, [e1, e4] =

√
3
6 e7, [e2, e3] = −

√
3
6 e7, [e2, e4] =

√
3
6 e6, [e3, e4] = −

√
3
6 e5.

(7) (357A): dim(Der) = 18, rank = 3, Betti Numbers (3, 8, 14, 14, 8, 3, 1) (∼=R g3.6).
Einstein der. φ =

1
11 Diag(5, 7, 12, 9, 17, 16, 14), ∥β∥

2
=

13
11 ≈ 1.182

[e1, e2] =

√
66
22 e3, [e1, e3] =

√
22
11 e5, [e1, e4] =

√
22
22 e7, [e2, e4] =

√
66
22 e6.

(8) (357B): dim(Der) = 17, rank = 3, Betti Numbers (3, 7, 11, 11, 7, 3, 1) (∼=R g3.23).
Einstein der. φ =

1
10 Diag(4, 5, 9, 9, 13, 14, 13), ∥β∥

2
=

11
10 ≈ 1.100

[e1, e2] =

√
15
10 e3, [e1, e3] =

√
10
10 e5, [e1, e4] =

√
10
10 e7, [e2, e3] =

√
15
10 e6

(9) (357C): dim(Der) = 16, rank = 2, Betti Numbers (3, 7, 11, 11, 7, 3, 1) (∼=R g2.40).
Einstein der. φ =

1
21 Diag(9, 10, 19, 18, 28, 29, 27), ∥β∥

2
=

23
21 ≈ 1.095

[e1, e2] =

√
7
7 e3, [e1, e3] =

√
42
21 e5, [e1, e4] =

√
42
21 e7, [e2, e3] =

√
7
7 e6, [e2, e4] =

√
42
42 e5.

(10) (27A): dim(Der) = 21, rank = 4, Betti Numbers (5, 10, 16, 16, 10, 5, 1) (∼=R g4.3).
Einstein der. φ =

1
5 Diag(4, 5, 5, 6, 5, 9, 10), ∥β∥

2
=

7
5 ≈ 1.400

[e1, e2] =

√
5
5 e6, [e1, e4] =

√
10
10 e7, [e3, e5] =

√
5
5 e7.

(11) (27B): dim(Der) = 19, rank = 3, Betti Numbers (5, 9, 15, 15, 9, 5, 1) (∼=R g3.19).
Einstein der. φ =

1
6 Diag(5, 6, 5, 6, 6, 11, 11), ∥β∥

2
=

4
3 ≈ 1.333

[e1, e2] =

√
3
6 e6, [e1, e5] =

√
6
6 e7, [e2, e3] =

√
3
6 e7, [e3, e4] =

√
6
6 e6.

(12) (257A): dim(Der) = 19, rank = 3, Betti Numbers (4, 9, 14, 14, 9, 4, 1) (∼=R g3.8).
Einstein der. φ =

1
4 Diag(2, 3, 5, 4, 4, 7, 6), ∥β∥

2
=

5
4 ≈ 1.250

[e1, e2] =

√
2
4 e3, [e1, e3] =

√
2
4 e6, [e1, e5] =

√
2
4 e7, [e2, e4] =

√
2
4 e6.

(13) (257B): dim(Der) = 18, rank = 3, Betti Numbers (4, 8, 13, 13, 8, 4, 1) (∼=R g3.11).
Einstein der. φ =

1
11 Diag(5, 7, 12, 12, 10, 17, 17), ∥β∥

2
=

13
11 ≈ 1.182

[e1, e2] =

√
66
22 e3, [e1, e3] =

√
22
11 e6, [e1, e4] =

√
22
22 e7, [e2, e5] =

√
66
22 e7.

(14) (257C): dim(Der) = 18, rank = 3, Betti Numbers (4, 9, 13, 13, 9, 4, 1) (∼=R g3.9).
Einstein der. φ =

2
11 Diag(3, 3, 6, 6, 5, 9, 8), ∥β∥

2
=

13
11 ≈ 1.182

[e1, e2] =

√
66
22 e3, [e1, e3] =

√
22
11 e6, [e2, e4] =

√
22
22 e6, [e2, e5] =

√
66
22 e7.

(15) (257D): dim(Der) = 17, rank = 2, Betti Numbers (4, 8, 12, 12, 8, 4, 1) (∼=R g2.45).
Einstein der. φ =

1
12 Diag(6, 7, 13, 12, 11, 19, 18), ∥β∥

2
=

7
6 ≈ 1.167

[e1, e2] =

√
2
4 e3, [e1, e3] =

√
6
6 e6, [e1, e4] =

√
6

12 e7, [e2, e4] =

√
6

12 e6, [e2, e5] =

√
2
4 e7.

(16) (257E): dim(Der) = 17, rank = 3, Betti Numbers (4, 8, 11, 11, 8, 4, 1) (∼=R g3.15).
Einstein der. φ =

1
10 Diag(5, 6, 11, 7, 9, 16, 13), ∥β∥

2
=

11
10 ≈ 1.100

[e1, e2] =

√
15
10 e3, [e1, e3] =

√
15
10 e6, [e2, e4] =

√
10
10 e7, [e4, e5] =

√
10
10 e6.

(17) (257F): dim(Der) = 18, rank = 3, Betti Numbers (4, 9, 12, 12, 9, 4, 1) (∼=R g3.14).
Einstein der. φ =

1
11 Diag(9, 5, 14, 9, 10, 19, 14), ∥β∥

2
=

13
11 ≈ 1.182

[e1, e2] =

√
22
11 e3, [e2, e3] =

√
66
22 e6, [e2, e4] =

√
22
22 e7, [e4, e5] =

√
66
22 e6.
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(18) (257G): dim(Der) = 16, rank = 2, Betti Numbers (4, 8, 11, 11, 8, 4, 1) (∼=R g2.36).
Einstein der. φ =

1
21 Diag(10, 13, 23, 15, 18, 33, 28), ∥β∥

2
=

23
21 ≈ 1.095

[e1, e2] =

√
7
7 e3, [e1, e3] =

√
7
7 e6, [e1, e5] =

√
42
42 e7, [e2, e4] =

√
42
21 e7, [e4, e5] =

√
42
21 e6.

(19) (257H): dim(Der) = 15, rank = 3, Betti Numbers (4, 8, 11, 11, 8, 4, 1) (∼=R g3.7).
Pre-Einstein der. φ =

1
3 Diag(1, 2, 3, 2, 2, 4, 4)

It does not admit nilsoliton metrics.
(20) (257I)!: dim(Der) = 17, rank = 2, Betti Numbers (4, 8, 11, 11, 8, 4, 1) (∼=R g2.27!).

Einstein der. φ =
1
13 Diag(6, 7, 13, 13, 14, 19, 20), ∥β∥

2
=

15
13 ≈ 1.154

[e1, e2] =

√
78
26 e3 +

√
26
26 e4, [e1, e3] =

√
26
26 e6, [e1, e4] =

√
78
26 e6, [e1, e5] =

√
26
26 e7, [e2, e3] =

√
26
13 e7.

(21) (257J): dim(Der) = 16, rank = 2, Betti Numbers (4, 8, 11, 11, 8, 4, 1) (∼=R g2.38).
Einstein der. φ =

1
2 Diag(1, 1, 2, 2, 2, 3, 3), ∥β∥

2
=

8
7 ≈ 1.143

[e1, e2] =

√
7
7 e3, [e1, e3] =

√
21
14 e6, [e1, e5] =

√
14
14 e7, [e2, e3] =

√
21
14 e7, [e2, e4] =

√
14
14 e6.

(22) (257J1)!: dim(Der) = 16, rank = 2, Betti Numbers (4, 8, 11, 11, 8, 4, 1) (∼=C g2.38).
Einstein der. φ =

1
2 Diag(1, 1, 2, 2, 2, 3, 3), ∥β∥

2
=

8
7 ≈ 1.143

[e1, e2] =

√
21
14 e3 +

√
7

14 e4, [e1, e3] =

√
7

14 e6, [e1, e4] =

√
21
14 e6, [e1, e5] =

√
7

14 e7, [e2, e3] =

√
7
7 e7, [e2, e5] =

√
7

14 e6.
(23) (257K): dim(Der) = 16, rank = 3, Betti Numbers (4, 6, 9, 9, 6, 4, 1) (∼=R g3.13).

Einstein der. φ =
1
22 Diag(8, 11, 19, 15, 15, 27, 30), ∥β∥

2
=

21
22 ≈ 0.9546

[e1, e2] =

√
77
22 e3, [e1, e3] =

√
66
22 e6, [e2, e3] =

√
33
22 e7, [e4, e5] =

√
66
22 e7.

(24) (257L): dim(Der) = 14, rank = 2, Betti Numbers (4, 6, 9, 9, 6, 4, 1) (∼=R g2.29).
Pre-Einstein der. φ =

1
41 Diag(15, 22, 37, 30, 29, 52, 59),

It does not admit a nilsoliton inner product.
(25) (247A): dim(Der) = 19, rank = 3, Betti Numbers (3, 7, 13, 13, 7, 3, 1) (∼=R g3.20).

