Journal of Geometry and Physics 86 (2014) 164-179

Contents lists available at ScienceDirect

Journal of Geometry and Physics

journal homepage: www.elsevier.com/locate/jgp

Classification of Nilsoliton metrics in dimension seven @CmssMark

Edison Alberto Fernandez-Culma *
CIEM, FaMAF, Universidad Nacional de Cérdoba, Ciudad Universitaria, (5000) Cérdoba, Argentina

ARTICLE INFO ABSTRACT

Article history: The aim of this paper is to classify Ricci soliton metrics on 7-dimensional nilpotent Lie
Received 28 November 2013 groups. It can be considered as a continuation of our paper in Fernidndez Culma (2012).
Received in revised form 22 July 2014 To this end, we use the classification of 7-dimensional real nilpotent Lie algebras given
Accepted 26 July 2014

by Ming-Peng Gong in his Ph.D thesis and some techniques from the results of Michael
Jablonski (2010, 2012) and of Yuri Nikolayevsky (2011). Of the 9 one-parameter families
and 140 isolated 7-dimensional indecomposable real nilpotent Lie algebras, we have 99 nil-

Available online 12 August 2014

pr‘?rcnary 53025 soliton metrics given in an explicit form and 7 one-parameter families admitting nilsoliton

secondary 53C30 metrics. . R R .

22E25 Our classification is the result of a case-by-case analysis, so many illustrative examples
are carefully developed to explain how to obtain the main result.

Keywords: © 2014 Elsevier B.V. All rights reserved.

Einstein manifolds
Einstein nilradical
Nilsolitons

Geometric invariant theory
Nilpotent Lie algebras

1. Introduction

The Ricci flow, introduced by Richard Hamilton in the early 1980s, is a geometric evolution equation which smoothly
deforms an initial metric gy on a Riemannian manifold M in the direction of minus two times its Ricci tensor:
{{ftg = —2ric,,
£(0) = go.
The “philosophy” behind this tool of geometric analysis is to try to evolve the geometry of (M, gy) to one which looks more
uniform (although in practice, it is not always possible).

A Ricci soliton is a complete Riemannian metric gy such that the solution to the Ricci flow g(t) with g(0) = go changes g
only by diffeomorphisms and scaling as time goes on, that is g(t) = c(t)¢; g, where c(t) € Ry and ¢; is a one-parameter
group of diffeomorphisms of M; a Ricci soliton is not “improved” by the Ricci flow. These distinguished metrics are important
in the study of the Ricci flow because they may be limiting cases for the Ricci flow near singularities and are a natural
generalization of an Einstein metric [1].

In the theory of Ricci flow, homogeneous Riemannian manifolds provide a rich source of explicit examples for some
concepts and behaviors. Moreover, many of the known examples of Ricci solitons correspond to algebraic Ricci solitons:
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these are given by a left-invariant metric g on a simply-connected Lie group G satisfying
Ric(g) = cld+D, forsomec € RandD € Der(g) (1.1)

where g = Lie(G) and Ric is the Ricci operator of g.

Such metrics are indeed Ricci solitons and in the particular case that G is solvable (respectively nilpotent) are called
solvsolitons (respectively nilsolitons).

Our aim in this paper is to classify nilsolitons on 7-dimensional simply connected nilpotent Lie groups. In general, it
is difficult to know if a nilpotent Lie algebra admits a nilsoliton (inner product) and it is very difficult to get such metric
when it exists. Nilsoliton metrics have been completely classified only up to dimension 6 by Jorge Lauret and Cynthia Will in
[2,3] (with a minor correction in [4]). In [5], Trayce Payne and Hiilya Kadioglu have introduced a computational method for
classifying nilsoliton metrics in the family of nilpotent Lie algebras with simple pre-Einstein derivation and nonsingular Gram
matrix. Their method does not rely on any preexisting classifications of nilpotent Lie algebras. They classify nilsolitons within
this family, which has 33 algebras in dimension 7 and 159 algebras in dimension 8. In [6], we gave a complete classification
of all seven-dimensional (complex) nilpotent Lie algebras n such that a real form of n admits a nilsoliton inner product. In
order, to prove [6, Theorem 7], we make heavy use of results proved by Yuri Nikolayevsky in [7] (some of such results were
independently proved by Michael Jablonski in [8,9] in a more general form).

In these notes, we use the classification of seven-dimensional real nilpotent Lie algebras given by Ming-Peng Gong in his
Ph.D thesis [10], results from complex (and real) Geometric Invariant Theory [11,8,9,12] and calculations given in [13].

Following [10], the indecomposable 7-dimensional real Lie algebras can be seen as 9 one-parameter families of nilpotent
Lie algebras plus 140 isolated nilpotent Lie algebras; i.e. 140 algebras that are not in any of such one-parameter families. We
focus our attention on isolated algebras and on the family (147E)[0 < t < 1] where we can give a nilsoliton metric for each
t. So, we have 99 nilsoliton metrics and 7 one-parameter families admitting nilsoliton metrics. The methods explained here
can also be used to study any fixed member in a one-parameter family.

Our classification is the result of a case-by-case analysis, so many illustrative examples are carefully developed to
explain how to obtain the main result. Some nilsoliton metrics here were obtained in [13], we refer the reader to [6] for
more details. All calculations are performed using Maple™ 14; more particularly, we use the (nice) Maple™ packages
DifferentialGeometry and LieAlgebras.

2. Preliminaries

In this section, we give a brief exposition on nilsoliton metrics and real (and complex) geometric invariant theory. There
is an intriguing interplay between the Ricci flow on nilpotent Lie groups and the gradient flow of the norm squared of the
moment map associated to the natural action of GL,(R) on V = A%(R")* ® R". It is known that if n := (R", ) is a nilpotent
Lie algebra and (-, -) is the canonical inner product of R", then the Ricci operator of (R", u, (-, -)) satisfies

4 Ric = m(u) (2.1)

where m is the moment map. It follows that to minimize the norm of the Ricci tensor among all left-invariant metrics of n
with the same scalar curvature is equivalent to minimize ||m||?/||x]|* along the GL,(R)-orbit of u (here, the inner products
on gl,(R) and V, which are denoted by (-, -) and (-, -) respectively, are those induced by the canonical inner product of R").

Theorem 2.1 (Jorge Lauret). (See for instance [ 14, Theorem 4.2]) The nilpotent Lie algebran := (R", ) admits a nilsoliton (inner
product) if and only if the GL,(R)-orbit of i is distinguished; i.e. GL,(R) - u contains a critical point of ||m||?, or equivalently, if
and only if there exists a g € GL,(R) such that

m(i) = cld+D forsomec € R and D € Der(n) (2.2)

where i .= g - pandw .= (R", [1).
There is at most one nilsoliton metric on a nilpotent Lie group (up to isometry and scaling).

A point jx satisfying Eq. (2.2) is called a distinguished point (see [9, Definition 2.6]) and the derivation D is usually called
Einstein derivation (in connection with Einstein solvmanifolds) or nilsoliton derivation.

It is known from [15] that the eigenvalues of an Einstein derivation are all positive integers without a common divisor
(up to a rational factor) and that it is, up to conjugation by an automorphism, positively proportional to the pre-Einstein
derivation, which is defined by Yuri Nikolayevsky in [7, Definition 2].

Before stating the techniques to classify the nilsoliton metrics, let us first recall some notations.

Notation 2.2. Let a denote the maximal abelian subalgebra of gl,,(R) contained in the vector space of symmetric matrices p
given by

a = {Diag(xy, ..., Xn) : x; € R}

and set A := exp(a).
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Let @ be a finite subset of a. The convex hull of @ will be denoted by CH(®) while by Aff(®) we denote the affine space
generated by @. The notation mcc(®) denotes the minimal convex combination of @; i.e. the unique vector closest to the
origin in CH(®). The notation int(CH(®)) represents the interior of CH(®) relative to the usual topology of Aff(®).

Given a nilpotent Lie algebra n := (R", u), we denote by $R(u) the (ordered) set of weights related with w to the action
of GL,(R) on V, i.e. if {Ci’fj} are the structural constants of n in the basis {e; ... e,} then

R(w) = {Exx — Eii — By : G # 0}
where {E; ;} is the canonical basis of gl (R).

Recall that Nikolayevsky’s nice basis criterion [7, Theorem 3] says that a nilpotent Lie algebra n := (R", ;) which is
written in a nice basis [7, Definition 3] admits a nilsoliton metric if and only if the equation

Ux =[1]n (2.3)

has at least one solution x with positive coordinates, where m = #(%R(u)) and U is the Gram matrix of (R(u), (-, -)). This
result gives us an easy-to-check convex geometry condition for a nilpotent Lie algebra with a nice basis to be an Einstein
nilradical.

If one carefully reads the proof of the above theorem one sees that it gives us a technique to find a nilsoliton on a nilpotent
Lie algebra which is written in a nice basis and admits such distinguished metric; a nilsoliton can be found in an A-orbit. So,
Nikolayevsky’s nice basis criterion can be rewritten as

Theorem 2.3 (Nikolayevsky’s Nice Basis Criterion). Let n := (R", i) be a nilpotent Lie algebra such that n is written in a nice
basis. Then n admits a nilsoliton if and only if there exists g € A such that

m(g - ) = mcc(R(w)), (2.4)

and, consequently, it := g - w is a distinguished point in the GL,(R)-orbit of w.

To find a nilsoliton metric for a nilpotent Lie algebra admitting such metric and which is written in a nice basis is easy in
practice. We must calculate the vector mcc(fR()), which is given by

%}(p (Z xpm(,uv)p>

where [x;] is any positive solution to Eq. (2.3) and we solve Eq. (2.4) for g € A. We refer the reader to [8, Corollary 3.4] or
[12, Section 3] for further information on results related with Theorem 2.3.

Another application from geometric invariant theory in the study of nilsoliton metrics is the following result, which was
proven independently by Michael Jablonski in [8, Theorem 6.5] and Yuri Nikolayevsky in [7, Theorem 6].

Theorem 2.4. Let ny and n, be two (real) nilpotent Lie algebras whose complexifications are isomorphic as complex nilpotent Lie
algebras. If ny is an Einstein nilradical then so is n,, with the same eigenvalue type.

Consider the natural action of the complex reductive Lie group GL,(C) on A%(C")* ® C" and its moment map m as in [11]
(see[16]). Theorem 2.4 can be derived by comparing the distinguished orbits of the mentioned action with the distinguished
orbits of the natural action of GL,(R) on A%(R")* ® R". We can rephrase Theorem 2.4 as saying that

Theorem 2.5 ([8, Theorem 4.7]). Let n := (R", ) be a nilpotent Lie algebra. Then n admits a nilsoliton metric if and only if the
GL,(C)-orbit of 1 is distinguished of the action of GL,(C) on A?(C")* ® C".

