Hindawi Publishing Corporation

Child Development Research

Volume 2013, Article ID 216367, 13 pages
http://dx.doi.org/10.1155/2013/216367

Research Article

Hindawi

It Works Both Ways: Transfer Difficulties between
Manipulatives and Written Subtraction Solutions

David H. Uttal,! Meredith Amaya,l Maria del Rosario Maita,' Linda Liu Hand,"?
Cheryl A. Cohen,! Katherine O’Doherty,3 and Judy S. DeLoache*

I Northwestern University, Evanston, Illinois, IL 60208, USA

2 University of Iowa, lowa City, Iowa, IA 52242, USA

3 Vanderbilt University, Nashville, Tennessee, TN 37240, USA

* University of Virginia, Charlottesville, Virginia, VA 22904, USA

Correspondence should be addressed to David H. Uttal; duttal@northwestern.edu

Received 31 March 2013; Accepted 22 August 2013

Academic Editor: Jeftrey W. Fagen

Copyright © 2013 David H. Uttal et al. This is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Three experiments compared performance and transfer among children aged 83-94 months after written or manipulatives
instruction on two-digit subtraction. In Experiment la, children learned with manipulatives or with traditional written numerals.
All children then completed a written posttest. Experiment 1b investigated whether salient or perceptually attractive manipulatives
affected transfer. Experiment 2 investigated whether instruction with writing would transfer to a manipulatives-based posttest.
Children demonstrated performance gains when the posttest format was identical to the instructed format but failed to demonstrate
transfer from the instructed format to an incongruent posttest. The results indicate that the problem in transferring from
manipulatives instruction to written assessments stems from a general difficulty in using knowledge gained in one format (e.g.,
manipulatives) in another format (e.g., writing). Taken together, the results have important implications for research and teaching
in early mathematics. Teachers should consider making specific links and alignments between written and manipulatives-based

representations of the same problems.

1. Introduction

The relation between symbolic and concrete representations
of mathematical concepts is a recurring theme in math-
ematics education. On one hand, much of the value of
mathematics in human thought stems from its symbolic
nature. Symbolic representations of number and mathemati-
cal operations allow us to think about abstract mathematical
properties and functions independent of a specific quantity or
operation. For example, it is possible to know that combining
two objects and one object results in three objects without
specifying what the objects are. Similarly, we understand that
two vehicles traveling at 50 mph move at the same speed
regardless of whether both are cars or one is a boat.

On the other hand, much of what we know about mathe-
matics is grounded, at least initially, in our experiences in the
world. For example, Lakoff and Nuiiez [1] suggested that even
ostensibly symbolic notions, such as ordinality and logical

independence, can be connected, at least metaphorically, to a
physical analog (in this case, points that fall on the same line
and orthogonal elements in geometry). Concrete thinking
pervades numeric judgments, even among individuals who
are highly numerically literate. For example, judging that 3 >
2 requires more time than judging that 5 > 2, regardless of
whether the problem is posed with objects or symbols [2].
Likewise, visually salient features, such as the physical spacing
used to group algebraic terms, influence people’s ability to
apply a canonical order of mathematical operations (e.g., that
multiplication precedes addition) and to subsequently judge
the equivalency of simple pairs of equations [3].

Some developmentalists have suggested that young chil-
dren come to know the world primarily through physical
interactions with it [4-9]. On this account, children’s mental
representations of mathematical ideas are based on concrete
experiences, rather than on symbolic, abstract representa-
tions of concepts. Consequently, experience with concrete



representations of mathematical concepts (e.g., relative quan-
tity) is a necessary precursor to having an abstract under-
standing of the same concept expressed as symbols.

The idea that concrete-based instruction should precede
instruction in, or with, symbols has had a significant influ-
ence on the design of educational curricula and technologies.
One example of this influence is the use of concrete objects,
or manipulatives, to teach basic mathematical concepts,
including addition and subtraction. Formal manipulatives,
such as Cuisenaire Rods, Digi-Blocks, and Base-10 blocks, are
objects that are designed specifically to help children learn
mathematics. Informal manipulatives are everyday objects,
such as pieces of cereal (e.g., Cheerios), paper clips, coins, and
play money, that parents or teachers can use to help children
learn mathematics [10].