Einstein der. φ =
1
4 Diag(1, 4, 4, 5, 5, 6, 6), ∥β∥

2
=

5
4 ≈ 1.250

[e1, e2] =

√
2
4 e4, [e1, e3] =

√
2
4 e5, [e1, e4] =

√
2
4 e6, [e1, e5] =

√
2
4 e7.

(26) (247B): dim(Der) = 15, rank = 3, Betti Numbers (3, 6, 10, 10, 6, 3, 1) (∼=R g3.21).
Einstein der. φ =

1
22 Diag(6, 15, 11, 21, 17, 27, 28), ∥β∥

2
=

21
22 ≈ 0.9546

[e1, e2] =

√
66
22 e4, [e1, e3] =

√
33
22 e5, [e1, e4] =

√
66
22 e6, [e3, e5] =

√
77
22 e7.

(27) (247C): dim(Der) = 16, rank = 2, Betti Numbers (3, 7, 11, 11, 7, 3, 1) (∼=R g2.43).
Einstein der. φ =

1
35 Diag(11, 29, 20, 40, 31, 51, 42), ∥β∥

2
=

37
35 ≈ 1.057

[e1, e2] =
2
√
35

35 e4, [e1, e3] =
2
√
35

35 e5, [e1, e4] =

√
14
14 e6, [e1, e5] =

√
14
14 e7, [e3, e5] =

3
√
70

70 e6.
(28) (247D): dim(Der) = 15, rank = 3, Betti Numbers (3, 6, 10, 10, 6, 3, 1) (∼=R g3.22).

Einstein der. φ =
1
22 Diag(7, 10, 12, 17, 19, 24, 29), ∥β∥

2
=

10
11 ≈ 0.9091

[e1, e2] =

√
55
22 e4, [e1, e3] =

√
11
11 e5, [e1, e4] =

√
11
11 e6, [e2, e5] =

√
55
22 e7, [e3, e4] =

√
11
11 e7.

(29) (247E)!: dim(Der) = 14, rank = 2, Betti Numbers (3, 5, 9, 9, 5, 3, 1) (∼=C g2.12).
Einstein der. φ =

1
10 Diag(3, 5, 5, 8, 8, 11, 13), ∥β∥

2
=

9
10 ≈ 0.9000

[e1, e2] =

√
2
4 e4, [e1, e3] =

√
30
20 e5, [e1, e4] =

√
10
10 e6, [e2, e4] =

√
30
20 e7, [e3, e5] = −

√
2
4 e7.

(30) (247E1): dim(Der) = 14, rank = 2, Betti Numbers (3, 5, 9, 9, 5, 3, 1) (∼=R g2.12).
Einstein der. φ =

1
10 Diag(3, 5, 5, 8, 8, 11, 13), ∥β∥

2
=

9
10 ≈ 0.9000

[e1, e2] =

√
2
4 e4, [e1, e3] =

√
30
20 e5, [e1, e4] =

√
10
10 e6, [e2, e4] =

√
30
20 e7, [e3, e5] =

√
2
4 e7.

(31) (247F): dim(Der) = 13, rank = 3, Betti Numbers (3, 6, 10, 10, 6, 3, 1) (∼=R g3.4).
Einstein der. φ =

1
14 Diag(6, 5, 5, 11, 11, 16, 16), ∥β∥

2
=

6
7 ≈ 0.8571

[e1, e2] =

√
21
14 e4, [e1, e3] =

√
21
14 e5, [e2, e4] =

√
14
14 e6, [e2, e5] =

√
14
14 e7, [e3, e4] =

√
14
14 e7, [e3, e5] =

√
14
14 e6.

(32) (247F1): dim(Der) = 13, rank = 3, Betti Numbers (3, 6, 10, 10, 6, 3, 1) (∼=C g3.4).
Einstein der. φ =

1
14 Diag(6, 5, 5, 11, 11, 16, 16), ∥β∥

2
=

6
7 ≈ 0.8571

[e1, e2] =

√
21
14 e4, [e1, e3] =

√
21
14 e5, [e2, e4] =

√
14
14 e6, [e2, e5] =

√
14
14 e7, [e3, e4] =

√
14
14 e7, [e3, e5] = −

√
14
14 e6.

(33) (247G)!: dim(Der) = 12, rank = 2, Betti Numbers (3, 5, 9, 9, 5, 3, 1) (∼=R g2.34).
Einstein der. φ =

1
55 Diag(22, 20, 21, 42, 43, 62, 64), ∥β∥

2
=

47
55 ≈ 0.8546

[e1, e2] = −

√
330
55 e4, [e1, e3] = −

√
10
10 e5, [e1, e4] =

√
55
55 e7, [e2, e4] =

√
66
22 e6, [e3, e5] = −

√
66
22 e7.

(34) (247H)!: dim(Der) = 11, rank = 1, Betti Numbers (3, 5, 9, 9, 5, 3, 1) (∼=R g1.19).
Einstein der. φ =

13
34 Diag(1, 1, 1, 2, 2, 3, 3), ∥β∥

2
=

29
34 ≈ 0.8529

[e1, e2] = −

√
119
34 e4, [e1, e3] = −

√
119
34 e5, [e1, e4] =

√
17
34 e7, [e1, e5] = −

√
17
34 e6, [e2, e4] =

3
√
17

34 e6, [e3, e5] =

−
3
√
17

34 e7.
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(35) (247H1)!: dim(Der) = 11, rank = 1, Betti Numbers (3, 5, 9, 9, 5, 3, 1) (∼=C g1.19).
Einstein der. φ =

13
34 Diag(1, 1, 1, 2, 2, 3, 3), ∥β∥

2
=

29
34 ≈ 0.8529

[e1, e2] = −

√
119
34 e4, [e1, e3] =

3
√
1309
374 e5, [e1, e4] =

3
√
187

187 e6, [e2, e3] =

√
2618
374 e5, [e2, e4] = −

7
√
374

748 e6, [e2, e5] =

−

√
374
68 e7, [e3, e4] =

3
√
34

68 e7, [e3, e5] = −
3
√
34

68 e6.
(36) (247I): dim(Der) = 14, rank = 3, Betti Numbers (3, 6, 10, 10, 6, 3, 1) (∼=R g3.5).

Einstein der. φ =
1
22 Diag(10, 11, 7, 21, 17, 28, 24), ∥β∥

2
=

10
11 ≈ 0.9091

[e1, e2] =

√
55
22 e4, [e1, e3] =

√
55
22 e5, [e2, e5] =

√
11
11 e6, [e3, e4] =

√
11
11 e6, [e3, e5] =

√
11
11 e7.

(37) (247J)!: dim(Der) = 13, rank = 2, Betti Numbers (3, 6, 10, 10, 6, 3, 1) (∼=R g2.26!).
Einstein der. φ =

1
19 Diag(7, 10, 7, 17, 14, 21, 24), ∥β∥

2
=

17
19 ≈ 0.8947

[e1, e2] =

√
114
38 e4, [e1, e3] =

√
38
19 e5, [e1, e5] =

√
114
38 e6, [e2, e3] =

√
38
38 e4, [e2, e5] =

√
114
38 e7, [e3, e4] =

√
38
19 e7,

[e3, e5] =

√
38
38 e6.

(38) (247K): dim(Der) = 12, rank = 2, Betti Numbers (3, 5, 9, 9, 5, 3, 1) (∼=R g2.35).
Einstein der. φ =

1
15 Diag(5, 7, 6, 12, 11, 17, 18), ∥β∥

2
=

13
15 ≈ 0.8667

[e1, e2] =

√
330
55 e4, [e1, e3] =

√
11
11 e5, [e1, e4] =

√
15
15 e6, [e2, e5] =

√
11
11 e7, [e3, e4] =

√
330
66 e7, [e3, e5] =

√
15
15 e6.

(39) (247L): dim(Der) = 17, rank = 2, Betti Numbers (3, 7, 13, 13, 7, 3, 1) (∼=R g2.39).
Einstein der. φ =

1
14 Diag(5, 11, 10, 16, 15, 21, 20), ∥β∥

2
=

8
7 ≈ 1.143

[e1, e2] =

√
14
14 e4, [e1, e3] =

√
21
14 e5, [e1, e4] =

√
14
14 e6, [e1, e5] =

√
7
7 e7, [e2, e3] =

√
21
14 e6.

(40) (247M): dim(Der) = 14, rank = 2, Betti Numbers (3, 6, 10, 10, 6, 3, 1) (∼=R g2.42).
Pre-Einstein der. φ =

1
41 Diag(11, 30, 22, 41, 33, 52, 55).

It does not admit a nilsoliton inner product.
(41) (247N): dim(Der) = 16, rank = 2, Betti Numbers (3, 7, 11, 11, 7, 3, 1) (∼=R g2.44).

Einstein der. φ =
1
35 Diag(15, 19, 23, 34, 38, 53, 42), ∥β∥

2
=

37
35 ≈ 1.057

[e1, e2] =

√
14
14 e4, [e1, e3] =

3
√
70

70 e5, [e1, e5] =
2
√
35

35 e6, [e2, e3] =

√
14
14 e7, [e2, e4] =

2
√
35

35 e6.
(42) (247O): dim(Der) = 15, rank = 1, Betti Numbers (3, 7, 11, 11, 7, 3, 1) (∼=R g1.7).