Theorem 2.5 provides us with another technique. It is easy to see that Nikolayevsky’s nice basis criterion is also true in
the complex case (see [12, Remark 3.2]); i.e. given a complex nilpotent Lie algebra (C", i) which is written in a nice basis
for the action of GL,(C) on A%(C")* ® C* (M(A- 1) C a), then GL,(C) - u is distinguished if and only if Eq. (2.3) has at least
one solution x with positive coordinates where m = #(%(u)) and U is the Gram matrix of (R(w), (-, -)) (here, (-, -) is the
usual Hermitian inner product on gl, (C)).

A real nilpotent Lie algebra n := (R", ) could fail to admit a nice basis for the action of GL,(R) on A%R")* ® R"
(see [4, Proposition 2.1.] or [6, Section 2]). However, it may happen that n admits a nice basis for the action of GL,(C) on
A?(C™* ® C". Suppose that (C", t) is written in a nice basis with I € GL,(C) - x and GL,(C) - u being a distinguished
orbit; consequently, (R", ) admitting a nilsoliton metric. One can easily find a distinguished point ji in the A-orbit of &
as above. By results of Linda Ness [11, Theorem 6.2], it is well known that any distinguished point in GL,(C) - u is in the
C*U(n)-orbit of 1z, hence to find a distinguished point in the GL, (R)-orbit of 1, we study the real forms in C*U(n) - it which
are isomorphic over R to u.



E.A. Ferndndez-Culma / Journal of Geometry and Physics 86 (2014) 164-179 167
3. The classification

In this section, we give the classification of nilsoliton metrics on 7-dimensional (isolated) nilpotent Lie algebras. By using
that any nilpotent Lie algebra of dimension less than or equal to 6 is an Einstein nilradical, one obtains that any decomposable
7-dimensional nilpotent Lie algebra is an Einstein nilradical and it is easy to give a nilsoliton metric in each case; therefore
we focus on studying indecomposable algebras.

The general outline of our classification could be presented as follows:

o If the Lie algebra (R, 1) is written in a nice basis and it admits a nilsoliton metric, then such distinguished metric can
be found in the A-orbit of ;. We illustrate this technique in Example 3.2.

o If the Lie algebra (R’, u) is not written in a nice basis but it admits a nice basis (C’, 1) for the action of GL,(C) on
A%(C™* ® C". A nilsoliton metric for (R7, ) (if such metric exists) can be found in the real forms of C*U(n)A - @ which
are isomorphic over R to u (see Example 3.4).

o If the Lie algebra (R7, w) is not written in a nice basis but it is possible to give a nilsoliton metric by solving the system
of polynomial equations defined by the pre-Einstein derivation and the nilsoliton condition (see [6, Corollary 3]). We
explain this technique in Example 3.3 (see also [6, Example 1]).

Following [10], there are 5 one-parameter families and 41 isolated nilpotent Lie algebras which are not written in a
nice basis. We will use the exclamation mark to indicate such algebras (see List in Section 3.1), and where we have an
extra exclamation mark, such algebra has a non-positive pre-Einstein derivation; and hence it does not admit any nilsoli-
ton metric. The one-parameter families (147E1)[t], (1357S)[t] and the isolated algebras (257]1), (247E), (247G), (247H),
(247H1), (247R), (1357Q), (1357Q 1), (1357R), (12457L) can be worked out as Examples 3.3 and 3.4, while the remaining
algebras were studied in [13] (to obtain [6, Theorem 7], we give in some cases nilsoliton metrics which are considered here
again).

Theorem 3.1. The classification of 7-dimensional nilsoliton metrics on isolated nilpotent Lie algebras (plus (147E)[0 < t < 1])
is given according to the notation in [10] by the list in Section 3.1.

Example 3.2. Consider the one-parameter family (1357QRS1)[t € R] given by (R’, 1) with

e = {[91, eo] = es, [e1, e3] = es, [eq, e4] = e, [e1, es] = ey,
t —

[e2, e3] = —es, [€2, es] = es5, [e, eg] = tey, [e3, e4] = (1 — t)es.
The basis {eq, ..., e7} is a nice basis to (1357QRS1)[t € R] for any t.If t 7 0, 1, the Gram matrix U is given by
3 0 1 1 0 1 1 —17
0 3 1 0o 1 1 0 1
1 1 3 1 1 1 -1 1
1 0 1 3 0 -1 1 1
0o 1 1 0 3 1 0 1
1 1 1 -1 1 3 1 1
1 0 -1 1 0 1 3 1
-1 1 1 1 1 1 1 3

The general solution to the problem Ux = [1]g is given by
1
X = ﬁ(l +11ay,2, -1+ 11a5,5—11a; — 110a2,2,4—11a; — 11ay, 110, 11a;7)".

By taking a; and a, such that 0 < 11a; < 3and 1 < 11a, < 4 — 11a4, we get a solution with positive coordinates. Hence,
(1357QRS1)[t € R] with t # 0, 1 admits a nilsoliton metric [7, Theorem 3].

To give a nilsoliton metric for each t in a simultaneous manner, it is incredibly difficult. But, if we fix the value of t, say
t = —1, it is easy to give the nilsoliton metric for (1357QRS1)[t = —1]. To find such metric, we solve the problem

m(g - pt—1) = mcc(R(i-1))
1
= — Diag(-7,-7,-3,-3,1,1,5
13 Dias( )

for g € A (Theorem 2.3). Let g = Diag(1, 1, %, @ 23‘—95, %, @), the change of basis given by g defines ji_; =

g por=gu(g g
[e1,ex] = es, [er, e3] = Be [e1, e4] = 39e [e1,e5] = 39Oe
ﬁ_l — 1, €21 — 39 3, 1, €3] — 13 55 1, €41 — 39 6 1,651 — 78 7>
/13 /39 /390 /390
[e2, 3] = ———¢€6, [€2, €4] = ——e5, [€3, 86] = — e7, [e3, e4] = e;.

13 39 78 78
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Since,
~ 1 .
m(u_1) = ' Diag(-7,-7,-3,-3,1,1,5)
ll1c1+4D' (1,1,2,2,3,3,4) (3.1)
=—— —Diag(1,1,2,2,3,3, .
13 1398

Derivation

the canonical inner product of R” defines a nilsoliton metric on (R?, fi_;). Note that (1357QRS1)[t = —1] becomes (1357R)
over C, therefore (1357R) also admits nilsoliton metrics (Theorem 2.5).

We study (1357QRS1)[t = 1] (E¢(1357Q) =¢(1357Q 1)) and (1357QRS1)[t = 0] (E¢(2357D) =¢(2357D1) = (1357)[t
= 1]) in an entirely analogous way.

Example 3.3. In this example, we show how to find the nilsoliton metric for (1357R) given by (R”, u) with
W= {[617 e2] = e3, [e1, e3] = es, [e1, e5] = €7,

[es, e3] = eg, [e2, €4] = €6, [€2, €5] = €7, [e3, e4] = e7.

As we explained previously, (1357R) must admit such a metric. Furthermore, there must exist a g € GL;(R) such that
m(g - u) satisfies Eq. (3.1).

It is easy to see that the pre-Einstein derivation of (R’, ) is equal to % Diag(1, 1, 2, 2, 3, 3, 4) and as the pre-Einstein
derivation of g -  must be positively proportional to the Einstein derivation, % Diag(1, 1, 2, 2, 3, 3, 4), we can try to find
such g in the group

. my1 My ms3 M34 Mss Mse
G= GL;(R) :g =D ’ ’ ’ ' ' '
{g €Cl(®) g 198 <<m2,1 mz,z) ’ <m4.3 m4,4> ’ <m6,5 me,e) ’ m7,7>}
which commutates with the Einstein derivation. By solving

1
m(g : /”L) = E Dlag(_77 _77 _37 _37 1, 15 5)

with g € G, we find

Vi3 2v/3 V3 _2V39 V3

g = Diag b : _Tg BERE 3 ,—@
V13 0 1 V38 V3 39
2 39 3
which definesi =g -
Y i D v
. [e1, e2] = 39 % [e1, e3] = 3% [e1, e4] = 39 5 [e1, es] = el
V13 V39 V390 V390
[e2, €3] = 3 & [e2, e4] = 59 & [ez, e5] = — -5 7 [es, eq] = 75

where the canonical inner product of R’ defines a nilsoliton metric on (R7, [i).

Example 3.4. For a final example, we consider the one-parameter family (1357S)[t € R\ {0, 1}] given by (R7, j,) with

e = [e1, e2] = e3, [e1, e3] = es, [eq, es] = e7, [e1, eg] = ey, [e2, €3] = e, [€2, €4] = €6,
t [e2, e5] = e7, [e, 6] = te7, [e3, e4] = e7.

It is easily seen that (1357S)[t] (with t # 0, 1) is a real form of the (complex) Lie algebra (1357QRS1)[A] with A := t—ﬁ

In the same manner as in Example 3.2, we can see that the GL;(C)-orbit of (1357QRS1)[1] is distinguished for the natural
action of GL;(C) on A%(C7)* ® C’ (by using Nikolayevsky’s nice basis criterion in the complex case). Consequently, the
GL; (R)-orbit of (1357S)[t] (with t £ 0, 1) is distinguished; i.e. such family admits nilsoliton metrics (Theorem 2.5).

We fix the value of t, say t = —3. So (1357S)[t = —3] is a real form 0f(1357QRS])[% — %«/—1] = (C7, ) with

[e1, e2] = e3, [eq, e3] = es, [e1, e4] = €6, [€1, €5] = e7, [e2, €3] = —eg, [€2, €4] = €5,

#= [es, e6] = (1 - \/g«/jl) ez, [es, e4] = (; + ﬁﬁ) e7.

2 2 2
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To find a nilsoliton metric for (1357S)[t = —3], we can find a distinguished point zz in the GL;(C)-orbit of 1 and then to
study the real forms in the U(7)-orbit of z.