A sizable body of research suggests that the use of both
formal and informal manipulatives may facilitate children’s
development of conceptual knowledge about basic mathe-
matical operations. For example, kindergartners who used
a structured set of shaded tiles to learn number sequence,
addition, and subtraction outperformed peers who did not
use these materials [11]. Fuson and Briars [12] successfully
used blocks to teach second and third graders concepts about
base-ten concepts. The manipulation of concrete objects
helped 9- and 10-year-old fourth graders understand frac-
tions, especially on problems that were difficult to solve
without pencil and paper [13]. Middle-school children (4th-
6th graders) who used informal manipulatives (paper bills
and coins) to solve addition and subtraction word problems
made fewer conceptual errors than did children who did not
use manipulatives [10].

While manipulatives show promise as an instructional
tool, questions remain about the ease of transfer between
manipulatives and written mathematics problems. Some
studies that have demonstrated the advantages of using
manipulatives have not demonstrated transfer to written
representations [11, 14]. Other studies that show performance
gains while using manipulatives have not even tested transfer
to written representations of the same or similar problems.

What obstacles do children face in linking manipulatives-
based instruction with written versions of mathematics prob-
lems? There are, at least, two possibilities. The first concerns
the hypothesized concrete nature of young children’s think-
ing. Perhaps children have trouble transferring their knowl-
edge because (a) they can understand mathematics problems
presented in the more concrete format of manipulatives but
(b) they have more trouble working in the more symbolic
format of writing. This explanation has in fact guided much of
the work that has suggested that manipulatives should come
before written instruction.

However, there is also a second possibility that is rooted
in more general theories of cognition and learning. It is well
known that knowledge gained in one context may not transfer
to another because of the mismatch between the format
in which material was encoded and the format in which
it must be recalled [15, 16]. This consistent finding would
support the prediction that transferring knowledge from
the written form of mathematics to concrete manipulatives
should be just as challenging as transferring in the opposite

Child Development Research

direction. However, most studies that have investigated the
benefits of manipulatives in math education have focused
on whether the use of manipulative facilitates knowledge
of written solutions and procedures. Much of the research
in this field has been motivated by the implicit assumption
that concrete representations (in the form of manipulatives)
should come before symbols are introduced. As a result, we
do not know if the observed difficulty in transfer would
occur in the opposite direction: in transferring from writing
to manipulatives. Thus, it is not known whether learning a
written procedure, for example, improves children’s use of
and learning from manipulatives. Determining if difficulties
in transfer occur in both directions could change the focus
of research on manipulatives and written instruction from
the particular ordering of materials to whether, when, and
how different materials should be introduced. Answering
the question about the direction of transfer therefore is a
prerequisite to developing forms of instruction that link
manipulatives and written instruction.

Young children’s well-documented [17, 18] difficulty in
maintaining a dual representation of a concrete object and
its abstract referent may exacerbate the difficulty of general
transfer. Children may have difficulty understanding that the
manipulatives, particularly if they are familiar objects [19],
are not only objects in their own right, but also are intended
to be representations of an abstract mathematics concept
(e.g., two-digit subtraction). While the connection between
a representation and its referent may be perfectly clear to
adults, this connection often is less clear to children (e.g., see
(17, 20-22]). Although the two forms of representation may
be linked in the mind of the teacher, the two may remain
completely separate in the mind of a young child [18].

An often-cited advantage of manipulatives is their pro-
cedural flexibility: children can work with them until they
find a solution, regardless of whether they follow the standard
procedures that would be necessary to obtain a written
solution [11, 13]. However, this procedural flexibility may con-
tribute to difficulties that children encounter in transferring
between concrete and written representations. After working
with manipulatives, children may find that approaches or
procedures that worked with manipulatives cannot be applied
to written problems.