Einstein der. φ =
5
28 Diag(2, 4, 3, 6, 5, 8, 7), ∥β∥

2
=

29
28 ≈ 1.036

[e1, e2] =

√
21
14 e4, [e1, e3] =

√
70
28 e5, [e1, e4] =

√
70
28 e6, [e1, e5] =

√
42
28 e7, [e2, e3] =

√
42
28 e7, [e3, e5] =

√
21
14 e6.

(43) (247P): dim(Der) = 15, rank = 3, Betti Numbers (3, 7, 11, 11, 7, 3, 1) (∼=R g3.1(i0)).
Pre-Einstein der. φ =

1
2 Diag(1, 1, 1, 2, 2, 2, 3),

It does not admit a nilsoliton inner product.
(44) (247P1): dim(Der) = 15, rank = 3, Betti Numbers (3, 7, 11, 11, 7, 3, 1) (∼=C g3.1(i0)).

Pre-Einstein der. φ =
1
2 Diag(1, 1, 1, 2, 2, 2, 3),

It does not admit a nilsoliton inner product.
(45) (247Q): dim(Der) = 14, rank = 2, Betti Numbers (3, 6, 10, 10, 6, 3, 1) (∼=R g2.1(v)).

Pre-Einstein der. φ =
2
19 Diag(3, 5, 6, 8, 9, 11, 14),

It does not admit a nilsoliton inner product.
(46) (247R)!: dim(Der) = 13, rank = 1, Betti Numbers (3, 5, 9, 9, 5, 3, 1) (∼=C g1.3(iv)).

Pre-Einstein der. φ =
5
17 Diag(1, 2, 2, 3, 3, 4, 5),

It does not admit a nilsoliton inner product.
(47) (247R1): dim(Der) = 13, rank = 1, Betti Numbers (3, 5, 9, 9, 5, 3, 1) (∼=R g1.3(iv)).

Pre-Einstein der. φ =
5
17 Diag(1, 2, 2, 3, 3, 4, 5),

It does not admit
(48) (2457A): dim(Der) = 17, rank = 3, Betti Numbers (3, 7, 10, 10, 7, 3, 1) (∼=R g3.2).

Einstein der. φ =
2
11 Diag(1, 5, 6, 7, 6, 8, 7), ∥β∥

2
=

13
11 ≈ 1.182

[e1, e2] =

√
66
22 e3, [e1, e3] =

√
22
11 e4, [e1, e4] =

√
66
22 e6, [e1, e5] =

√
22
22 e7.

(49) (2457B): dim(Der) = 15, rank = 3, Betti Numbers (3, 7, 9, 9, 7, 3, 1) (∼=R g3.3).
Einstein der. φ =

1
22 Diag(5, 12, 17, 22, 15, 27, 27), ∥β∥

2
=

21
22 ≈ 0.9546

[e1, e2] =

√
33
22 e3, [e1, e3] =

√
77
22 e4, [e1, e4] =

√
66
22 e7, [e2, e5] =

√
66
22 e6.

(50) (2457C): dim(Der) = 19, rank = 2, Betti Numbers (3, 7, 10, 10, 7, 3, 1) (∼=R g2.21).
Einstein der. φ =

1
29 Diag(8, 19, 27, 35, 24, 43, 32), ∥β∥

2
=

31
29 ≈ 1.069

[e1, e2] =

√
87
29 e3, [e1, e3] =

√
145
29 e4, [e1, e4] =

√
87
29 e6, [e1, e5] =

√
58
58 e7, [e2, e5] =

√
87
29 e6.

(51) (2457D)!: dim(Der) = 15, rank = 1, Betti Numbers (3, 7, 10, 10, 7, 3, 1) (∼=R g1.16!).
Einstein der. φ =

11
38 Diag(1, 2, 3, 3, 4, 4, 5), ∥β∥

2
=

20
19 ≈ 1.053

[e1, e2] =

√
114
38 e3 +

√
57
38 e4, [e1, e3] =

√
190
38 e6, [e1, e4] =

√
19
19 e5, [e1, e6] =

√
114
38 e7, [e2, e3] =

√
57
38 e7, [e2, e4] =

√
114
38 e7.
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(52) (2457E)!: dim(Der) = 14, rank = 2, Betti Numbers (3, 6, 8, 8, 6, 3, 1) (∼=R g2.11!).
Einstein der. φ =

1
38 Diag(9, 19, 28, 28, 37, 47, 46), ∥β∥

2
=

18
19 ≈ 0.9474

[e1, e2] =

√
1254
209 e3 +

√
8778
418 e4, [e1, e3] =

2
√
1463
209 e5, [e1, e4] =

3
√
209

418 e5, [e1, e5] =

√
190
38 e7, [e2, e4] =

√
209
38 e6.

(53) (2457F): dim(Der) = 16, rank = 2, Betti Numbers (3, 7, 10, 10, 7, 3, 1) (∼=R g2.20).
Einstein der. φ =

2
35 Diag(5, 10, 15, 20, 16, 25, 21), ∥β∥

2
=

37
35 ≈ 1.057

[e1, e2] =
3
√
70

70 e3, [e1, e3] =
2
√
35

35 e4, [e1, e4] =

√
14
14 e6, [e1, e5] =

√
14
14 e7, [e2, e3] =

2
√
35

35 e6.
(54) (2457G): dim(Der) = 15, rank = 2, Betti Numbers (3, 6, 9, 9, 6, 3, 1) (∼=R g2.19).

Pre-Einstein der. φ =
1
4 Diag(1, 2, 3, 4, 4, 5, 5),

It does not admit a nilsoliton inner product.
(55) (2457H): dim(Der) = 15, rank = 2, Betti Numbers (3, 6, 10, 10, 6, 3, 1) (∼=R g2.18).

Einstein der. φ =
1
70 Diag(20, 31, 51, 71, 60, 82, 91), ∥β∥

2
=

34
35 ≈ 0.9714

[e1, e2] =

√
21
14 e3, [e1, e3] =

3
√
70

70 e4, [e1, e4] =

√
21
14 e7, [e2, e3] =

√
10
10 e6, [e2, e5] =

√
70
35 e7.

(56) (2457I): dim(Der) = 14, rank = 2, Betti Numbers (3, 7, 9, 9, 7, 3, 1) (∼=R g2.22).
Einstein der. φ =

1
20 Diag(5, 10, 15, 20, 14, 25, 24), ∥β∥

2
=

19
20 ≈ 0.9500

[e1, e2] =

√
30
20 e3, [e1, e3] =

√
15
10 e4, [e1, e4] =

√
2
4 e6, [e2, e3] =

√
10
20 e6, [e2, e5] =

√
2
4 e7.

(57) (2457J)!: dim(Der) = 13, rank = 1, Betti Numbers (3, 6, 8, 8, 6, 3, 1) (∼=R g1.18!).
Einstein der. φ =

23
94 Diag(1, 2, 3, 3, 4, 5, 5), ∥β∥

2
=

89
94 ≈ 0.9468

[e1, e2] =
3
√
141

188 e3 +

√
1551
188 e4, [e1, e3] =

3
√
517

188 e5, [e1, e4] =
3
√
47

188 e5, [e1, e5] =

√
282
47 e7, [e2, e3] =

√
94
94 e7,

[e2, e4] =

√
1222
94 e6.

(58) (2457K): dim(Der) = 14, rank = 1, Betti Numbers (3, 6, 9, 9, 6, 3, 1) (∼=R g1.9).
Pre-Einstein der. φ =

10
67 Diag(2, 3, 5, 7, 6, 8, 9),

It does not admit a nilsoliton inner product.
(59) (2457L): dim(Der) = 12, rank = 2, Betti Numbers (2, 5, 8, 8, 5, 2, 1) (∼=R g2.9).

Einstein der. φ =
9
34 Diag(1, 1, 2, 3, 3, 4, 4), ∥β∥

2
=

14
17 ≈ 0.8235

[e1, e2] =

√
17
17 e3, [e1, e3] =

√
119
34 e4, [e1, e4] = −

√
17
17 e6, [e1, e5] = −

√
17
17 e7, [e2, e3] = −

√
119
34 e5, [e2, e4] =

√
17
17 e7, [e2, e5] =

√
17
17 e6.

(60) (2457L1): dim(Der) = 12, rank = 2, Betti Numbers (2, 5, 8, 8, 5, 2, 1) (∼=C g2.9).
Einstein der. φ =

9
34 Diag(1, 1, 2, 3, 3, 4, 4), ∥β∥

2
=

14
17 ≈ 0.8235

[e1, e2] =

√
17
17 e3, [e1, e3] =

√
119
34 e4, [e1, e4] = −

√
17
17 e6, [e1, e5] = −

√
17
17 e7, [e2, e3] = −

√
119
34 e5, [e2, e4] =

√
17
17 e7, [e2, e5] = −

√
17
17 e6.