The point ji can be found easily in much the same way as was done for (1357QRS1)[t = —1] in Example 3.2. So we find
1 given by
[ 1 V13 [ 1 V13 [ 1 V26 [ 1 V13 [ 1 /13
e1, 6] = —es, [e1,e3] = —es, [e1, e4] = ——eg, [1, 65] = ——e7, [e2, €3] = ———e6,
_ 1, €2 13 3 1, €3 13 5 1, €4 26 6 1, €5 13 7 2,63 13 6
n= V26
26 Vi3 1 V3 V26 (1 /3
ey,e4] = —es, [ex,66] = —— | = — —~/—1)es, [e3,e4] = —— | =+ —~—1]e7.
[e2, eq] 265[2 6] 3 (2 2 )7[3 4] 26 2+2 7

Since (13575)[t = —3] and (C7, ji) have the “same” pre-Einstein derivation, % Diag(1, 1, 2, 2, 3, 3, 4), we can try to find

a distinguished point in the GL; (R)-orbit of (1357S)[t = —3] by considering the real forms in the G-orbit of /t, where

_ P 211 212 233 234 Z55 Z56
G=18€U0):¢g=Diag ((22,1 Zz,z) ’ <Z4,3 Z4,4) ’ (Zs,s Zs,e) ’27‘7>} '

Therefore, we find

[e1, ex] = 136 [e1, e3] = 136 [e1, e4] = 266 [e1, es5] = 39e [e1, e6] = 136
ﬁ: 1, €21 — 13 3, 1, €31 — 13 5 1, €41 — 26 5 1, €51 — 26 75 1, €61 — 26 75
e, e3] = 136 e, e4] = 266 [es, e5] = 136 [es, e6] = 3ge [es, e4] = 26e
2,631 — 13 6, 1£2, €41 — 26 6, 1€2, €51 — 26 7,12, €61 — 26 7,13, €41 — 26 75
where (13575)[t = —3] is isomorphic to (R’, 2) (over R) and the canonical inner product of R” defines a nilsoliton metric
on (R, ).

By a similar argument, we can to prove that (147E1)[t > 1], which is a real form of the (complex) Lie algebra (147E)[A]
2
with A = ((1_ M) , admits nilsoliton metrics.

Remark 3.5. Recently, the existence problem of nilsoliton metrics on ny; = (1357S)[t = —3], ny; = (147E1)[t = 2] and
n1o =g 1.3(i)[t = 1] has been studied in [17, Proposition 3.2]. In the above example, we give a nilsoliton metric for n{y, and
by a similar argument we find a nilsoliton metric for ny, given by the change of basis

0 V3 NERNE] /s
Y 1|55 <= 3
g = Diag 2 , 1, ——, 12 6 , ——
1 4 1 48
1 —= - 0
2 4
which defines
NE)
e1,6y] = ——ey,|eq,63] = ——¢€5, |61, 65] = ———e7, |e1,65] = — ey,
ﬁ:[]Z] 64[13] 66[15] 127[16] 2
[e2, e3] > [e2, es] ! [e2, es] 3e [es, e4] 3e
€3] = ———es, [ez,e5] = —e7, [e2, €6] = ——e7, [e3, 4] = ——e7,
2, €3 g 5 l€2: 6 2 67> 1€2: € 13 67166 6 &

where the canonical inner product of R is a nilsoliton metric of (R”, i) =g n1,. The nilpotent Lie algebra 1.3(i)[t = 1] also
admits a nilsoliton metric and it was proved in [6, Example 2]. The nilpotent Lie algebra ng in [17, Proposition 3.2], in fact,
does not admit a nilsoliton metric and this can be proved by using Nikolayevsky’s nice basis criterion (ng = 1.1(iv); see
[6, Table 1.]).

3.1. (lassification list

The notation in the list is as follows: dim(Der) is the dimension of the algebra of derivations, rank is the dimension of
a maximal torus of semisimple derivations. By ¢ we denote 4 times the Einstein derivation or the pre-Einstein derivation,
depending if the respective algebra admits or does not admit a nilsoliton metric, and || 8|? is the real number such that

4Ric = —||B)* 1d +¢.

Each Lie bracket ji given in the list is such that the canonical inner product of R’ is a nilsoliton metric of scalar curvature
equal to —; on® := (R’, ).
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The Betti numbers provide additional information that can be used to compare Gong's list with other classifications.

(1) (37A): dim(Der) = 25, rank = 4, Betti Numbers (4, 12, 18, 18, 12,4, 1) (=g g42).
Einstein der. ¢ = 2 Diag(2, 1,2,2,3,3,3), [I8]I> = 3 ~ 1.667

le1, e2] = %‘35’ [e2, €3] = %ee, [e2, e4] = %em
(2) (37B): dim(Der) = 20, rank = 4, Betti Numbers (4, 11, 16, 16, 11,4, 1) (=g g4.1).

Einstein der. ¢ = 1 Diag(5,4,4,5,9,8,9), [|BlI> = £ ~ 1.400

[e1, e2] = ées, [e2, 3] = \473)7096, [e3, ea] = Le;.
(3) (37B1): dim(Der) = 20, rank = 4, Betti Numbers (4, 11, 16, 16, 11,4, 1) (E¢ g4.1)-
Einstein der. ¢ = 1 Diag(4,5,5,4,9,9,8), [|BII> = £ ~ 1.400

10 10 10 10 10
[e1, e2] = %6’5» [e1, e3] = %6’6, [e1, ea] = %97, [e2, e4] = %96, les, eq] = —%95'

(4) (37C): dim(Der) = 22, rank = 3, Betti Numbers (4, 11, 17, 17,11, 4, 1) (=g g3.24)-
Einstein der. ¢ = %Diag(S, 3,4,4,8,7,7), 18> = % ~ 1.500

2 2 2 2
[e1, e2] = %655 [e2, €3] = %665 [e2, e4] = %97, [es, eq] = %65-

(5) (37D): dim(Der) = 19, rank = 3, Betti Numbers (4, 11, 14, 14, 11,4, 1) (Zg g3.12)-
Einstein der. ¢ = gDiag(l, 1,1,1,2,2,2), 181> = g ~ 1.333

[e1, e2] = ?es, [e1, e3] = ?ee, [e2, e4] = ?en [es, es] = %es.
(6) (37D1): dim(Der) = 19, rank = 3, Betti Numbers (4, 11, 14, 14, 11,4, 1) (Z=c g3.12)-

Einstein der. ¢ = 2 Diag(1,1,1,1,2,2,2), [|B]I> = 5 ~ 1.333

[e1, e2] = %es, [e1, e3] = ?ee, [e1, e4] = ?em [e2, €3] = —?em [e2, e4] = ?ee, [es, eq] = —
(7) (357A): dim(Der) = 18 rank = 3, Betti Numbers (3, 8, 14, 14, 8, 3, 1) (=g g356)-
Einsteinder.qb_ 7 Diag(5,7, 12,9, 17, 16, 14), ||ﬁ||2 ﬁ ~ 1 182
/66

[e1, e2] = \%7693, [91, e3] = %95, le1, eq] = %97, [e2, 34] = Y.
(8) (357B): dim(Der) = 17 rank = 3, Betti Numbers (3,7, 11, 11,7, 3, 1) (=g g3.23).
Einstein der. ¢ = D1ag(4 5,9,9, 13, 14, 13), ||,8||2 H ~ 1.100

15 15
[e1, e2] = %93» [91, e3] = %6’5, [er, es] = %97, [ea, 63] = %96

(9) (357C): dim(Der) = 16 rank = 2, Betti Numbers (3,7, 11, 11,7, 3, 1) (Zg g2.40)-
Einstein der. ¢ = D1ag(9 10, 19, 18, 28, 29, 27), ||,B||2 @ ~ 1.095

7 42 42 42
[e1, e2] = 4935 [91, e3] = ges, [e1, e4] = ge% [e2, €3] = 4661 [e2, e4] = %es-

(10) (27A): dim(Der) = 21, rank = 4, Betti Numbers (5, 10, 16, 16, 10,5, 1) (Zg g4.3).
Einstein der. ¢ = 1 Diag(4,5,5,6,5,9, 10), | B> =  ~ 1.400

le1, e2] = éeﬁ’ [e1, es] = @97, [es, es] = éem
(11) (27B): dim(Der) = 19, rank = 3, Betti Numbers (5, 9, 15, 15,9, 5, 1) (=g g¢3.19)-
Einstein der. ¢ = 1 Diag(5, 6,5, 6,6, 11, 11), |B]I> =  ~ 1.333

[e1, e2] = %ee, [e1, e5] = %e% [e2, €3] = %e% [es, e4] = %es-
(12) (257A): dim(Der) = 19, rank = 3, Betti Numbers (4, 9, 14 14,9,4,1) (Zr g33).

Einstein der. ¢ = %Diag(z, 3,5,4,4,7,6), |B]*> = Z ~ 1.250

le1, e2] = ?6’3» le1, e3] = ?6’6, le1, es] = ?6’7, [e2, e4] = %96-
(13) (257B): dim(Der) = 18, rank = 3, Betti Numbers (4, 8, 13, 13, 8,4, 1) (Zg g3.11)-
Einstein der. ¢ = & Diag(5,7, 12, 12,10, 17, 17), | 8]* = {2 = 1.182

ol

€s.

66 2 2 66
[e1, e2] = %ey [e1, e3] = %ee, [e1, e4] = %67, [e2, e5] = %97-

(14) (257C): dim(Der) = 18 rank = 3, Betti Numbers (4, 9, 13,13, 9,4, 1) (=g g3.9)-
Einstein der. ¢ = % Diag(3,3,6,6,5,9,8), [|B]I> = E ~ 1.182

[e1,ez]—2£eg,[e1,e3] fee,[ez,ed refe,[~?z,es] “2—67667.

(15) (257D): dim(Der) = 17 rank = 2 Betti Numbers (4 8,12, 12, 8 4, 1) (=g g2.45)-
Einstein der. (b_ 5 Diag(6, 7, 13, 12, 11, 19, 18), ||ﬁ||2 = =~ 1.167
2

[e1, e2] = §e3, [e1, e3] = ?ee, [e1, es] = %eu [e2, 4] = %ee, [e2, e5] = §€7-
(16) (257E): dim(Der) = 17 rank = 3, Betti Numbers (4, 8, 11, 11, 8,4, 1) (5 ¢3.15)-
Einstein der. ¢ = D1ag(5 6,11,7,9, 16, 13), ||BlI*> = ﬂ ~ 1.100

i 10
[e1, e2] = %63, [91, e3] = %ee, [e2, 4] = %67, [es, 35] = %96-

(17) (257F): dim(Der) = 18, rank = 3, Betti Numbers (4, 9, 12, 12,9, 4, 1) (=g ¢3.14)-
Einstein der. ¢ = ; Diag(9, 5, 14,9, 10, 19, 14), || B]|*> = B 182

11
22 66 22
[e1, e2] = %93, [e2, e3] = %96, [e2, e4] = %97, [es, 5] =
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(18) (257G): dim(Der) = 16, rank = 2, Betti Numbers (4, 8, 11, 11, 8,4, 1) (=g ¢2.35)-
Einstein der. ¢ = % Diag(10, 13, 23, 15, 18, 33, 28), ||8]I*> = % ~ 1.095

7 7 2 2 7,
[e1, e2] = 493, [e1, e3] = 466, [e1, es] = %37, [e2, e4] = %en [es, e5] = ges.

(19) (257H): dim(Der) = 15, rank = 3, Betti Numbers (4, 8, 11, 11, 8,4, 1) (=g g3.7).
Pre-Einstein der. ¢ = 1 Diag(1,2, 3,2, 2,4, 4)
It does not admit nilsoliton metrics.