Other studies suggest that hlow symbolic representations
are presented to children strongly determines whether or not
the symbols are used correctly. It is interesting to note that
some researchers and teachers have suggested that manipula-
tives should be distinctive or otherwise interesting and attrac-
tive [19]. However, factors that increase children’s attention
to the physical properties of symbolic objects, such as bright
colors or patterns, can decrease children’s understanding of
these objects as representations [17, 18, 23-27]. In fact, some
recent work has reported that concrete representations can
make mathematical concepts more difficult to understand
because learners may be distracted by their surface features
[28].

In the studies reported here, we investigated the chal-
lenges that children face when transferring knowledge from
manipulatives to written forms of subtraction problems and
vice versa. Children learned to perform two-digit subtraction
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FIGURE I: The Digi-Block system, demonstrating the subtraction problem, “31-22” In (a), three blocks of ten on the left side of the counter
and a single small block on the right side represent the number “31,” which has been recorded below the blocks. In (b), a block of tens has
been removed (“borrowed”) from the tens position and opened; the ten small blocks inside the borrowed block of ten have been placed to
the right side of the counter. The remaining blocks represent the subtrahend (22), which has been recorded beneath the minuend. In (c), two
blocks of ten and two single blocks have been removed. The number of remaining blocks (09) has been recorded.

either with the written method or with manipulatives. In
Experiment la, all children completed a written posttest,
while in Experiment 2, the posttest was given with manip-
ulatives. Control groups in both experiments received no
instruction. We videotaped children to determine if they
used the same solution procedures when problems were
presented in manipulative and written formats. We also
recorded how long it took for children to solve the problems.
In combination, these two studies allowed us to address
whether transfer (or lack of transfer) between written and
concrete representations occurred in both directions, and
how instruction in manipulatives may affect the problem
solving strategies children use to solve subtraction problems.
In Experiment 1b, we investigated the influences of distinctive
manipulatives on children’s ability to use them to solve
two-digit subtraction problems. In all three experiments,
we measured pre- and postinstruction performance and
performance on the two practice tests that occurred between
the pretest and the posttest.

2. Experiment la

The goal of Experiment la was to compare the benefits
of two forms of instruction to teach two-digit subtraction:
the traditional written carryover method and the use of
manipulatives. We measured children’s performance four
times: At an initial pretest, after two instruction periods, and
at a final posttest. We measured how much children learned
and whether instruction with manipulatives transferred to
the more traditional, written problems.

2.1. Method

2.11 Participants. Thirty children (15 males and 15 females)
with a mean age of 89.27 months (SD = 2.99 months;
range = 83-94 months) were tested during the summer
after first grade. We chose this sample population because
they could be expected to have learned simple addition and

subtraction in first grade, but would not be likely to know
how to solve two-digit subtraction problems. The children
were recruited from a database of families who had indicated
interest in participating in research. Four additional children
were excluded: two asked to leave and two refused to use the
manipulatives.

2.1.2. Materials. We used the Digi-Blocks manipulatives sys-
tem [29, 30] to teach two-digit subtraction. We chose this
formal manipulative system, in part, because it has the capa-
bility to link manipulatives-based and written representations
of the same problem. A key component of the Digi-Block
design is the nesting of 10 small, sea-green colored plastic
blocks (representing units of one) inside a larger container of
identical color, called a block of ten. The Digi-Blocks counter
holds in place the blocks of ten to the left of the smaller
blocks, thus providing a physical instantiation of the concept
of place value. The counter also has a small whiteboard that
can be used to record a written representation of the problem
directly in front of the blocks. Figure1 illustrates how the
Digi-Blocks system would be used to represent a two-digit
subtraction problem.

We used a digital camera to record children’s problem
solving procedures on all tests. We later coded the videotapes
to indicate when children started and stopped the subtraction
process and whether children started the subtraction process
in the ones column or in the tens column. In addition, we
noted when a child’s subtraction procedure could not be
clearly identified as either starting in the ones or starting in
the tens column.