(61) (2457M): dim(Der) = 13, rank = 2, Betti Numbers (2, 5, 9, 9, 5, 2, 1) (∼=R g2.8).
Einstein der. φ =

1
14 Diag(3, 5, 8, 11, 13, 16, 14), ∥β∥

2
=

6
7 ≈ 0.8571

[e1, e2] =

√
14
14 e3, [e1, e3] =

√
21
14 e4, [e1, e4] =

√
14
14 e7, [e1, e5] =

√
14
14 e6, [e2, e3] =

√
21
14 e5, [e2, e4] =

√
14
14 e6

(62) (2357A)!: dim(Der) = 13, rank = 2, Betti Numbers (3, 6, 8, 8, 6, 3, 1) (∼=R g2.24!).
Einstein der. φ =

1
19 Diag(5, 9, 10, 14, 19, 19, 24), ∥β∥

2
=

17
19 ≈ 0.8947

[e1, e2] = −

√
38
19 e4, [e1, e4] =

√
114
38 e5 −

√
38
38 e6, [e1, e5] =

√
38
19 e7, [e2, e3] =

√
114
38 e5 +

√
38
38 e6, [e3, e4] =

√
114
38 e7.

(63) (2357B): dim(Der) = 14, rank = 2, Betti Numbers (3, 6, 8, 8, 6, 3, 1) (∼=R g2.1(iλ)).
Pre-Einstein der. φ =

2
19 Diag(3, 5, 6, 8, 11, 9, 14),

It does not admit a nilsoliton inner product.
(64) (2357C): dim(Der) = 13, rank = 2, Betti Numbers (3, 6, 7, 7, 6, 3, 1) (∼=R g2.17).

Einstein der. φ =
1
14 Diag(4, 5, 8, 9, 13, 14, 17), ∥β∥

2
=

6
7 ≈ 0.8571

[e1, e2] =

√
21
14 e4, [e1, e4] =

√
14
14 e5, [e1, e5] =

√
21
14 e7, [e2, e3] =

√
14
14 e5, [e2, e4] =

√
14
14 e6, [e3, e4] = −

√
14
14 e7.

(65) (2357D): dim(Der) = 12, rank = 1, Betti Numbers (3, 6, 7, 7, 6, 3, 1) (∼=R g1.2(iii)).
Pre-Einstein der. φ =

4
11 Diag(1, 1, 2, 2, 3, 3, 4),

It does not admit a nilsoliton inner product.
(66) (2357D1): dim(Der) = 12, rank = 1, Betti Numbers (3, 6, 7, 7, 6, 3, 1) (∼=C g1.2(iii)).

Pre-Einstein der. φ =
4
11 Diag(1, 1, 2, 2, 3, 3, 4),

It does not admit a nilsoliton inner product.
(67) (23457A): dim(Der) = 13, rank = 2, Betti Numbers (2, 4, 7, 7, 4, 2, 1) (∼=R g2.7).

Einstein der. φ =
1
20 Diag(3, 10, 13, 16, 19, 22, 23), ∥β∥

2
=

9
10 ≈ 0.9000

[e1, e2] =

√
30
20 e3, [e1, e3] =

√
30
20 e4, [e1, e4] =

√
2
4 e5, [e1, e5] =

√
10
10 e6, [e2, e3] =

√
2
4 e7.

(68) (23457B): dim(Der) = 12, rank = 2, Betti Numbers (2, 3, 4, 4, 3, 2, 1) (∼=R g2.6).
Einstein der. φ =

1
70 Diag(10, 23, 33, 43, 53, 76, 56), ∥β∥

2
=

26
35 ≈ 0.7429

[e1, e2] =

√
455
70 e3, [e1, e3] =

2
√
35

35 e4, [e1, e4] =

√
455
70 e5, [e2, e3] =

√
35
35 e7, [e2, e5] =

√
105
35 e6, [e3, e4] =

−

√
105
35 e6.
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(69) (23457C): dim(Der) = 12, rank = 2, Betti Numbers (2, 3, 4, 4, 3, 2, 1) (∼=R g2.4).
Einstein der. φ =

1
10 Diag(1, 4, 5, 6, 7, 8, 11), ∥β∥

2
=

26
35 ≈ 0.7429

[e1, e2] =

√
105
35 e3, [e1, e3] =

2
√
35

35 e4, [e1, e4] =

√
455
70 e5, [e1, e5] =

√
35
35 e6, [e2, e5] =

√
105
35 e7, [e3, e4] =

−

√
455
70 e7.

(70) (23457D): dim(Der) = 11, rank = 1, Betti Numbers (2, 3, 4, 4, 3, 2, 1) (∼=R g1.5).
Einstein der. φ =

5
42 Diag(1, 3, 4, 5, 6, 7, 9), ∥β∥

2
=

31
42 ≈ 0.7381

[e1, e2] =

√
290
58 e3, [e1, e3] =

√
21
14 e4, [e1, e4] =

5
√
609

406 e5, [e1, e5] =

√
42
42 e6, [e2, e3] =

√
42
42 e6, [e2, e5] =

√
609
87 e7,

[e3, e4] = −

√
290
58 e7.

(71) (23457E)!: dim(Der) = 12, rank = 1, Betti Numbers (2, 4, 7, 7, 4, 2, 1) (∼=R g1.13!).
Einstein der. φ =

13
68 Diag(1, 2, 3, 4, 5, 5, 6), ∥β∥

2
=

29
34 ≈ 0.8529

[e1, e2] =
3
√
34

68 e3, [e1, e3] =

√
119
34 e4, [e1, e4] =

3
√
187

187 e5 −
7
√
374

748 e6, [e1, e5] =

√
374
68 e7, [e2, e3] =

3
√
1309
374 e5 +

√
2618
374 e6, [e2, e4] =

3
√
34

68 e7.
(72) (23457F)!: dim(Der) = 11, rank = 1, Betti Numbers (2, 3, 4, 4, 3, 2, 1) (∼=R g1.14!).

Einstein der. φ =
9
58 Diag(1, 2, 3, 4, 5, 5, 7), ∥β∥

2
=

43
58 ≈ 0.7414

[e1, e2] = −

√
519593
2378 e3, [e1, e3] =

√
377
58 e4, [e1, e4] =

3
√
605845438
252068 e5 +

√
126034
6148 e6, [e2, e3] =

√
777722
6148 e5 −

3
√
58406
6148 e6, [e2, e5] =

√
126034
1189 e7, [e3, e4] =

3
√
13079
1189 e7.

(73) (23457G): dim(Der) = 10, rank = 1, Betti Numbers (2, 3, 4, 4, 3, 2, 1) (∼=R g1.1(iii)).
Einstein der. φ =

1
7 Diag(1, 2, 3, 4, 5, 6, 7), ∥β∥

2
=

5
7 ≈ 0.7143

[e1, e2] =

√
14
14 e3, [e1, e3] =

√
42
21 e4, [e1, e4] =

√
14
14 e5, [e1, e5] =

√
84
42 e6, [e2, e3] =

√
84
42 e5, [e2, e4] =

√
42
42 e6,

[e2, e5] =

√
14
14 e7, [e3, e4] = −

√
14
14 e7.

(74) (17): dim(Der) = 28, rank = 4, Betti Numbers (6, 14, 14, 14, 14, 6, 1) (∼=R g4.4).
Einstein der. φ =

4
3 Diag(1, 1, 1, 1, 1, 1, 2), ∥β∥

2
=

5
3 ≈ 1.667

[e1, e2] =

√
6
6 e7, [e3, e4] =

√
6
6 e7, [e5, e6] =

√
6
6 e7.

(75) (157): dim(Der) = 19, rank = 3, Betti Numbers (5, 10, 11, 11, 10, 5, 1) (∼=R g3.18).
Einstein der. φ =

2
11 Diag(3, 4, 7, 6, 5, 5, 10), ∥β∥

2
=

13
11 ≈ 1.182

[e1, e2] =

√
22
11 e3, [e1, e3] =

√
66
22 e7, [e2, e4] =

√
22
22 e7, [e5, e6] =

√
66
22 e7.

(76) (147A): dim(Der) = 15, rank = 3, Betti Numbers (4, 8, 9, 9, 8, 4, 1) (∼=R g3.1(iii)).
Pre-Einstein der. φ =

1
2 Diag(1, 1, 1, 2, 2, 2, 3),

It does not admit
(77) (147A1): dim(Der) = 15, rank = 3, Betti Numbers (4, 8, 9, 9, 8, 4, 1) (∼=C g3.1(iii)).

Pre-Einstein der. φ =
1
2 Diag(1, 1, 1, 2, 2, 2, 3),

It does not admit a nilsoliton inner product.
(78) (147B): dim(Der) = 12, rank = 2, Betti Numbers (4, 8, 10, 10, 8, 4, 1) (∼=R g2.28).

Einstein der. φ =
4
35 Diag(4, 6, 5, 10, 9, 8, 14), ∥β∥

2
=

37
35 ≈ 1.057

[e1, e2] =
2
√
35

35 e4, [e1, e3] =
2
√
35

35 e5, [e1, e4] =

√
14
14 e7, [e2, e6] =

√
14
14 e7, [e3, e5] =

3
√
70

70 e7.
(79) (147D)!: dim(Der) = 15, rank = 2, Betti Numbers (3, 7, 9, 9, 7, 3, 1) (∼=R g2.2!).