(20) (2571)!: dim(Der) = 17 rank = 2, Betti Numbers (4, 8, 11, 11, 8, 4, 1) (=g g2.27)).
Einstein der. ¢ = D1ag(6 7,13, 13, 14, 19, 20), ||ﬁ||2 E ~ 1.154

26 26
[e1, e2] = ‘é;e + ‘/794, [e1, e3] = é;€67 le1, es] = Qea, [e1, es] = %67, [e2, e3] = %67-

(21) (257)): dim(Der) = 16, rank_ 2, Betti Numbers (4, 8, 11 11,8,4,1) (=g g2.38)-
Einstein der. ¢ = lDlag(l 1,2,2,2,3,3), 181> =28 = 1.143

7 1 1
[e1, e2] = 493, [e1, e3] = %66’ [e1, es] = %6‘7, [ez, e3] = %67, [e2, e4] = T\/Zes.

(22) (257]1)!: dim(Der) = 16, rank = 2, Betti Numbers (4, 8, 11, 11, 8,4, 1) (Z=¢ g2.38)-
Einstein der. ¢ = %Diag(l, 1,2,2,2,3,3), 181 = % ~ 1.143

2 7 7 2 7 7 7
[e1, e2] = %33 + \1/7:34, [e1, e3] = ‘1/7:36, [e1, eq] = %367 [er, es] = %67, [e2, €3] = 4677 [e2, e5] = %ee.

(23) (257K): dim(Der) = 16, rank = 3, Betti Numbers (4, 6,9, 9, 6, 4, 1) (=g g3.13)-
Einstein der. ¢ = % Diag(8, 11, 19, 15, 15, 27, 30), ||8]I*> = % ~ 0.9546

77 66 33 66
[e1, e2] = %ea, [e1, e3] = %ee, [e2, €3] = %377 [es, e5] = %67.

(24) (257L): dim(Der) = 14, rank = 2, Betti Numbers (4,6, 9,9, 6,4, 1) (Zg g2.29)-
Pre-Einstein der. ¢ = ﬁ Diag(15, 22, 37, 30, 29, 52, 59),
It does not admit a nilsoliton inner product.

(25) (247A): dim(Der) = 19, rank = 3, Betti Numbers (3,7, 13, 13,7, 3, 1) (=g ¢3.20)-
Einstein der. ¢ = %Diag(l, 4,4,5,5,6,6), 181> = % ~ 1.250

2 2 2 2
[e1, e2] = %94, [e1, e3] = %es, [e1, eq] = %ea, [e1, es] = %er

(26) (247B): dim(Der) = 15, rank = 3, Betti Numbers (3, 6, 10, 10, 6, 3, 1) (Zg g3.21).
Einstein der. ¢ = % Diag(6, 15, 11, 21, 17, 27, 28), ||B]I> = % ~ 0.9546

ler, 2] = Yy, [er, 3] = e, [er, ea] = Lo, [e3, e5] = YLe;.
(27) (247C): dim(Der) = 16, rank = 2, Betti Numbers (3,7, 11, 11,7, 3, 1) (=g g2.43)-
Einstein der. ¢ = 5 Diag(11, 29, 20, 40, 31,51,42), ||8]|* = 3L ~ 1.057

2 2 14 14 34/70
[e1, e2] = f€4, [61» e3] = fﬁ‘s, [e1, es] = “447667 [e1, es] = %67, [es, es] = %66-

(28) (247D): dim(Der) = 15, rank = 3 Betti Numbers (3, 6, 10, 10, 6, 3, 1) (=g g3.22)-
Einstein der. ¢ = i Diag(7, 10, 12, 17, 19, 24, 29), || 8]|* = % ~ 0.9091
Y11

le1, 2] = gezx, [e1, e3] = %65, [e1, e4] = %66, [e2, e5] = gem [es, eq] = €7
(29) (247E)!: dim(Der) = 14 rank = 2, Betti Numbers (3, 5, 9, 9 53,1 Ecgr12).

Einstein der. ¢ = 1= Diag(3,5, 5, 8,8, 11, 13), | 8]|* = = ~ 0.9000
[e1, e2] = ?em [e1, es] = %es, [e1, e4] = %ee, [e2, e4] = %en [es, e5] = —?ew

(30) (247E1): dim(Der) = 14, rank = 2, Betti Numbers (3, 5,9, 9,5, 3, 1) (Er g2.12)-
Einstein der. ¢ = 1 Diag(3, 5,5, 8,8, 11, 13), [| 8] = = ~ 0.9000

[e1, e2] = %94, [e1, e3] = %35, le1, es] = @667 [e2, e4] = %67, [es, es] = %er
(31) (247F): dim(Der) = 13 rank = 3, Betti Numbers (3, 6, 10, 10 6,3,1) (Zrg34).
Einstein der. ¢ = Dlag(G 5,5,11,11, 16, 16), | B]> = & ~08571

21 14
[e1, e2] = %94, [6‘1, e3] = %95, [e2, e4] = %35, [e2, es] = %37, [es, eq] = %67’ [es, es] = T\/Zees.

(32) (247F1): dim(Der) = 13, rank = 3, Betti Numbers (3, 6, 10, 10, 6, 3, 1) (Z=¢ g3.4).
Einstein der. ¢ = ﬁ Diag(6, 5,5, 11, 11, 16, 16), ||8]|> = g ~ 0.8571

V2 Nl NI NI NiT!

[e1, e2] = 7 ea, [e1, e3] = T es, [e2, e4] = Y€, [€2, €5] = €7, [e3, ea] = €7, [e3, e5] = — 2 e6.
(33) (247G)!: dim(Der) = 12, rank = 2, Betti Numbers (3, 5,9, 9,5, 3, 1) (Zx ¢2.34)-

Einstein der. ¢ = i = Diag(22, 20, 21, 42, 43, 62, 64), 18117 = g ~ 0.8546

[e1, e2] = 564, [e1, e3] = @es, [e1, es] = §e7, [e2, e4] = @es, [es, es] = —@em
(34) (247H)!: dim(Der) = 11, rank = 1, Betti Numbers (3, 5,9, 9,5, 3, 1) (Zg g1.19)-

Einstein der. ¢ = 2 Diag(1,1,1,2,2,3,3), [|8]> = 5 ~ 0.8529

[e1, e2] = —@94, [e1, e3] = —@65, [e1, es] = QEL [e1, es] = —gee, [e2, e4] = 3\/7667 [es, es] =

3f

€7.
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(35) (247H1)!: dim(Der) = 11, rank = 1, Betti Numbers (3,5, 9,9, 5,3, 1) (Z¢ g1.19)-
Einstein der. ¢ = 2 Diag(1,1,1,2,2,3,3), | BlI> = & ~ 0.8529

ler, e2] = — Y1y, [e1, €3] = 2¥13%ey (e}, e4] = 21, [ey, 3] = Y2RBey [ey, 4] = — 1205, [e, €5] =
Ve, les, e4] = 3\/737, [es, e5] = —i
(36) (2471): dim(Der) = 14 rank = 3, Betti Numbers (3,6,10,10,6,3,1) (Zr g35).
Einstein der. ¢ = Dlag(10 11,7,21,17, 28, 24), ||,8||2 E ~ 0.9091
[e1, e2] = gem [6’1, e3] = ges, [e2, e5] = Qe& les, eq] = @96, les, es] = %6’7'
(37) (247])!: dim(Der) = 13, rank = 2, Betti Numbers (3, 6, 10, 10, 6, 3, 1) (=g g2.26!).
Einstein der. ¢ = 5 Diag(7, 10,7, 17, 14,21, 24), || B||*> = 1% ~ 0.8947
[e1, e2] = %94, [e1, e3] = ‘{—?es, [e1, e5] = %66, [e2, e3] = %f?m [e2, es] = @‘?7, [es, e4] = “%837,
[e3, es] = %ea-
(38) (247K): dim(Der) = 12, rank = 2, Betti Numbers (3, 5,9, 9,5, 3, 1) (Zr g2.35)-
Einstein der. ¢ = i Diag(5, 7,6, 12, 11, 17, 18), || B]I* = % ~ 0.8667
[er, e2] = \/5576’4, [917 e3] = \ges, [e1, e4] = %96, [ez, es5] = {97, [e3, e4] = %97, [e3, es] = %96-
(39) (247L): dim(Der) = 17, rank = 2, Betti Numbers (3, 7, 13, 13,7, 3, 1) (Zg g2.39).
Einstein der. ¢ = . Diag(5, 11, 10, 16, 15, 21, 20), [|B]* = & ~ 1.143
[er, e2] = @94, [eq, e3] = @95, [e1, e4] = %ea, [eq, es] = 497, [ez, e3] = %96-
(40) (247M): dim(Der) = 14, rank = 2, Betti Numbers (3, 6, 10, 10, 6, 3, 1) (=g g2.42)-
Pre-Einstein der. ¢ = 41—1 Diag(11, 30, 22, 41, 33, 52, 55).
It does not admit a nilsoliton inner product.
(41) (247N): dim(Der) = 16 rank = 2, Betti Numbers (3, 7, 11, 11, 7, 3 1) (Zr 92.44).
Einstein der. ¢ = Dlag(15 19, 23, 34, 38, 53, 42), ||,8||2 = 2= ~ 1.057
le1, e] = ¥Me,, [e1,e3] 3065 [ey, e5] = 2L5eg, [ez,eg] = %ev, [e. e4] = 2 5es.
(42) (2470): dim(Der) = 15, rank = 1, Betti Numbers (3,7, 11, 11,7, 3, 1) Er g1.7).
Einstein der. ¢ = 2 Diag(2, 4,3,6,5,8,7), |BlI> = 2 ~ 1.036
[e1, e2] = %em [e1, e3] = @es, [e1, es] = @ee, [e1, es] = %ev, [e2, 3] = %ev, [es, es] = %ee.
(43) (247P): dim(Der) = 15, rank = 3, Betti Numbers (3,7, 11, 11,7, 3, 1) (=g g3.1(y))-
Pre-Einstein der. ¢ = 1 Diag(1,1,1,2,2,2,3),
It does not admit a nilsoliton inner product.
(44) (247P1): dim(Der) = 15, rank = 3, Betti Numbers (3,7, 11, 11, 7, 3, 1) (Zc¢ g3.1(p))-
Pre-Einstein der. ¢ = 1 Diag(1, 1,1, 2,2,2,3),
It does not admit a nilsoliton inner product.
(45) (247Q): dim(Der) = 14, rank = 2, Betti Numbers (3, 6, 10, 10, 6, 3, 1) (=g g2.1())-
Pre-Einstein der. ¢ = 2 Diag(3, 5,6, 8,9, 11, 14),
It does not admit a nilsoliton inner product.
(46) (247R)!: dim(Der) = 13, rank = 1, Betti Numbers (3, 5,9, 9, 5, 3, 1) (Z=¢ g1.3¢v))-
Pre-Einstein der. ¢ = = Diag(1,2,2, 3,3, 4,5),
It does not admit a nilsoliton inner product.
(47) (247R1): dim(Der) = 13, rank = 1, Betti Numbers (3, 5,9, 9, 5, 3, 1) (=g ¢1.3¢))-
Pre-Einstein der. ¢ = = Diag(1,2, 2, 3,3, 4,5),
It does not admit
(48) (2457A): dim(Der) = 17 rank = 3, Betti Numbers (3, 7, 10, 10,7, 3, 1) (=g g3.2).
Einstein der. ¢ = % Diag(1,5,6,7,6,8,7), |8l = £ ~ 1.182
[e1, e2] = gey [61, e3] = %em [e1, eq] = %667 [91, es] = %97-
(49) (2457B): dim(Der) = 15, rank = 3, Betti Numbers (3,7,9,9,7, 3, 1) (Zr g33).
Einstein der. ¢ = ﬁ Diag(5, 12, 17, 22, 15, 27, 27), | BII* = g— ~ 0.9546
[e1, e2] = C€3a [e1, e3] = f€4a [e1, e4] = f€7, [e2, e5] = \éj
(50) (2457C): dim(Der) = 19 rank_ 2 Betti Numbers (3 7,10,10,7,3,1) (_R 92.21)-
Einstein der. ¢ = Dlag(8 19, 27, 35, 24, 43, 32), ||,8||2 = 3— ~ 1.069
[e1, e2] = g%, [91, e3] = %64, le1, es] = gee, [e1, es] = %97, [e2, 5] = ges-
(51) (2457D)!: dim(Der) = 15 rank = 1, Betti Numbers (3, 7, 10, 10, 7, 3, 1) (=g g1.16))-
Einstein der. ¢ = Dlag(l 2,3,3,4,4,5), |8]I? = @ ~ 1.053
[e1, e2] = ‘/fe + ‘/76’4, [e1, es] = gea, [e1, e4] = T\/;es, [e1, es] = %67, [e2, e3] = gem [e2, e4] =