2.1.3. Procedure. Children were assigned randomly to one of
three groups: written instruction, manipulatives instruction,
or control. Children in all groups completed the same,
written pretest and posttest. The groups differed in terms
of (a) whether they received instruction, (b) the form of
the instruction, and (c) how the effects of instruction were
assessed. The design of Experiment la is shown in Table 1.
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TABLE 1: Experiment 1 design.

n Pretest Practice test 1 Practice test 2 Posttest

Control (no instruction) 10 Written Written Written Written

Written instruction 10 Written Written Written Written

Manipulatives instruction 10 Written Manipulatives Manipulatives Written

The experiment took place on two consecutive days. On
day 1, children completed a written pretest, which provided
baseline information of their knowledge of two-digit subtrac-
tion. The children were given two sample problems before
the pretest to ensure that they understood the requirements
of the problem. If they were not able to complete the sample
problems, the experimenter provided the correct answers but
did not provide explicit instruction on problem solutions.
After the pretest, children in the written and manipulatives
instruction groups received instruction and took a test
(Practice Test 1) to assess the effects of that instruction.

Written Instruction Group. After the pretest, the experimenter
began instruction in the written method. The experimenter
demonstrated the written carryover procedure of double-
digit subtraction: starting in the ones column, borrowing
from the tens position if needed, carrying over to the ones
position, and subtracting the numbers in the ones and
tens columns. In two sample problems, the experimenter
demonstrated how to start in the ones column, borrow from
the tens position if needed, carry over to the ones position,
and subtract the numbers in the ones and tens position to
arrive at a solution. The children completed four additional
problems on their own, with the experimenter providing
corrective feedback as needed. The children then completed
the first practice test, which for this group was simply a set
of seven written two-digit subtraction problems. The same
procedure was used on the second day for the instruction
period and the second practice test.

Manipulatives Instruction Group. Children in the manip-
ulatives instruction group took the same written pretest
and posttest as the written instruction group did. However,
during instruction, the practice tests were administered using
manipulatives. The manipulatives instruction was based on
the protocol specified in the Digi-Block’s “Companion to
Everyday Mathematics,” Grades 1 and 2 [29-31], which is a
supplement to the Everyday Mathematics curriculum. The
experimenter demonstrated the use of manipulatives with
the same subtraction problem that was used to demonstrate
the carryover method in the written instruction condition.
As in the written instruction condition, the protocol for the
manipulatives instruction emphasized that children should
start the subtraction procedure in the ones column, by
counting the single blocks. The subtraction problem, “31-22
is illustrated in Figure 1. The instructor first demonstrated
that she could not remove two small blocks from the ones
column when only one small block was available. She then
“borrowed” a block of ten by opening it and moving its
ten small blocks to the right of the ones column. Next, the
experimenter subtracted (removed) the two small blocks and

the remaining two blocks of ten from counter. Finally, she
pointed out that there were 9 small blocks left.

After observing the two example problems, the children
practiced on four subtraction problems. The experimenter
provided corrective feedback when children made a mistake
and encouraged them to concentrate on the steps they used to
solve the problems. After the practice problems, the children
completed the first practice test. Children were instructed to
use the Digi-Blocks to answer each question and to move
on to the next problem if they could not answer a particular
question. The same protocol was used on the second day.

Control Group. Children in the control group took the same
tests as children in the written instruction group but received
no instruction. Control group children were allowed to
use any method (counting on fingers, guessing, using the
carryover method, etc.) to solve the problems.

Posttest. Children in all groups completed a written seven-
problem posttest at the end of the second day. The exper-
imenter gave no explicit instruction prior to or during the
posttest. The children were allowed to solve the problems
using any method they wished, with the exception that no
group had access to the blocks. After they completed the
posttest, the experimenter asked children in the manipula-
tives condition if they had thought about the blocks while
they completed the written posttest.