Pre-Einstein der. φ =
1
2 Diag(1, 1, 1, 2, 2, 2, 3),

It does not admit a nilsoliton inner product.
(80) (147E) [0 < t < 1]: dim(Der) = 15, rank = 3, Betti Numbers (3, 7, 9, 9, 7, 3, 1) (∼=R g3.1(iλ)).

Einstein der. φ =
1
2 Diag(1, 1, 1, 2, 2, 2, 3), ∥β∥

2
= 1

[e1, e2] =

√
2
4

√
1 − te4, [e1, e3] = −

√
2
4

√
te6, [e1, e5] = −

√
2
4 e7, [e2, e3] =

√
2
4 e5, [e2, e6] =

√
2
4

√
te7,

[e3, e4] =

√
2
4

√
1 − te7.

(81) (147E1) [t > 1]!: dim(Der) = 15, rank = 3, Betti Numbers (3, 7, 9, 9, 7, 3, 1) (∼=C g3.1(iP(λ))
∼=C (147E) [λ] with

λ =


(1−

√
t2−1

√
−1)

t

2

).

Einstein der. φ =
1
2 Diag(1, 1, 1, 2, 2, 2, 3), ∥β∥

2
= 1

This family admits nilsoliton metrics.
(82) (1457A): dim(Der) = 16, rank = 3, Betti Numbers (4, 6, 9, 9, 6, 4, 1) (∼=R g3.17).

Einstein der. φ =
5
22 Diag(1, 3, 4, 5, 3, 3, 6), ∥β∥

2
=

21
22 ≈ 0.9546

[e1, e2] =

√
66
22 e3, [e1, e3] =

√
77
22 e4, [e1, e4] =

√
33
22 e7, [e5, e6] =

√
66
22 e7.

(83) (1457B): dim(Der) = 15, rank = 2, Betti Numbers (4, 6, 8, 8, 6, 4, 1) (∼=R g2.30).
Einstein der. φ =

4
29 Diag(2, 4, 6, 8, 5, 5, 10), ∥β∥

2
=

27
29 ≈ 0.9310

[e1, e2] =
2
√
29

29 e3, [e1, e3] =
2
√
29

29 e4, [e1, e4] =

√
174
58 e7, [e2, e3] =

√
174
58 e7, [e5, e6] =

√
406
58 e7.
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(84) (137A): dim(Der) = 14, rank = 3, Betti Numbers (4, 7, 8, 8, 7, 4, 1) (∼=R g3.16).
Einstein der. φ =

1
14 Diag(5, 8, 5, 8, 13, 13, 18), ∥β∥

2
=

6
7 ≈ 0.8571

[e1, e2] =

√
7
7 e5, [e1, e5] =

√
21
14 e7, [e3, e4] =

√
7
7 e6, [e3, e6] =

√
21
14 e7.

(85) (137A1): dim(Der) = 14, rank = 3, Betti Numbers (4, 7, 8, 8, 7, 4, 1) (∼=C g3.16).
Einstein der. φ =

1
14 Diag(5, 5, 8, 8, 13, 13, 18), ∥β∥

2
=

6
7 ≈ 0.8571

[e1, e3] =

√
14
14 e5, [e1, e4] =

√
14
14 e6, [e1, e5] =

√
21
14 e7, [e2, e3] = −

√
14
14 e6, [e2, e4] =

√
14
14 e5, [e2, e6] =

√
21
14 e7.

(86) (137B): dim(Der) = 13, rank = 2, Betti Numbers (4, 7, 7, 7, 7, 4, 1) (∼=C g2.23).
Pre-Einstein der. φ =

4
11 Diag(1, 2, 1, 2, 3, 3, 4),

It does not admit a nilsoliton inner product.
(87) (137B1): dim(Der) = 13, rank = 2, Betti Numbers (4, 7, 7, 7, 7, 4, 1) (∼=C g2.23).

Pre-Einstein der. φ =
4
11 Diag(1, 1, 2, 2, 3, 3, 4),

It does not admit a nilsoliton inner product.
(88) (137C): dim(Der) = 15, rank = 3, Betti Numbers (4, 7, 8, 8, 7, 4, 1) (∼=R g3.10).

Einstein der. φ =
1
22 Diag(7, 12, 11, 16, 19, 23, 30), ∥β∥

2
=

10
11 ≈ 0.9091

[e1, e2] =

√
11
11 e5, [e1, e4] =

√
11
11 e6, [e1, e6] =

√
55
22 e7, [e2, e3] =

√
11
11 e6, [e3, e5] = −

√
55
22 e7.

(89) (137D): dim(Der) = 14, rank = 2, Betti Numbers (4, 7, 8, 8, 7, 4, 1) (∼=R g2.1(iv)).
Pre-Einstein der. φ =

2
19 Diag(3, 6, 5, 8, 9, 11, 14),

It does not admit a nilsoliton inner product.
(90) (1357A): dim(Der) = 14, rank = 2, Betti Numbers (4, 7, 8, 8, 7, 4, 1) (∼=R g2.1(iii)).

Einstein der. φ =
2
21 Diag(3, 5, 6, 8, 11, 9, 14), ∥β∥

2
=

19
21 ≈ 0.9048

[e1, e2] =

√
21
14 e4, [e1, e4] =

√
42
21 e5, [e1, e5] =

√
21
14 e7, [e2, e3] =

√
3
6 e5, [e2, e6] =

√
42
42 e7, [e3, e4] = −

√
3
6 e7.

(91) (1357B)!: dim(Der) = 14, rank = 2, Betti Numbers (4, 6, 7, 7, 6, 4, 1) (∼=R g2.25!).
Einstein der. φ =

5
19 Diag(1, 2, 2, 3, 3, 4, 5), ∥β∥

2
=

17
19 ≈ 0.8947

[e1, e3] =

√
38
19 e4, [e1, e4] = −

√
114
38 e6, [e1, e5] =

√
38
38 e6, [e1, e6] =

√
38
19 e7, [e2, e3] =

√
114
38 e6, [e2, e4] =

√
114
38 e7, [e2, e5] =

√
38
38 e7.

(92) (1357C)!: dim(Der) = 13, rank = 1, Betti Numbers (4, 6, 7, 7, 6, 4, 1) (∼=R g1.3(v)!).
Pre-Einstein der. φ =

5
17 Diag(1, 2, 2, 3, 4, 3, 5),

It does not admit a nilsoliton inner product.
(93) (1357D): dim(Der) = 14, rank = 2, Betti Numbers (3, 6, 8, 8, 6, 3, 1) (∼=R g2.1(ii)).

Einstein der. φ =
2
21 Diag(5, 3, 8, 6, 11, 9, 14), ∥β∥

2
=

19
21 ≈ 0.9048

[e1, e2] =

√
21
14 e3, [e1, e6] =

√
21
14 e7, [e2, e3] =

√
42
21 e5, [e2, e4] = −

√
3
6 e6, [e2, e5] = −

√
42
42 e7, [e3, e4] = −

√
3
6 e7.

(94) (1357E): dim(Der) = 14, rank = 2, Betti Numbers (3, 5, 8, 8, 5, 3, 1) (∼=R g2.32).
Einstein der. φ =

2
29 Diag(10, 3, 13, 8, 16, 11, 19), ∥β∥

2
=

27
29 ≈ 0.9310

[e1, e2] =

√
406
58 e3, [e2, e3] =

2
√
29

29 e5, [e2, e4] =

√
174
58 e6, [e2, e5] =

√
174
58 e7, [e4, e6] =

2
√
29

29 e7.
(95) (1357F): dim(Der) = 13, rank = 1, Betti Numbers (3, 5, 7, 7, 5, 3, 1) (∼=R g1.3(iii)).

Einstein der. φ =
5
19 Diag(2, 1, 3, 2, 4, 3, 5), ∥β∥

2
=

17
19 ≈ 0.8947

[e1, e2] =
3
√
76

76 e3, [e1, e3] =

√
380
76 e7, [e2, e3] =

√
38
19 e5, [e2, e4] =

√
380
76 e6, [e2, e5] =

√
38
38 e7, [e4, e6] = −

3
√
76

76 e7.
(96) (1357F1): dim(Der) = 13, rank = 1, Betti Numbers (3, 5, 7, 7, 5, 3, 1) (∼=C g1.3(iii)).

Einstein der. φ =
5
19 Diag(2, 1, 3, 2, 4, 3, 5), ∥β∥

2
=

17
19 ≈ 0.8947

[e1, e2] =
3
√
19

38 e3, [e1, e3] =

√
95
38 e7, [e2, e3] =

√
38
19 e5, [e2, e4] =

√
95
38 e6, [e2, e5] =

√
38
38 e7, [e4, e6] =

3
√
19

38 e7.
(97) (1357G): dim(Der) = 13, rank = 2, Betti Numbers (3, 6, 8, 8, 6, 3, 1) (∼=R g2.31).