Viid,
E
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(52) (2457E)!: dim(Der) = 14, rank = 2, Betti Numbers (3,6, 8, 8,6, 3, 1) (Zr g2.11))-
Einstein der. ¢ = 5 Diag(9, 19, 28, 28, 37, 47, 46), || 81> = 1 ~ 0.9474

leg, ea] = Si4es + Vhaea [er, es] = 258, [eq, eq] = wﬁef,,[eues] = Y10, [ey, e4] = Y2
(53) (2457F): dim(Der) = 16 rank = 2, Betti Numbers (3, 7, 10, 10, 7, 3, 1) (=g g2.20)-
Einstein der. ¢ = D1ag(5 10, 15, 20, 16, 25, 21), ||,3||2 ﬂ ~ 1.057
[e1, e2] = 2¥00e;, [e1,63] = 235e, [e), e4] = e, [e1,es] = Yo, [ey, €3] = 2.
(54) (2457G): dim(Der) = 15, rank = 2, Betti Numbers (3,6, 9,9, 6, 3, 1) (Zr ¢2.19)-
Pre-Einstein der. ¢ = % Diag(1, 2, 3, 4, 4,5, 5),
It does not admit a nilsoliton inner product.
(55) (2457H): dim(Der) = 15, rank = 2, Betti Numbers (3, 6, 10, 10,6, 3, 1) (=g g2.13)-
Einstein der. ¢ = 7% Diag(20, 31, 51, 71, 60, 82, 91), ||ﬂ||2 = % ~ 0.9714
[e1, e2] = %93, [e1, e3] = %94, [e1, eq] = %37, [e2, €3] = \{73?066’ [e2, e5] = “3—?067.
(56) (24571): dim(Der) = 14, rank = 2, Betti Numbers (3,7,9,9,7, 3, 1) (Zg g2.22)-
Einstein der. ¢ = - Diag(5, 10, 15, 20, 14, 25, 24), || B]|> = 2 ~ 0.9500
[e1, e2] = @ea [e1, e3] = %64, [e1, e4] = %ee, [e2, €3] = @es, [e2, e5] = §e7.
(57) (2457])!: dim(Der) = 13 rank = 1, Betti Numbers (3, 6, 8 8,6,3,1) (Zrg1.18).
Einstein der. ¢ = Dlag(l 2,3,3,4,5,5),181°=28 ~09468
[e1, e2] = 3{;8763 + 1155 eq, [e1,e3] = 3{5?95 [317 eq] = 3{4;95, [e1, es] = @67, [ez, €3] = ge%
[e2, e4] = Y1222¢5.
(58) (2457K): dim(Der) = 14, rank = 1, Betti Numbers (3,6, 9, 9,6, 3, 1) (Zr g1.9).
Pre-Einstein der. ¢ = 22 Diag(2, 3,5, 7,6, 8,9),
It does not admit a nilsoliton inner product.
(59) (2457L): dim(Der) = 12, rank = 2, Betti Numbers (2, 5, 8, 8,5, 2, 1) (Zr g2.9).
Einstein der. ¢ = 3% Diag(1,1,2,3,3,4,4), 81> = % ~ 0.8235
le1, e2] = Qea, le1, e3] = @64, [e1, e4] = —gee, [e1, es] = —@em [e2, €3] = —Qes, [e2, e4] =
e, ley e5] = @es
(60) (2457L1): dim(Der) = 12 rank = 2, Betti Numbers (2,5, 8, 8,5,2, 1) (Zc¢ g2.9).
Einstein der. ¢ = Dlag(l 1,2,3,3,4,4), 181> = E ~ 0.8235
le1, e2] = Qea, [61793] = %64, le1, e4] = _%66» le1, es] = —gem [e2, €3] = —Qes, [e2, e4] =

17 17
£e79 [627 eS] = _17\/7766'

1
(61) (2457M): dim(Der) = 13 rank = 2, Betti Numbers (2, 5, 9, 9 52,1 (Zrg28).
Einsteinder.¢_ 7 Diag(3, 5, 8, 11, 13, 16, 14), ||;3||2 2 ~0857l

14 21 14
[e1, e2] = %ea, [el, e3] = %64, [e1, es] = %em le1, es] = %es, [e2, e3] = TCes, [e2, e4] = %es

(62) (2357A)!: dim(Der) = 13 rank = 2, Betti Numbers (3,6, 8, 8,6, 3, 1) (=g g2.24)).
Einstein der. ¢ = Dlag(5 9, 10, 14, 19, 19, 24), ||;3||2 Q ~ 0.8947

[e1, e2] = —@64, [e1, eq] = £€5 - Les, [e1, es] = £€7, [e2, e3] = @65 + @667 [es, eq] = @37-
19 38 38 19 38 38 38
(63) (2357B): dim(Der) = 14, rank = 2, Betti Numbers (3, 6, 8, 8, 6, 3, 1) (=g g2.1())-
Pre-Einstein der. ¢ = Z Diag(3,5, 6, 8, 11,9, 14),
It does not admit a nilsoliton inner product.
(64) (2357C): dim(Der) = 13, rank = 2, Betti Numbers (3,6,7,7,6, 3, 1) (Zg g2.17)-
Einstein der. ¢ = ﬁ Diag(4,5,8,9, 13, 14, 17), ||BII?> = % ~ 0.8571
le1, 2] = %64, [e1, e4] = %65, [e1, es] = %67, [e2, €3] = %35, [e2, e4] = %367 [es, e4] = —%67.
(65) (2357D): dim(Der) = 12, rank = 1, Betti Numbers (3,6, 7,7, 6, 3, 1) (=g g1.2i))-
Pre-Einstein der. ¢ = % Diag(1, 1,2,2,3,3,4),
It does not admit a nilsoliton inner product.
(66) (2357D1): dim(Der) = 12, rank = 1, Betti Numbers (3, 6,7,7, 6, 3, 1) (Z¢ g1.2Gi))-
Pre-Einstein der. ¢ = -~ Diag(1, 1,2, 2,3, 3, 4),
It does not admit a nilsoliton inner product.
(67) (23457A): dim(Der) = 13, rank = 2, Betti Numbers (2,4,7,7,4,2, 1) (Zgr g2.7).
Einstein der. ¢ = 2—10 Diag(3, 10, 13, 16, 19, 22, 23), ||8]I*> = ]% ~ 0.9000
le1, 2] = @63, le1, e3] = %94, [e1, eq] = %es, [e1, es] = @367 [e2, €3] = %er
(68) (23457B): dim(Der) = 12, rank = 2, Betti Numbers (2, 3, 4,4, 3,2, 1) (Zr g26)-
Einstein der. ¢ = - Diag(10, 23, 33,43, 53,76, 56), [|8]|* = 2 ~ 0.7429
[e1, e2] = %33, [e1, e3] = 2f€4, [e1, e4] = ges, [627 e3] = §e77 [e2, 5] = gea, [es, e4] =
i

_766
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(69) (23457C): dim(Der) = 12, rank = 2, Betti Numbers (2, 3, 4, 4, 3,2, 1) (ZEg g2.4)-
Einstein der. ¢ = % Diag(1,4,5,6,7,8,11), 8> = % ~ 0.7429

lere2] = YiBey [er,e5] = 24Bey, e, ea] = “Bes,[er,e5] = e, [er 5] = UBe, [e3,e4] =
—£e7
(70) (23457D): dim(Der) = 11, rank = 1, Betti Numbers (2, 3, 4, 4, 3, 2, 1) (&= g15).
Emstemder.qb_ Dlag(l 3,4,5,6,7,9), |8]> = ﬂ ~ 0.7381
[e1, e2] = %93, [91,6’3] = T\/Zem [e1, eq] = 5\4/(?95 [er, es] = {;es, [e2, e3] = {56’6, [e2, 5] = @97,
[es, e4] = m&
(71) (23457E)!: dlm(Der) = 12, rank = 1, Betti Numbers (2,4,7,7,4,2, 1) (Zgr g1.13)).
Einstein der. ¢ = Dlag(l 2,3,4,5,5,6), |IBl*> = @ ~ 0.8529
[e1, ex] = 3‘F€3 [31763] = @34, [e1, es] = %35 - 7\7/4? s [e1,es] = %67, [e2, €3] = 241306 +
BB ey, e4] = 20e;
(72) (23457F)l dim(Der) = 11 rank = 1, Betti Numbers (2, 3,4, 4, 3,2, 1) (Zg g1.14)).
Einstein der. ¢ = 2 Diag(1,2,3,4,5,5,7), [|BII> = ﬁ ~ 0.7414
ler, e2] = —V52‘33§9 es,[eres] = ey [eg,e5] = 2EUBSIRe | JIHOMp [0, o] = VT2,
3«/5840 o6, [r. €5] = «/11213(;3 er. [e3. e4] = 3\/1307 e.
(73) (23457G) dim(Der) = 10, rank = 1, Betti Numbers (2, 3 4,4,3,2,1) (=R 91.1Gi)-
Einstein der. ¢ = ; Diag(1,2,3,4,5,6,7), |Bl°> = 7 ~ 0.7143
[e1, e2] = %93, [e1, e3] = %94, [e1, e4] = %95,[91,95] = g%, [e2, €3] = ges,[ez,&;] = %es,
[e2. es] = ey, [e5, e4] = —YLe;.