Content of Assessments. The subtraction problems used in
the four tests (the pretest, the two practice tests, and the
posttest) were selected from Everyday Mathematics [32], a
curriculum that was used in many of the school districts from
which the participants were selected. In each problem, a two-
digit number was to be subtracted from another two-digit
number. In their written format, many problems required the
carryover method to solve, that is, “borrowing” from the tens
unit to complete subtraction in the ones unit. Problems varied
in difficulty, and more challenging problems were balanced
across the four sets of problems. Any problem set could be
assigned to any of the measures (pretest, practice tests 1 and
2, or posttest).

2.2. Results and Discussion

2.2.1. Effect of Type of Instruction on Test Performance.
Figure 2 shows mean performance for the different groups
on the 4 different measures, that is, the pretest, the two
practice tests, and the posttest. The figure reveals several
important results. First, as we expected, the performance of
the three groups did not differ significantly at pretest. Second,
both the written instruction and manipulatives instruction
groups improved their performance on practice tests 1 and
2, relative to pretest. Third, there were important differences
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FIGURE 2: Number of problems correct, by condition, across four
tests in Experiment 1.

in performance between the two groups on the posttest.
The performance of the written instruction group changed
a little from practice test 2 to posttest; this group clearly
demonstrated what they had learned on the posttest. In
contrast, the performance of the manipulatives instruction
group decreased precipitously from practice test 2 to posttest.
In fact, the manipulatives instruction group performed about
the same on the posttest and pretest. The performance of the
control group did not change significantly across the four
tests.

These results were confirmed in a one-way analysis of
covariance (ANCOVA), which found a significant effect of
instruction on posttest scores, F(2,26) = 17.84, p < .001,
and r/f, = .58. The ANCOVA was chosen as the appropriate
test for this preposttest control educational experiment, as
recommended by Dugard and Todman [33]. The covariate,
pretest scores, was significant, F(1,26) = 36.53,p <
.001, and 11123 = .58. On posttest, children in the written
instruction group had the largest adjusted mean scores (M =
6.00; SD = 1.25), followed by the control group (M =
4.20; SD = 2.1) and the manipulatives instruction group
(M = 2.20; SD = 1.99). Pairwise comparisons revealed that
the written instructions group performed significantly better
than the manipulatives instruction group, p < .001, which,
in turn, performed significantly better than the control, p <
.001. On average, the written instruction group improved by
3.9 (SD = 1.73) (out of 7) problems from pretest to posttest,
and this change score differed significantly from 0, £(9) =
7.13, p < .001. In contrast, the manipulatives instruction
(M = 0.4; SD = 1.35) and control groups (M = 0.6; SD =
1.35) barely improved at all, and the change scores did not
differ significantly from 0, #s(9) < 1.41, ps > .19.

2.2.2. Effect of Type of Instruction on Time to Solve Problems.
We measured solution time on the subtraction problems for
each test. For the written instruction and control groups,
time to complete each test was relatively stable over the four
tests. In contrast, the manipulatives instruction group took
much longer to complete the two practice tests, which were
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FIGURE 3: Mean time to complete tests, by condition, in Experiment
1

given in manipulatives format, than they did to complete the
pre- and posttests, which were given in the written format.
Figure 3 shows mean time, in seconds, for participants in each
condition to complete each of the four tests (pretest, practice
test 1, practice test 2, and posttest) in Experiment 1. A repeated
measures ANOVA, with test type (pretest, practice test 1,
practice test 2, and posttest) as the within-subjects factor and
condition as a between subjects factor, found a significant
effect of test type, F(3,81) = 59.51, p > .001, and 77, = .69,
and a significant interaction between test type and condition,
F(6,81) = 45.29, p < .01, and r,f, = 77.