Einstein der. φ =
1
46 Diag(15, 14, 29, 27, 43, 42, 57), ∥β∥

2
=

39
46 ≈ 0.8478

[e1, e2] =

√
69
46 e3, [e1, e4] =

√
69
23 e6, [e1, e6] =

3
√
23

46 e7, [e2, e3] =

√
299
46 e5, [e2, e5] =

3
√
23

46 e7.
(98) (1357H)!: dim(Der) = 12, rank = 1, Betti Numbers (3, 6, 7, 7, 6, 3, 1) (∼=R g1.2(iv)!).

Pre-Einstein der. φ =
4
11 Diag(1, 1, 2, 2, 3, 3, 4),

It does not admit a nilsoliton inner product.
(99) (1357I): dim(Der) = 12, rank = 2, Betti Numbers (3, 5, 7, 7, 5, 3, 1) (∼=R g2.33).

Einstein der. φ =
1
41 Diag(18, 10, 28, 15, 38, 33, 48), ∥β∥

2
=

33
41 ≈ 0.8049

[e1, e2] =

√
123
41 e3, [e1, e4] =

3
√
82

82 e6, [e2, e3] =

√
902
82 e5, [e2, e5] =

√
123
41 e7, [e4, e6] =

3
√
82

82 e7.
(100) (1357J): dim(Der) = 11, rank = 1, Betti Numbers (3, 5, 6, 6, 5, 3, 1) (∼=R g1.8).

Pre-Einstein der. φ =
20
139 Diag(4, 2, 6, 3, 8, 7, 10),

It does not admit a nilsoliton inner product.
(101) (1357L)!: dim(Der) = 14, rank = 1, Betti Numbers (3, 6, 8, 8, 6, 3, 1) (∼=R g1.3(ii)!).

Pre-Einstein der. φ =
5
17 Diag(1, 2, 3, 2, 4, 3, 5),

It does not admit a nilsoliton inner product.
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(102) (1357M) [t ∈ R \ {0, 1}]: dim(Der) = 14, rank = 2, Betti Numbers (3, 6, 8, 8, 6, 3, 1) (∼=R g2.1(it )).
Einstein der. φ =

2
21 Diag(3, 5, 8, 6, 11, 9, 14), ∥β∥

2
=

19
21 ≈ 0.9048

This family admits nilsoliton metrics.
(102.1) (1357M) [t = 0]: dim(Der) = 14, rank = 2, Betti Numbers (3, 6, 8, 8, 6, 3, 1) (∼=R(2357B) ∼=R g2.1(i0)).

Pre-Einstein der. φ =
2
19 Diag(3, 5, 8, 6, 11, 9, 14),

It does not admit a nilsoliton inner product.
(102.2) (1357M) [t = 1]: dim(Der) = 14, rank = 2, Betti Numbers (3, 6, 8, 8, 6, 3, 1) (∼=R g2.1(i1)).

Einstein der. φ =
2
21 Diag(3, 5, 8, 6, 11, 9, 14), ∥β∥

2
=

19
21 ≈ 0.9048

[e1, e2] =

√
42
42 e3, [e1, e3] =

√
42
21 e5, [e1, e4] =

√
3
6 e6, [e1, e5] =

√
21
14 e7, [e2, e4] =

√
3
6 e5, [e2, e6] =

√
21
14 e7.

(103) (1357N) [t ∈ R \ {0}]!: dim(Der) = 13, rank = 1, Betti Numbers (3, 5, 7, 7, 5, 3, 1) (∼=R g1.3(iλ)!).
Einstein der. φ =

5
19 Diag(1, 2, 3, 2, 4, 3, 5), ∥β∥

2
=

17
19 ≈ 0.8947

This family admits nilsoliton metrics.
(103.1) (1357N) [t = 0]!: dim(Der) = 13, rank = 1, Betti Numbers (3, 5, 7, 7, 5, 3, 1) (∼=R g1.3(i0)!).

Pre-Einstein der. φ =
5
17 Diag(1, 2, 3, 2, 4, 3, 5),

It does not admit a nilsoliton inner product.
(104) (1357O): dim(Der) = 13, rank = 2, Betti Numbers (3, 6, 8, 8, 6, 3, 1) (∼=R g2.41).

Einstein der. φ =
1
8 Diag(3, 2, 5, 6, 8, 7, 10), ∥β∥

2
=

7
8 ≈ 0.8750

[e1, e2] =
1
4 e3, [e1, e3] =

√
6
8 e5, [e1, e6] =

√
6
8 e7, [e2, e3] =

√
6
8 e6, [e2, e4] =

1
4 e5, [e2, e5] =

√
6
8 e7.

(105) (1357P): dim(Der) = 12, rank = 1, Betti Numbers (3, 6, 7, 7, 6, 3, 1) (∼=R g1.2(i0)).
Einstein der. φ =

4
13 Diag(1, 1, 2, 2, 3, 3, 4), ∥β∥

2
=

11
13 ≈ 0.8462

[e1, e2] =

√
65
26 e3, [e1, e3] =

√
13
13 e5, [e1, e5] =

√
65
26 e7, [e2, e3] =

√
13
13 e6, [e2, e4] =

√
39
26 e5, [e2, e6] =

√
26
26 e7,

[e3, e4] =

√
39
26 e7.

(106) (1357P1): dim(Der) = 12, rank = 1, Betti Numbers (3, 6, 7, 7, 6, 3, 1) (∼=C g1.2(i0)).
Einstein der. φ =

4
13 Diag(1, 1, 2, 2, 3, 3, 4), ∥β∥

2
=

11
13 ≈ 0.8462

[e1, e2] =

√
65
26 e3, [e1, e3] =

√
13
13 e5, [e1, e5] =

√
65
26 e7, [e2, e3] =

√
13
13 e6, [e2, e4] =

√
39
26 e5, [e2, e6] = −

√
26
26 e7,

[e3, e4] =

√
39
26 e7.

(107) (1357Q)!: dim(Der) = 12, rank = 1, Betti Numbers (3, 6, 8, 8, 6, 3, 1) (∼=R g1.2(i1)).
Einstein der. φ =

4
13 Diag(1, 1, 2, 2, 3, 3, 4), ∥β∥

2
=

11
13 ≈ 0.8462

[e1, e2] =

√
26
26 e3, [e1, e3] =

√
13
13 e5, [e1, e4] =

√
39
26 e6, [e1, e5] =

√
65
26 e7, [e2, e3] =

√
13
13 e6, [e2, e4] =

√
39
26 e5,

[e2, e6] =

√
65
26 e7.

(108) (1357Q1)!: dim(Der) = 12, rank = 1, Betti Numbers (3, 6, 8, 8, 6, 3, 1) (∼=C g1.2(i1)).
Einstein der. φ =

4
13 Diag(1, 1, 2, 2, 3, 3, 4), ∥β∥

2
=

11
13 ≈ 0.8462

[e1, e2] =

√
26
26 e3, [e1, e3] =

√
13
13 e5, [e1, e4] =

√
39
26 e6, [e1, e6] =

√
65
26 e7, [e2, e3] =

√
13
13 e6, [e2, e4] =

√
39
26 e5,

[e2, e5] =

√
65
26 e7.

(109) (1357R)!: dim(Der) = 13, rank = 2, Betti Numbers (3, 6, 7, 7, 6, 3, 1) (∼=R g2.37!).
Einstein der. φ =

4
11 Diag(1, 1, 2, 2, 3, 3, 4), ∥β∥

2
=

11
13 ≈ 0.8462

[e1, e2] =
2
√
39

39 e3, [e1, e3] =

√
13
13 e6, [e1, e4] =

√
39
39 e5, [e1, e6] =

√
390
78 e7, [e2, e3] =

√
13
13 e5, [e2, e4] =

√
39
39 e6, [e2, e5] = −

√
390
78 e7, [e3, e4] =

√
390
78 e7.

(110) (1357QRS1) [t ∈ R \ {−1, 0, 1}]: dim(Der) = 12, rank = 1, Betti Numbers (3, 6, 7, 7, 6, 3, 1) (∼=C g1.2(iλ) with
λ =

1
t ).

Einstein der. φ =
4
13 Diag(1, 1, 2, 2, 3, 3, 4), ∥β∥

2
=

11
13 ≈ 0.8462

This family admits nilsoliton metrics.
(110.1) (1357QRS1) [t = −1]: dim(Der) = 13, rank = 2, Betti Numbers (3, 6, 7, 7, 6, 3, 1) (∼=C g2.37 ∼=C (1357R))

Einstein der. φ =
4
13 Diag(1, 1, 2, 2, 3, 3, 4), ∥β∥

2
=

11
13 ≈ 0.8462

[e1, e2] =
2
√
39

39 e3, [e1, e3] =

√
13
13 e5, [e1, e4] =

√
39
39 e6, [e1, e5] =

√
390
78 e7, [e2, e3] = −

√
13
13 e6, [e2, e4] =

√
39
39 e5, [e2, e6] = −

√
390
78 e7, [e3, e4] =

√
390
78 e7.

(110.2) (1357QRS1)[t = 1]: dim(Der) = 12, rank = 1, Betti Numbers (3, 6, 8, 8, 6, 3, 1) (∼=C g1.2(i1)
∼=C (1357Q)).