(74) (17): dim(Der) = 28, rank = 4, Betti Numbers (6, 14, 14, 14, 14,6, 1) (=g g4.4).
Einstein der. ¢ = § Diag(1,1,1,1,1,1,2), |B]I> = 3 ~ 1.667

[e1, e2] = [697, [93, eq] = Jg€7, [es, es] = ‘/667
(75) (157): dlm(Der) = 19 rank = 3 Betti Numbers (5 10, 11, 11,10, 5, 1) (=g g3.18)-
Einstein der. ¢ = D1ag(3 4,7,6,5,5,10), ||,8||2 1—3 1.182

[e1, e2] = fe% [61,63] ‘ﬁe% [e2, e4] = 7, [es, es] = {67

(76) (147A): dim(Der) = 15, rank = 3 Betti Numbers (4 19,9,8,4, 1) (Zr ¢3.1ii))-
Pre-Einstein der. ¢ = J Diag(1,1,1,2,2,2,3),
It does not admit

(77) (147A1): dim(Der) = 15, rank = 3, Betti Numbers (4, 8,9, 9, 8, 4, 1) (Z=¢ g3.1ii))-
Pre-Einstein der. ¢ =  Diag(1,1,1,2,2,2,3),
It does not admit a nilsoliton inner product.

(78) (147B): dim(Der) = 12 rank = 2, Betti Numbers (4, 8, 10, 10 8,4,1) (=g g2.28).
Einstein der. ¢ = D1ag(4 6,5, 10,9, 8, 14), ||,3||2 ~ 1.057

[e1, e2] = fe4, [e1, e3] = fes, [e1, es] = %en [ez, el = %ev, [es, es] = 37—@@.
(79) (147D)!: dim(Der) = 15, rank = 2 Betti Numbers (3,7,9,9,7,3,1) (Egr g22)).
Pre-Einstein der. ¢ = 3 Diag(1,1,1,2,2,2,3),
It does not admit a nilsoliton inner product.
(80) (147E) [0 < t < 1]: dim(Der) = 15, rank = 3, Betti Numbers (3,7,9,9,7, 3, 1) (Zgr g3.1(;))-
Einstein der. ¢ = J Diag(1,1,1,2,2,2,3), B> =1
lere2] = L2 VT—tes [er,e5] = —%2 Ve, [er,e5] = —¥Zes,[er, 5] = Yes,[er,e5] = 32 tes,

[es, e4] = ? V1 —te;.

(81) (147E1) [t > 1]!: dim(Der) = 15, rank = 3, Betti Numbers (3,7,9, 9,7, 3, 1) (Z¢ 83165, =c (147E) [A] with

A= ((PV tztlﬁ)>2)

Einstein der. ¢ = 1 Diag(1,1,1,2,2,2,3), B> =1
This family admits nilsoliton metrics.

(82) (1457A): dim(Der) = 16 rank = 3, Betti Numbers (4, 6, 9,9, 6, 4, 1) (=g 93.17).
Einstein der. ¢ = 2 Diag(1, 3,4, 5,3, 3,6), [|B]I> = 2 ~ 0.9546

66
[eq, e2] = %ea, [e1, es] = %64, [e1, e4] = %em [es, es] = %ev-

(83) (1457B): dim(Der) = 15 rank = 2, Betti Numbers (4, 6, 8, 8,6, 4, 1) (=g ¢2.30)-
Einstein der. ¢ = Dlag(2 4,6,8,5,5,10), 8> = E ~ 0.9310

2 2429 «/174 V174 /406
[e1, e2] = r€3a [91, e3] = L;€4, [e1, eq] = €7, [62, e3] = 53 €7» les, es] = ~5g €7-
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(84) (137A): dim(Der) = 14 rank = 3, Betti Numbers (4,7, 8,8,7,4, 1) (=g ¢3.16)-

Einstein der. ¢ = D1ag(5 8,5,8,13, 13, 18), ||ﬂ||2 = % ~ 0.8571
[e1, e2] = [95 [6‘1795] = \14797 [es, es] = [667 [es, es] = \/737
(85) (137A1): dlm(Der) = 14, rank = 3, Betti Numbers 4,7,8,8,7, 4 1) (Z=c 93.16)-
Einstein der. ¢ = . Diag(5, 5, 8, 8, 13, 13, 18) ||ﬂ||2 = 2 ~ 0.8571
[e1, e3] = (95 [61,64] J]:ea, [e1, es] = ¥21 Y2l ,[ez,e]=—%ea, [e2, e4] = “lf‘es,[ez,es]= @er

(86) (137B): dim(Der) = 13, rank = 2, Betti Numbers (4,7,7,7,7,4, 1) (Ec g2.23).
Pre-Einstein der. ¢ = 4 7 Diag(1,2,1,2,3,3,4),
It does not admit a nilsoliton inner product.

(87) (137B1): dim(Der) = 13, rank = 2, Betti Numbers (4,7,7,7,7,4, 1) (Zc g2.23).
Pre-Einstein der. ¢ = - Diag(1, 1,2, 2,3, 3, 4),
It does not admit a nilsoliton inner product.

(88) (137C): dim(Der) = 15, rank = 3, Betti Numbers (4,7, 8,8,7,4, 1) (Zx ¢3.10)-
Einstein der. ¢ = % Diag(7, 12, 11, 16, 19, 23, 30), ||8]I> = % ~ 0.9091
[e1, e2] = %95, [e1, es] = @967 [e1, es] = gem [e2, e3] = @66» [es, es] = —£€7

(89) (137D): dim(Der) = 14, rank = 2, Betti Numbers (4,7, 8, 8,7, 4, 1) (Zr 92.1(v))-
Pre-Einstein der. ¢ = %9 Diag(3, 6,5, 8,9, 11, 14),
It does not admit a nilsoliton inner product.

(90) (1357A): dim(Der) = 14, rank = 2, Betti Numbers (4, 7, 8, 8,7, 4, 1) (=g 92.1ii))-
Einstein der. ¢ = % Diag(3,5,6,8,11,9, 14), 811> = % ~ 0.9048

[e1, e2] = %6‘4, [e1, es] = %957 [e1, es] = %977 [e2, e3] = %es, [e2, es] = %67, [es, es] = —éer
(91) (1357B)!: dim(Der) = 14, rank = 2, Betti Numbers (4,6, 7,7, 6,4, 1) (Zg g2.25)).

Einstein der. ¢ = 3 Diag(1,2,2,3,3,4,5), |BII> = —Z, ~ 0.8947
[61793] = %94, [er1, es] = —QEG,[el,es] = %96,[91766] = %6‘7,[@2,33] = %667[92»&1] =

V114 38
2es, [ez, e5] = %ev

(92) (13357C)| dim(Der) = 13, rank = 1, Betti Numbers (4,6,7,7,6, 4, 1) (Zg g1.3))-
Pre-Einstein der. ¢ = = Dlag(l, 2,2,3,4,3,5),
It does not admit a nilsoliton inner product.

(93) (1357D): dim(Der) = 14, rank = 2, Betti Numbers (3, 6, 8, 8, 6, 3, 1) (=g g2.1i))-
Einstein der. ¢ = % Diag(5, 3,8,6, 11,9, 14), |8]1> = % ~ 0.9048

[e1, e2] = %637 [e1, e6] = %em [e2, €3] = @es, [e2, e4] = —?es, [e2, e5] = —%em [es, e4] = —?ew
(94) (1357E): dim(Der) = 14 rank = 2, Betti Numbers (3, 5, 8, 8, 5 3 1) (Zr g2.32)-

Einstein der. ¢ = Dlag(lo 3,13,8,16, 11, 19), ||;3||2 e ~09310

[e1, e2] = mea [62» es] = Zmesy [e2, e4] = “/5874667 [e2, es] = %677 [es, €] = %@67
(95) (1357F): dim(Der) = 13 rank = 1 Betti Numbers (3,5,7,7,5, 3, 1) (=g g1.3ii))-

Einstein der. ¢ = = Diag(2, 1,3, 2,4, 3,5), || BII> = 1 ~ 0.8947

ler, e2] = 3(63, [el,e 1= L%, [ey,e5] = ges, [e2. e4] = e, [y, e5] = Ly, [ea, £5] = — 2% T0e;.
(96) (1357F1): dim(Der) = 13, rank = 1, Betti Numbers (3,5,7,7, 5, 3, 1) (Zc 91.3ii))-

Einstein der. ¢ = i 5 Diag(2, 1,3, 2,4, 3,5), 18117 = % ~ 0.8947

[e1, e2] = 3\3/8793 [61» e3] = §€77 [e2, e3] = %657 [e2, e4] = %eay [e2, 5] = %e% [es, es] = 337*/817967-

(97) (1357G): dim(Der) = 13 rank = 2, Betti Numbers (3,6, 8, 8,6, 3, 1) (Zgr g2.31)-
Einstein der. ¢ = Dlag(15 14, 29, 27, 43, 42, 57), ||;3||2 Q ~ 0.8478
[e1, e2] = %937 [61» eq] = %65, [e1, es] = 3f€77 [e2, e3] = @657 [e2, es] = %67-
(98) (1357H)!: dim(Der) = 12, rank = 1, Betti Numbers (3,6,7,7,6, 3, 1) (Er g1.260) -
Pre-Einstein der. ¢ = - Diag(1, 1,2, 2,3, 3, 4),
It does not admit a nilsoliton inner product.
(99) (1357I): dim(Der) = 12 rank = 2, Betti Numbers (3,5,7,7,5,3, 1) (5 g2.33)-
Einstein der. ¢ Dlag(18 10, 28, 15, 38, 33, 48), ||ﬁ||2 ﬁ ~ 0.8049

/123 3 /902 V1 3482
le1, e2] = ¥ 2es, [61794] fes, [e2, e3] = ¥ es,[ez,es]— YBe;, [e4, 6] = 8—{67-

(100) (1357)): dim(Der) = 11, rank = 1 Betti Numbers (3,5, 6,6,5,3,1) (Zr g13).
Pre-Einstein der. ¢ = 139 % Diag(4, 2, 6, 3, 8,7, 10),
It does not admit a nilsoliton inner product.