2.2.3. Effect of Type of Instruction on Subtraction Procedures.
Did the type of instruction (written, manipulatives, or no
instruction) affect children’s use of different procedures
for two-digit subtraction? To investigate this question, we
videotaped children as they solved subtraction problems and
coded across four tests (pretest, practice tests 1 and 2, and
posttest) the frequency with which children attempted to
solve subtraction problems by starting in the ones column
or by starting in the tens column. (Note that some children
were coded as using neither strategy. This code was used when
children did not attempt to solve the problem (and hence did
not use a strategy) or when the coder was unable to tell which
strategy the child had used). A univariate ANOVA found a
significant effect of type of instruction on how often children
started their solutions in the ones column across four tests,
F(2,27) = 2223, p < .001, and ;112, = .62. Furthermore,
there was a significant positive correlation between starting
in the ones column on the posttest and posttest performance,
r(28) = .62, p < .001; those children who started in the
ones column performed substantially better than those who
did not. A Fisher’s least-significant difference post hoc test
revealed that children in the written instruction condition
started in the ones column significantly more often than
children in the manipulatives condition, p < .02, and
significantly more often than children in the control group,
p <.001.

Next, we investigated how children used the starting-in-
the-ones procedure over the course of instruction, by test. At
pretest, there were no significant differences among the three
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FIGURE 4: Use of starting-in-the-ones column by test and condition,
in Experiment 1.

conditions in use of the starting-in-the-ones procedure, as
demonstrated by a univariate ANOVA, F(2,27) = 24, p =
.79, and 11; = .02. Thus, before instruction the three groups
were equally matched in their tendency to start subtraction
in the ones column. The effect of instruction on childrens
use of the procedure began to emerge after the first practice
session. A univariate ANOVA, F(2,27) = 21.99, p < .001,
and r]f, = .62 demonstrated a significant effect of condition
on children’s use of the starting-in-the-ones procedure on the
practice test 1. A post hoc Fisher’s least-significant difference
contrast demonstrated that children in the written condition
started in the ones column marginally more often than chil-
dren in the manipulatives, p = .06. At the second practice test,
the contribution of instruction was still significant, F(2,27) =
16.99, p < .001, 17?7 = .58. As shown in Figure 4, the writ-
ten instructions group started in the ones more frequently
than the manipulatives instruction group did, although this
difference did not reach significance as demonstrated by a
post hoc Fisher’s least-significant difference contrast, p =
.12. The differences, by condition, in the use of the starting-
in-the-ones procedure remained significant at posttest, as
demonstrated by a univariate ANOVA, F(2,27) = 16.35, p <
.001. A post hoc Fisher’s least-significant difference contrast
revealed that children in the written condition used the
starting-in-the-ones procedure significantly more than did
children in the manipulatives condition, p < .007.

Taken together, these analyses indicate that different
methods of instruction led children to solve the problems
differently. Although all children were taught to start in the
ones column, children in the manipulatives condition did
so significantly less often than did children in the written
condition. This pattern is not surprising, as instruction in
the written method tends to emphasize a fixed, sequenced
procedure that starts in the ones column. Manipulatives-
based instruction affords a more flexible approach to solving
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these problems that allows for alternative approaches, such as
starting in the tens column. Thus, even though the manipu-
latives instruction group was explicitly instructed to start in
the ones column, they followed this advice significantly less
often than the written instructions group did.

In summary, Experiment la demonstrates that the chil-
dren in both instructional groups (written and manipula-
tives) learned to perform two-digit subtraction using the
respective instructional format. However, children who were
instructed with manipulatives had difficulty solving the
written problems without the blocks.

3. Experiment 1b

In this experiment we investigated the effects of distinctive
manipulatives on childrens learning of two-digit subtrac-
tions. It is often suggested that manipulatives should be inter-
esting or physically attractive, to garner children’s attention
and interest [19]. However, the dual-representation hypothe-
sis leads to a somewhat different perspective: highly distinc-
tive manipulatives may be distracting and lead children to
focus more on the manipulatives themselves rather than on
the mathematical concepts that the teacher is attempting to
communicate. In Experiment 1b we investigated this idea. We
presented a new group of children with a visually distinctive
set of manipulatives and compared their performance and the
time it took to solve the problems to that of the manipulatives-
instructed group in Experiment 1 (which we label the stan-
dard manipulatives instruction group in this experiment).