Einstein der. φ =
4
13 Diag(1, 1, 2, 2, 3, 3, 4), ∥β∥

2
=

11
13 ≈ 0.8462

[e1, e2] =

√
26
26 e3, [e1, e3] =

√
13
13 e5, [e1, e4] =

√
39
26 e6, [e1, e5] =

√
65
26 e7, [e2, e3] = −

√
13
13 e6, [e2, e4] =

√
39
26 e5, [e2, e6] =

√
65
26 e7.

(110.3) (1357QRS1) [t = 0]: dim(Der) = 12, rank = 1, Betti Numbers (3, 6, 7, 7, 6, 3, 1) (∼=C g1.2(iii) ∼=C (2357D)).
Pre-Einstein der. φ =

4
11 Diag(1, 1, 2, 2, 3, 3, 4),

It does not admit a nilsoliton inner product.
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(111) (1357S)! [t ∈ R\ {0, 1}]: dim(Der) = 12, rank = 1, Betti Numbers (3, 6, 7, 7, 6, 3, 1) (∼=C g1.2(iP(λ))
∼=C (1357QRS1)

[u] with u =
2
√
t+t+1
t−1 ).

Einstein der. φ =
4
13 Diag(1, 1, 2, 2, 3, 3, 4), ∥β∥

2
=

11
13 ≈ 0.8462

This family admits nilsoliton metrics.
(111.1) (1357S)! [t = 0]: dim(Der) = 12, rank = 1, Betti Numbers (3, 6, 7, 7, 6, 3, 1) (∼=R g1.2(ii)!).

Pre-Einstein der. φ =
4
11 Diag(1, 1, 2, 2, 3, 3, 4),

It does not admit a nilsoliton inner product.
(111.2) (1357S)! [t = 1]: dim(Der) = 12, rank = 1, Betti Numbers (3, 6, 7, 7, 6, 3, 1) (∼=C g1.2(iii) ∼=C (2357D)).

Pre-Einstein der. φ =
4
11 Diag(1, 1, 2, 2, 3, 3, 4),

It does not admit a nilsoliton inner product.
(112) (13457A): dim(Der) = 14, rank = 2, Betti Numbers (3, 5, 7, 7, 5, 3, 1) (∼=R g2.16).

Einstein der. φ =
1
29 Diag(5, 17, 22, 27, 32, 20, 37), ∥β∥

2
=

27
29 ≈ 0.9310

[e1, e2] =

√
174
58 e3, [e1, e3] =

2
√
29

29 e4, [e1, e4] =
2
√
29

29 e5, [e1, e5] =

√
174
58 e7, [e2, e6] =

√
406
58 e7.

(113) (13457B)!: dim(Der) = 13, rank = 1, Betti Numbers (3, 5, 7, 7, 5, 3, 1) (∼=R g1.15!).
Einstein der. φ =

15
82 Diag(1, 3, 4, 4, 5, 6, 7), ∥β∥

2
=

38
41 ≈ 0.9268

[e1, e2] =
2
√
4305
861 e3 +

√
111930
1722 e4, [e1, e3] =

2
√
22386
861 e5, [e1, e4] =

5
√
861

1722 e5, [e1, e5] =

√
902
82 e6, [e1, e6] =

√
82
41 e7,

[e2, e4] =

√
861
82 e7.

(114) (13457C): dim(Der) = 12, rank = 2, Betti Numbers (3, 4, 4, 4, 4, 3, 1) (∼=R g2.10).
Pre-Einstein der. φ =

1
5 Diag(1, 2, 3, 4, 5, 6, 7),

It does not admit a nilsoliton inner product.
(115) (13457D)!: dim(Der) = 12, rank = 1, Betti Numbers (3, 5, 7, 7, 5, 3, 1) (∼=R g1.12!).

Einstein der. φ =
25
124 Diag(1, 2, 4, 3, 4, 5, 6), ∥β∥

2
=

107
124 ≈ 0.8629

[e1, e2] =

√
930
124 e4, [e1, e3] =

√
31
31 e6, [e1, e4] =

√
341
62 e3 +

√
62
62 e5, [e1, e5] =

√
682
124 e6, [e1, e6] =

√
341
62 e7, [e2, e3] =

√
1302
124 e7, [e2, e4] =

√
1302
124 e6.

(116) (13457E): dim(Der) = 11, rank = 1, Betti Numbers (3, 4, 4, 4, 4, 3, 1) (∼=R g1.1(vi)).
Pre-Einstein der. φ =

1
5 Diag(1, 2, 3, 4, 5, 6, 7),

It does not admit a nilsoliton inner product.
(117) (13457F): dim(Der) = 11, rank = 1, Betti Numbers (2, 4, 7, 7, 4, 2, 1) (∼=R g1.10).

Einstein der. φ =
45
446 Diag(2, 3, 5, 7, 9, 8, 11), ∥β∥

2
=

353
446 ≈ 0.7915

[e1, e2] =

√
31220
892 e3, [e1, e3] =

√
15164
446 e4, [e1, e4] =

√
23638
446 e5, [e1, e5] =

3
√
1338
446 e7, [e2, e3] =

√
84740
892 e6, [e2, e6] =

√
4906
223 e7.

(118) (13457G)!!: dim(Der) = 11, rank = 1, Betti Numbers (2, 3, 4, 4, 3, 2, 1) (∼=R g1.03!!).
Pre-Einstein der. φ =

2
3 Diag(0, 1, 1, 1, 1, 2, 2),

It does not admit; φ ≯ 0
(119) (13457I)!!: dim(Der) = 10, rank = 0, Betti Numbers (2, 3, 4, 4, 3, 2, 1) (∼=R g0.7!!).

Pre-Einstein der. φ = 0,
It does not admit; φ ≯ 0

(120) (12457A): dim(Der) = 13, rank = 2, Betti Numbers (3, 5, 7, 7, 5, 3, 1) (∼=R g2.15).
Pre-Einstein der. φ =

1
6 Diag(1, 3, 4, 5, 3, 6, 7), ∥β∥

2
=

5
6 ≈ 0.8333

[e1, e2] =

√
3
6 e3, [e1, e3] =

√
3
6 e4, [e1, e4] =

√
3
6 e6, [e1, e6] =

√
3
6 e7, [e2, e5] =

√
3
6 e6, [e3, e5] =

√
3
6 e7.

(121) (12457B)!!: dim(Der) = 12, rank = 1, Betti Numbers (3, 5, 7, 7, 5, 3, 1) (∼=R g1.01(ii)!!).
Pre-Einstein der. φ = Diag(0, 1, 1, 1, 0, 1, 1),
It does not admit; φ ≯ 0.

(122) (12457C): dim(Der) = 12, rank = 2, Betti Numbers (3, 4, 4, 4, 4, 3, 1) (∼=R g2.13).
Einstein der. φ =

1
86 Diag(16, 21, 37, 53, 48, 69, 90), ∥β∥

2
=

30
43 ≈ 0.6977

[e1, e2] =

√
129
43 e3, [e1, e3] =

√
215
43 e4, [e1, e4] =

√
129
43 e6, [e2, e5] =

√
129
43 e6, [e2, e6] =

√
645
86 e7, [e3, e4] =

−

√
645
86 e7.

(123) (12457D): dim(Der) = 11, rank = 1, Betti Numbers (3, 4, 4, 4, 4, 3, 1) (∼=R g1.20).
Pre-Einstein der. φ =

8
47 Diag(2, 1, 3, 5, 6, 7, 8),

It does not admit a nilsoliton inner product.
(124) (12457E)!: dim(Der) = 11, rank = 1, Betti Numbers (3, 5, 6, 6, 5, 3, 1) (∼=R g1.11!).

Einstein der. φ =
6
31 Diag(1, 2, 3, 3, 4, 5, 6), ∥β∥

2
=

25
31 ≈ 0.8064

[e1, e2] =
7
√
1767

1767 e3 +

√
465
93 e4, [e1, e3] =

√
651
93 e5, [e1, e4] =

√
61845
1767 e5, [e1, e5] =

√
62
31 e6, [e1, e6] =

√
90706
1178 e7,

[e2, e4] =
4
√
1767
589 e6, [e2, e5] =

√
64790
1178 e7, [e3, e4] =

√
90706
1178 e7.
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(125) (12457F)!: dim(Der) = 11, rank = 1, Betti Numbers (3, 4, 4, 4, 4, 3, 1) (∼=R g1.21!).
Pre-Einstein der. φ =

25
113 Diag(1, 2, 3, 4, 3, 5, 7),

It does not admit a nilsoliton inner product.
(126) (12457G)!!: dim(Der) = 10, rank = 0, Betti Numbers (3, 4, 4, 4, 4, 3, 1) (∼=R g0.8!!).

Pre-Einstein der. φ = 0,
It does not admit; φ ≯ 0.

(127) (12457H): dim(Der) = 12, rank = 2, Betti Numbers (2, 3, 6, 6, 3, 2, 1) (∼=R g2.5).
Einstein der. φ =

1
7 Diag(1, 2, 3, 4, 5, 6, 7), ∥β∥

2
=

5
7 ≈ 0.7143

[e1, e2] =

√
14
14 e3, [e1, e3] =

√
14
14 e4, [e1, e5] =

√
14
14 e6, [e1, e6] =

√
14
14 e7, [e2, e3] =

√
14
14 e5, [e2, e4] =

√
14
14 e6,

[e3, e4] =

√
14
14 e7.