(101) (1357L)!: dim(Der) = 14, rank = 1, Betti Numbers (3, 6, 8, 8, 6, 3, 1) (Zr g1.3i)!)-
Pre-Einstein der. ¢ = = Diag(1,2, 3,2, 4, 3,5),
It does not admit a nilsoliton inner product.
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(102) (1357M) [t € R\ {0, 1}]: dim(Der) = 14, rank = 2, Betti Numbers (3,6, 8, 8,6, 3, 1) (Zgr g2.1ip))-
Einstein der. ¢ = % Diag(3,5,8,6, 11,9, 14), |]* = 12 ~ 0.9048
This family admlts mlsollton metrics.
(102.1) (1357M) [t = 0]: dim(Der) = 14, rank = 2, Betti Numbers (3, 6, 8, 8, 6, 3, 1) (= (2357B) =z g2.1(ip))-
Pre-Einstein der. ¢ = % Diag(3, 5, 8,6, 11,9, 14),
It does not admit a nilsoliton inner product.
(102.2) (1357M) [t = 1]: dim(Der) = 14, rank = 2, Betti Numbers (3, 6, 8, 8,6, 3, 1) (=g g2.14)))-
Einstein der. ¢ = Dlag(3 5,8,6,11,9,14), |BI?> = ﬁ ~ 0.9048
[er, e2] = %6’3» [917 e3] = Lles, [er, es] = %96, le1, 35] = %97, [e2, 4] = %e& [e2, e6] = %97-
(103) (1357N) [t € R\ {O}]l dim(Der) = 13, rank = 1, Betti Numbers (3, 5,7,7, 5, 3, 1) (Zr g1.33,))-
Einstein der. ¢ = 2 Diag(1,2,3,2,4,3,5), [|BII> = 1% ~ 0.8947
This family admlts n1lsol1ton metrics.
(103.1) (1357N) [t = 0]!: dim(Der) = 13, rank = 1, Betti Numbers (3,5,7,7,5, 3, 1) (=g g1.3p))-
Pre-Einstein der. ¢ = = Diag(1,2,3,2,4,3,5),
It does not admit a nilsoliton inner product.
(104) (13570): dim(Der) = 13, rank = 2, Betti Numbers (3, 6, 8, 8, 6, 3, 1) (=g g2.41)-
Einstein der. ¢ = %Diag(B, 2,5,6,8,7,10), |B]?> = % =~ 0.8750
[e1. e2] = les, [er, e3] = Les, [e1, e5] = ey, [ez, 3] = Les, [e2, e4] = Les, [ez, 5] = Ley.
(105) (1357P): dim(Der) = 12 rank = 1, Betti Numbers (3,6,7,7, 6, 3, 1) (=g g1.2(,))-
Einstein der. ¢ = Dlag(l 1,2,2,3,3,4), |B]? = H ~ 0.8462
[e1, e2] = %63, [91763] = %65, [er, es] = %97,[92,63] = @36, [e2, e4] = %95’[62956] = 56 €75
[es, eq] = @67
(106) (1357P1): dlm(Der) = 12, rank = 1, Betti Numbers (3,6, 7,7, 6, 3, 1) (Z=¢ g1.2(y))-

Einstein der. ¢ = Dlag(l 1,2,2,3,3,4), |B]? = H ~ 0.8462
[e1, e2] = %93, [91,63] = %95, le1, es] = %67, [e2, €3] = %eea [e2, e4] = %35, [e2, 6] = —535%€e7,

[es, e4] = \%967-
(107) (1357Q)!: dim(Der) = 12, rank = 1, Betti Numbers (3, 6, 8, 8, 6, 3, 1) (=g g1.2))-
Einstein der. ¢ = % Diag(1,1,2,2,3,3,4), 18> = % ~ 0.8462

[e1, e2] = %93, [e1,e3] = ges, [e1, eq] = %96, [e1, es] = %em[ez,eﬂ = %es, [e2, e4] = %eS,
[e2, es] = \/*E?Sﬁ
(108) (1357Q1)!: dlm(Der) = 12, rank = 1, Betti Numbers (3, 6, 8, 8, 6, 3, 1) (Z=¢ g1.2i))-
Einstein der. ¢ = = 4 Diag(1,1,2,2,3,3,4), IB]> = % ~ 0.8462
[e1, e2] = @ea,[eueﬂ = %es,[eued = %ee, [e1, es] = %en[ez,eﬂ = %ee, [e2, e4] = %es,
[e2, e5] = %«97
(109) (1357R)!: dim(Der) = 13 rank = 2, Betti Numbers (3,6,7,7,6, 3, 1) (Zgr g2.37))-
Einstein der. ¢ = Dlag(l 1,2,2,3,3,4), 181> = ﬂ ~ 0.8462
[e1.e2] = Zfea, [e1.e3] = %ee, [e1, eq] = @es, [e1.es] = %en [e2. €3] = %es, [e2. e4] =
@667 [ez, es] = —%67, [es, es] = %67-
(110) (1357QRS1) [t € R\ {—1,0, 1}]: dim(Der) = 12, rank = 1, Betti Numbers (3,6,7,7,6, 3, 1) (Z¢ g1.2¢,) with
A=1)
Einstein der. ¢ = % Diag(1,1,2,2,3,3,4), 8> = 1—3 ~ 0.8462
This family admits nilsoliton metrics.
(110.1) (1357QRS1) [t = —1] dim(Der) = 13, rank = 2, Betti Numbers (3, 6,7, 7, 6, 3, 1) (=¢ g2.37 =c (1357R))
Einstein der. ¢ = Dlag(l 1,2,2,3,3,4), |B]? = H ~ 0.8462
[e1,e2] = 2\/76‘3, [e1,e3] = gf‘fs, [e1, eq] = %66’ le1, es] = %37, [ez, €3] = —@es, [e2, e4] =
Lo ey, e6] = —7£e7, [es, ea] = 2V,
(110.2) 1357QRS])[t =1]: dlm(Der) = 12, rank = 1, Betti Numbers (3, 6, 8, 8, 6, 3, 1) (=¢ g1.2¢;) =c (1357Q)).
Einstein der. ¢ = Dlag(l 1,2,2,3,3,4), 18> = ﬂ ~ 0.8462
[e1,e2] = %637[51793] = %95,[61734] = TCGG, [e1, es] = %eh [e2, €3] = —@es, [e2, e4] =

3 _ Ve
e €5, [€2, e6] = S eq.
(110.3) (1357QRS1) [t = 0]: dlm(Der) = 12, rank = 1, Betti Numbers (3, 6,7, 7, 6, 3, 1) (Z=c¢ g1.2qii) =c (2357D)).
Pre-Einstein der. ¢ = I Dlag(l, 1,2,2,3,3,4),
It does not admit a nilsoliton inner product.
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(111) (1357S)! [t € R\ {0, 1}]: dim(Der) = 12, rank = 1, Betti Numbers (3,6,7,7,6, 3, 1) (= = 0126p(y) = (1357QRS1)
[u] withu = 2‘[:?'1 ).
Einstein der. ¢ = Dlag(l 1,2,2,3,3,4), 181> = & =~ 0.8462
This family admlts mlsollton metrics.
(111.1) (1357S)! [t = 0]: dim(Der) = 12, rank = 1, Betti Numbers (3, 6,7,7,6, 3, 1) (=g g1.2¢i)})-
Pre-Einstein der. ¢ = % Diag(1, 1,2,2,3,3,4),
It does not admit a nilsoliton inner product.
(111.2) (13578)! [t = 1]: dlm(Der) = 12, rank = 1, Betti Numbers (3, 6,7,7, 6, 3, 1) (Z=c¢ g1.2¢ii =c (2357D)).
Pre-Einstein der. ¢ = 11 Dlag(l, 1,2,2,3,3,4),
It does not admit a nilsoliton inner product.
(112) (13457A): dim(Der) = 14, rank = 2, Betti Numbers (3,5,7,7,5, 3, 1) (Zr g2.16)-
Einstein der. ¢ = i 5 Diag(5, 17, 22, 27, 32, 20, 37), 18117 = 2 ~ 0.9310

[e1, e2] = g% [61» e3] = 2f€47 [e1, es] = 2\/7357 le1, 95] = g€7, [e2, es] = @37-
(113) (13457B)!: dim(Der) = 13, rank = 1, Betti Numbers (3 5,7,7,5,3,1) Erg1.15).
Einstein der. ¢ = 22 Diag(1, 3,4,4,5,6,7), |BII> = E ~ 0.9268
ler, ] = 2488 ey 4 Y0, (o), 03] = 2422800, [6’1, eq] = S]ﬁfes [e1, es] = \/89?66, [e1, ec] = %97,
[ez, e4] = ¥Ele;.
(114) (13457C): dim(Der) = 12, rank = 2, Betti Numbers (3, 4,4, 4, 4, 3, 1) (Zgr g2.10)-
Pre-Einstein der. ¢ = 1 Diag(1,2, 3, 4,5,6,7),
It does not admit a nilsoliton inner product.
(115) (13457D)!: dim(Der) = 12, rank = 1, Betti Numbers (3, 5,7,7,5, 3, 1) (Zr g1.12})-
Einstein der. ¢ = 2 Diag(1,2,4,3,4,5,6), |8]* = }gg ~ 0.8629
[e1, ez2] = %64, [e1, e3] = gef;, [e1,e4] = me + *ﬁes, [e1, e5] = J]Zes, [e1, es] = */63?67, [ez, €3] =
~/13o _ /1302
e7, [e2, e4] = 5= ¢es.
(116) (13457E) dim(Der) = 11, rank = 1, Betti Numbers (3, 4,4, 4,4, 3, 1) (Zr g1.10i))-
Pre-Einstein der. ¢ = 1 Diag(1,2, 3, 4,5,6,7),
It does not admit a nilsoliton inner product.
(117) (13457F): dim(Der) = ll rank = 1, Betti Numbers (2,4,7,7,4,2,1) (Zr g1.10)-
Einstein der. ¢ = ;2 Diag(2,3,5,7,9,8, 11), | B|I> = 33; ~0.7915
ler, 2] = 532203, [, e3] = Yt ey, [e1, ea] = Y520 es, [er, e5] = 2928 es, [eg, €3] = Y%, [e3, 6] =

/4906
€7.