(128) (12457I): dim(Der) = 11, rank = 1, Betti Numbers (2, 3, 6, 6, 3, 2, 1) (∼=R g1.1(iv)).
Pre-Einstein der. φ =

1
5 Diag(1, 2, 3, 4, 5, 6, 7),

It does not admit a nilsoliton inner product.
(129) (12457J)!!: dim(Der) = 10, rank = 0, Betti Numbers (2, 3, 5, 5, 3, 2, 1) (∼=R g0.6!!).

Pre-Einstein der. φ = 0,
It does not admit; φ ≯ 0.

(130) (12457J1)!!: dim(Der) = 10, rank = 0, Betti Numbers (2, 3, 5, 5, 3, 2, 1) (∼=C g0.6!!).
Pre-Einstein der. φ = 0,
It does not admit; φ ≯ 0.

(131) (12457K)!!: dim(Der) = 11, rank = 1, Betti Numbers (2, 3, 5, 5, 3, 2, 1) (∼=R g1.02!!).
Pre-Einstein der. φ =

1
2 Diag(1, 0, 1, 2, 1, 2, 3),

It does not admit; φ ≯ 0.
(132) (12457L)!: dim(Der) = 11, rank = 1, Betti Numbers (2, 3, 4, 4, 3, 2, 1) (∼=C g1.17!).

Einstein der. φ =
19
94 Diag(1, 1, 2, 3, 3, 4, 5), ∥β∥

2
=

65
94 ≈ 0.6915

[e1, e2] =

√
611
94 e3, [e1, e3] =

√
235
94 e4, [e1, e4] = −

√
611
94 e6, [e1, e6] =

√
705
94 e7, [e2, e3] =

√
235
47 e5, [e2, e5] =

√
611
94 e6, [e3, e5] =

√
705
94 e7.

(133) (12457L1): dim(Der) = 11, rank = 1, Betti Numbers (2, 3, 4, 4, 3, 2, 1) (∼=R g1.17!).
Einstein der. φ =

19
94 Diag(1, 1, 2, 3, 3, 4, 5), ∥β∥

2
=

65
94 ≈ 0.6915

[e1, e2] =

√
611
94 e3, [e1, e3] =

√
235
94 e4, [e1, e4] = −

√
611
94 e6, [e1, e6] =

√
705
94 e7, [e2, e3] =

√
235
47 e5, [e2, e5] =

−

√
611
94 e6, [e3, e5] = −

√
705
94 e7.

(134) (12457N) [t]!!: dim(Der) = 10, rank = 0, Betti Numbers (2, 3, 4, 4, 3, 2, 1) (∼=C g0.4P(λ)
!!).

Pre-Einstein der. φ = 0,
It does not admit; φ ≯ 0.

(135) (12457N1)!!: dim(Der) = 10, rank = 0, Betti Numbers (2, 3, 4, 4, 3, 2, 1) (∼=C g0.4λ0
!!).

Einstein der. φ = 0,
It does not admit; φ ≯ 0.

(136) (12457N2)[t ≥ 0]!!: dim(Der) = 10, rank = 0, Betti Numbers (2, 3, 4, 4, 3, 2, 1) (∼=C g0.4(λ)!!).
Pre-Einstein der. φ = 0,
It does not admit; φ ≯ 0.

(137) (12357A): dim(Der) = 12, rank = 2, Betti Numbers (3, 4, 4, 4, 4, 3, 1) (∼=R g2.14).
Einstein der. φ =

1
7 Diag(1, 3, 2, 4, 5, 6, 7), ∥β∥

2
=

5
7 ≈ 0.7143

[e1, e2] =

√
14
14 e4, [e1, e4] =

√
14
14 e5, [e1, e5] =

√
14
14 e6, [e1, e6] =

√
14
14 e7, [e2, e3] =

√
14
14 e5, [e3, e4] = −

√
14
14 e6,

[e3, e5] = −

√
14
14 e7.

(138) (12357B)!!: dim(Der) = 11, rank = 1, Betti Numbers (3, 4, 4, 4, 4, 3, 1) (∼=R g1.01(i)!!).
Pre-Einstein der. φ = Diag(0, 1, 0, 1, 1, 1, 1),
It does not admit; φ ≯ 0.

(139) (12357B1)!!: dim(Der) = 11, rank = 1, Betti Numbers (3, 4, 4, 4, 4, 3, 1) (∼=C g1.01(i)!!).
Pre-Einstein der. φ = Diag(0, 1, 0, 1, 1, 1, 1),
It does not admit; φ ≯ 0.

(140) (12357C): dim(Der) = 10, rank = 1, Betti Numbers (3, 4, 4, 4, 4, 3, 1) (∼=R g1.1(v)).
Pre-Einstein der. φ =

1
5 Diag(1, 3, 2, 4, 5, 6, 7),

It does not admit a nilsoliton inner product.
(141) (123457A): dim(Der) = 13, rank = 2, Betti Numbers (2, 4, 6, 6, 4, 2, 1) (∼=R g2.3).

Einstein der. φ =
2
35 Diag(1, 16, 17, 18, 19, 20, 21), ∥β∥

2
=

37
35 ≈ 1.057

[e1, e2] =

√
14
14 e3, [e1, e3] =

2
√
35

35 e4, [e1, e4] =
3
√
70

70 e5, [e1, e5] =
2
√
35

35 e6, [e1, e6] =

√
14
14 e7.
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(142) (123457B): dim(Der) = 12, rank = 1, Betti Numbers (2, 4, 6, 6, 4, 2, 1) (∼=R g1.6).
Einstein der. φ =

5
38 Diag(1, 4, 5, 6, 7, 8, 9), ∥β∥

2
=

17
19 ≈ 0.8947

[e1, e2] =

√
380
76 e3, [e1, e3] =

√
380
76 e4, [e1, e4] =

3
√
76

76 e5, [e1, e5] =

√
38
19 e6, [e1, e6] =

√
38
38 e7, [e2, e3] =

3
√
76

76 e7.
(143) (123457C): dim(Der) = 11, rank = 1, Betti Numbers (2, 3, 4, 4, 3, 2, 1) (∼=R g1.1(ii)).

Pre-Einstein der. φ =
1
5 Diag(1, 2, 3, 4, 5, 6, 7),

It does not admit a nilsoliton inner product.
(144) (123457D): dim(Der) = 12, rank = 1, Betti Numbers (2, 4, 6, 6, 4, 2, 1) (∼=R g1.4).

Einstein der. φ =
17
122 Diag(1, 3, 4, 5, 6, 7, 8), ∥β∥

2
=

50
61 ≈ 0.8197

[e1, e2] =

√
610
122 e3, [e1, e3] =

√
1281
122 e4, [e1, e4] =

3
√
122

122 e5, [e1, e5] =

√
244
61 e6, [e1, e6] =

3
√
122

122 e7, [e2, e3] =
√
5124
244 e6, [e2, e4] =

3
√
122

122 e7.
(145) (123457E)!!: dim(Der) = 11, rank = 0, Betti Numbers (2, 4, 6, 6, 4, 2, 1) (∼=R g0.3!!).

Pre-Einstein der. φ = 0.
It does not admit; φ ≯ 0.

(146) (123457F)!!: dim(Der) = 10, rank = 0, Betti Numbers (2, 3, 4, 4, 3, 2, 1) (∼=R g0.1!!).
Pre-Einstein der. φ = 0,
It does not admit; φ ≯ 0.

(147) (123457H)!!: dim(Der) = 10, rank = 0, Betti Numbers (2, 3, 4, 4, 3, 2, 1) (∼=R g0.2!!).
Pre-Einstein der. φ = 0,
It does not admit; φ ≯ 0.

(148) (123457H1)!!: dim(Der) = 10, rank = 0, Betti Numbers (2, 3, 4, 4, 3, 2, 1) (∼=R g0.2!!).
Pre-Einstein der. φ = 0,
It does not admit; φ ≯ 0.

(149) (123457I) [t ∈ R \ {0, 1}]: dim(Der) = 10, rank = 1, Betti Numbers (2, 3, 4, 4, 3, 2, 1) (∼=R g1.1(it ))

Einstein der. φ =
1
7 Diag(1, 2, 3, 4, 5, 6, 7), ∥β∥

2
=

5
7 ≈ 0.7143

This family admits nilsoliton metrics.
(149.1) (123457I) [t = 0]: dim(Der) = 10, rank = 1, Betti Numbers (2, 3, 4, 4, 3, 2, 1) (∼=R g1.1(i0))

Pre-Einstein der. φ =
1
5 Diag(1, 2, 3, 4, 5, 6, 7),

It does not admit a nilsoliton inner product.
(149.2) (123457I) [t = 1]: dim(Der) = 11, rank = 1, Betti Numbers (2, 3, 4, 4, 3, 2, 1) (∼=R g1.1(i1))

Pre-Einstein der. φ =
1
5 Diag(1, 2, 3, 4, 5, 6, 7),

It does not admit a nilsoliton inner product.
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