(118) (12521576)! I: dim(Der) = 11, rank = 1, Betti Numbers (2, 3,4, 4, 3,2, 1) (Zg g1.03!).
Pre-Einstein der. ¢ = £ Diag(0, 1,1, 1, 1,2, 2),
It does not admit; ¢ # 0

(119) (134571)!!: dim(Der) = 10, rank = 0, Betti Numbers (2, 3, 4, 4, 3,2, 1) (Er go7!!).
Pre-Einstein der. ¢ = 0,
It does not admit; ¢ # 0

(120) (12457A): dim(Der) = 13, rank = 2, Betti Numbers (3, 5, 7, 7 53,1 (Zrg2.15).
Pre-Einstein der. ¢ = lDlag(l 3,4,5,3,6,7), |B]I> = 2 =~ 0.8333

[e1, e2] = %§€3, [e1, e3] = %94, [e1, eq] = %667 [e1, 96] = %6‘7, [e2, e5] = %es, [es, es] = %er
(121) (12457B)!!: dim(Der) = 12, rank = 1, Betti Numbers (3,5,7,7,5, 3, 1) (Zr g1.016)!!)-

Pre-Einstein der. ¢ = Diag(0,1,1,1,0, 1, 1),

It does not admit; ¢ # 0.
(122) (12457C): dim(Der) = 12 rank = 2, Betti Numbers (3, 4, 4,4, 4,3, 1) (Zxr g2.13)-

Einstein der. ¢ = D1ag(16 21, 37,53, 48, 69, 90), ||,3||2 @ ~ 0.6977

J135 NGiE Nz /129 NzH

[e1, ea] = TEL [e1, e3] = Tezla ler, eq] = Teﬁ, [9276‘5] = TeG» [ex, e5] = “ge2er,[es, eq] =
BB,
(123) (12457D) dim(Der) = ]1 rank = 1, Betti Numbers (3, 4, 4, 4, 4,3, 1) (=g g1.20)-
Pre-Einstein der. ¢ = D1ag(2 1,3,5,6,7,8),
It does not admit a nilsoliton inner product.
(124) (12457E)!: dim(Der) = 11, rank = 1, Betti Numbers (3, 5, 6,6, 5,3, 1) (ZEr g1.11]).
Einstein der. ¢ = 6 > Diag(1,2,3,3,4,5,6), 18I1% = E ~ 0.8064
[e1, e2] = 7@6 + \/Eez;, [e1, e3] = ges, [91,34] = e, [eg, e5] = \Q*G?EG, le1, e6] = 7 Xe;,
4/1767 /64790 +/90706

[e2, e4] = *5g57"¢e6, [€2, €5] = *75e7, [e3, ea] = “2er.
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(125) (12457F)!: dim(Der) = 11, rank = 1, Betti Numbers (3, 4, 4, 4,4, 3, 1) (Zr g121}).
Pre-Einstein der. ¢ =
It does not admit a nilsoliton inner product.

(126) (12457G)!!: dim(Der) = 10, rank = 0, Betti Numbers (3, 4, 4, 4, 4, 3, 1) (Zz gos!!).
Pre-Einstein der. ¢ = 0,
It does not admit; ¢ # 0.

(127) (12457H): dim(Der) = 12, rank = 2, Betti Numbers (2, 3,6, 6, 3,2, 1) (Zr g25)-
Einstein der. ¢ = %Diag(l, 2,3,4,5,6,7), ||ﬁ||2 = % ~ 0.7143

1 1 1 4 4 4
[er, e2] = %93, [e1, es] = %94, [e1, es] = %66, [e1, e] = %67,[92793] = %65,[92794] = %367

[e3, e4] = @67

(128) (124571): dim(Der) = 11, rank = 1, Betti Numbers (2, 3, 6, 6, 3, 2, 1) (=g g1.1(iv))-
Pre-Einstein der. ¢ = 1 Diag(1,2,3,4,5,6,7),
It does not admit a nilsoliton inner product.

(129) (12457])!!: dim(Der) = 10, rank = 0, Betti Numbers (2, 3,5, 5, 3,2, 1) (Zgr gos!!).
Pre-Einstein der. ¢ = 0,
It does not admit; ¢ # 0.

(130) (12457J1)!!: dim(Der) = 10, rank = 0, Betti Numbers (2, 3, 5, 5, 3, 2, 1) (Ec gos!!).
Pre-Einstein der. ¢ = 0,
It does not admit; ¢ # O.

(131) (12457K)!!: dim(Der) = 11, rank = 1, Betti Numbers (2, 3,5, 5, 3,2, 1) Er g1.02!).
Pre-Einstein der. ¢ = 1 Diag(1,0,1,2,1,2,3),
It does not admit; ¢ # 0.

(132) (12457L)!: dim(Der) = 11, rank = 1, Betti Numbers (2, 3, 4, 4, 3,2, 1) (Ec g1.17).
Einstein der. ¢ = g Diag(1,1, 2, 3, 3,4,5), ||,B||2 = @ =~ 0.6915

/235 F

V705

[e1.e2] = @ea, ler.es] = YZBeu. [er.ea] = —¥eg, [er.e6] = YZ2e7, [er, 03] = @es, [ez, e5] =
@66, [es, e5] = %67.
(133) (12457L1): dim(Der) = 11, rank = 1, Betti Numbers (2, 3, 4, 4, 3,2, 1) (Zr g1.17)).
Einstein der. ¢ = 5 Diag(1, 1, 2, 3, 3,4,5), ||,B||2 = @ ~ 0.6915
[e1, e2] = @ea, [e1, es] = %64, [e1, es] = —Qee, [e1, es] = @em [e2, €3] = @es, [e2, es] =
—QQES, [e3, es] = —9£€7
(134) (12457N) [t]!!: dim(Der) = 10, rank = 0, Betti Numbers (2, 3, 4, 4, 3, 2, 1) (= go. 4! m.
Pre-Einstein der. ¢ = 0,
It does not admit; ¢ # O.
(135) (12457N1)!!: dim(Der) = 10, rank = 0, Betti Numbers (2, 3, 4,4, 3,2, 1) E¢ 90'4)\0”).
Einstein der. ¢ = 0,
It does not admit; ¢ # O.
(136) (12457N2)[t > 0]!!: dim(Der) = 10, rank = 0, Betti Numbers (2, 3,4, 4, 3,2, 1) (Z¢ go.am)!!).
Pre-Einstein der. ¢ = 0,
It does not admit; ¢ # O.
(137) (12357A): dim(Der) = 12, rank = 2, Betti Numbers (3, 4, 4, 4, 4, 3, 1) (Zg g2.14)-
Einstein der. ¢ = 1 Diag(1,3,2,4,5,6,7), [|B]I> = 2 ~ 0.7143
[e1, e2] =r%e4, [e1, eq] = %65, [e1, es] = %667 [e1, es] = %en [e2, €3] = %95, [es, es] = _%96’
14

[es, es] = —er.

(138) (12357B)!!: dim(Der) = 11, rank = 1, Betti Numbers (3,4, 4,4, 4,3, 1) (Sr g1.015!1-
Pre-Einstein der. ¢ = Diag(0, 1,0, 1,1, 1, 1),
It does not admit; ¢ # 0.

(139) (12357B1)!!: dim(Der) = 11, rank = 1, Betti Numbers (3, 4, 4, 4, 4, 3, 1) (Z=c g1.014)!!)-
Pre-Einstein der. ¢ = Diag(0, 1,0, 1,1, 1, 1),
It does not admit; ¢ # O.

(140) (12357C): dim(Der) = 10, rank = 1, Betti Numbers (3, 4, 4, 4,4, 3, 1) (=g g1.1(v))-
Pre-Einstein der. ¢ = % Diag(1,3,2,4,5,6,7),
It does not admit a nilsoliton inner product.

(141) (123457A): dim(Der) = 13, rank = 2, Betti Numbers (2, 4, 6, 6, 4,2, 1) (=g g2.3)-
Einstein der. ¢ = l = Diag(1, 16, 17, 18, 19, 20, 21), 181? = % ~ 1.057

3 2,35 370 2,35 1
[e1, e2] = 5635 [91, e3] = f€4, [e1, es] = 7{65, [e1, 5] = 7{96, [e1, es] = %97-
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(142) (123457B): dim(Der) = 12, rank = 1, Betti Numbers (2, 4,6,6,4, 2, 1) (Zr g16)-
Einstein der. ¢ = Dlag(l 4,5,6,7,8,9), |18I°> = ﬂ ~ 0.8947

[e1, e2] = @93, [6‘1, e3] = m&l, le1, es] = }/67657 [e1, es] = \19766» [e1, es] = \2876‘7, [e2, e3] = %6‘7-
(143) (123457C): dim(Der) = 11, rank = 1, Betti Numbers (2, 3, 4, 4, 3, 2, 1) (=g g1.14i))-

Pre-Einstein der. ¢ = 1 Diag(1,2, 3, 4,5,6,7),

It does not admit a nilsoliton inner product.
(144) (123457D): dim(Der) = 12, rank = 1, Betti Numbers (2, 4, 6,6, 4,2, 1) (Zg g1.4).

Einstein der. ¢ = 122 ’ Diag(1, 3, 4,5,6,7,8), |8]> = @ ~ 0.8197

ler.e2] = 8%, [e), 3] = Y1Ble, [e), e4] = 3{2‘2765,[61,651 V2o ey, e5] = 22, [e, €3] =

«/512 3«/12
es, [€2, e4] =

(145) (123457E)” dlm(Der) = 11 rank = 0, Betti Numbers (2, 4, 6, 6, 4, 2, 1) (Zg go3!!).
Pre-Einstein der. ¢ = 0.
It does not admit; ¢ # 0.

(146) (123457F)!!: dim(Der) = 10, rank = 0, Betti Numbers (2, 3, 4,4, 3,2, 1) (Zg go.1!).
Pre-Einstein der. ¢ = 0,
It does not admit; ¢ # 0.

(147) (123457H)!!: dim(Der) = 10, rank = 0, Betti Numbers (2, 3, 4, 4, 3,2, 1) (Zgr go2!!).
Pre-Einstein der. ¢ = 0,
It does not admit; ¢ # 0.

(148) (123457H1)!!: dim(Der) = 10, rank = 0, Betti Numbers (2, 3, 4,4, 3,2, 1) (Zr go.2!!).
Pre-Einstein der. ¢ = 0,
It does not admit; ¢ # 0.

(149) (1234571) [t € R\ {0, 1}]: dim(Der) = 10, rank = 1, Betti Numbers (2, 3, 4, 4, 3, 2, 1) (=g g1.1¢,))
Einstein der. ¢ = %Diag(l, 2,3,4,5,6,7), |BII> = % ~ 0.7143
This family admits nilsoliton metrics.

(149.1) (1234571) [t = 0]: dim(Der) = 10, rank = 1, Betti Numbers (2, 3, 4,4, 3, 2, 1) (Zg g1.1Gy))
Pre-Einstein der. ¢ = 1 Diag(1,2,3,4,5,6,7),
It does not admit a nilsoliton inner product.
(149.2) (1234571) [t = 1]: dim(Der) = 11, rank = 1, Betti Numbers (2, 3,4, 4, 3,2, 1) (Zr g1.1G)

Pre-Einstein der. ¢ = 1 Diag(1,2,3,4,5,6,7),
It does not admit a nilsoliton inner product.
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