To make a highly distinctive set of manipulatives, we
used nontoxic permanent markers to add different colors
and patterns to each Digi-Block. Each block had one of five
different base colors (e.g., blue or red) and a unique pattern
or drawing, such as swirls or polka dots. Thus, the distinctive
set maintained the base-ten relations of the original set; the
only difference was that we added colors and patterns to each
block.

3.1. Participants. Nineteen children (11 girls and 8 boys)
participated. Their mean age was 88.58 months (SD =
2.65), range = 83-94 months. As before, all children were
tested during the summer break after they had completed
first grade and were recruited from an existing database of
families. Nine children were assigned to see the standard
manipulatives and 10 children were assigned to distinctive
manipulatives. The children in the standard group were the
same children who comprised the manipulatives instruction
group in Experiment 1.

3.2. Procedure. As in Experiment la, each child completed 28
double-digit subtraction problems and participated for two
sessions that lasted approximately one hour each, one day
apart. The procedures were identical to those of Experiment
la; the only difference was in whether the children saw the
standard or distinctive manipulatives.

3.3. Results and Discussion

3.3.1. Effect of Block Alteration on Performance. At pretest,
the difference in performance between the distinctive blocks
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group (M = 2.40; SD = 1.90) and standard blocks group
(M = 4.71; SD = 2.11) was not significant, P = .13.
We examined the role that manipulative block type (visually
distinctive versus standard) played on children’s scores and
on their behaviors with the blocks. We conducted a one-
way ANCOVA, investigating the effect of block alteration
on posttest performance and covarying pretest performance.
The effect of the covariate, which was pretest score, was
significant, F(1,16) = 26.97, p < .001, and 7; = .63.
There was no significant effect of surface alteration, F(1,16) =
2.02, p = .17, and 11; = .112. At posttest, the performance
of children who used nonaltered standard blocks (M =
3.67; SD = 2.87) was higher than that of children who used
altered distinctive blocks (M = 3.00; SD = 2.21), although
this difference did not reach statistical significance.

3.3.2. Effect of Block Alteration on Subtraction Strategies.
We conducted a one-way ANCOVA investigating the effect
of block alteration on subtraction strategies. There was a
significant effect of block alteration, F(1,16) = 5.69, p =
.03, and 1112) = .25. Children in the standard block condition
started in the ones column significantly more (M = .60; SD =
.34) than children in the distinctive block condition did (M =
.29003; SD = .21). Because children in both manipulatives
instruction groups (standard and distinctive) were taught to
start in the ones column, this result suggests that children
who received the plain, standard blocks followed these
instructions to a greater extent than children who received
the visually distinctive blocks did.

3.3.3. Effect of Block Alteration on Mathematical Behaviors.
We also observed children’s actions with the blocks, coding
whether the behaviors were directed at solving the problem
or were nonmathematical, such as building towers or sorting
by color. Two raters independently evaluated the videotapes
of each child’s participation, and interrater reliability was very
high (Cohen’s kappa = .85, p < .001). For each of the
seven problems on the first and second test sets (14 problems
in total), we assessed whether any children used the blocks
in a nonmathematical way during the problem. Only one
participant in the standard manipulatives instruction group
used the blocks in a nonmathematical way while completing
the first and second test sets. In contrast, seven out of
10 participants in the distinctive manipulatives instruction
group did so on a number of problems, ranging from 1 to
13 problems (Mann-Whitney U = 23.00, p < .05). These
results indicate that, while the blocks may be more visually
appealing to children, the additional colors and patterns on
the distinctive manipulatives distracted children from solving
the math problems, possibly making it more difficult for
children to build a connection between the manipulatives
and the written representations. Thus, we found that visually
distinctive, compared with standard, manipulatives tended
to detract from mathematics instruction. Differences in
how children treated the two sets of manipulatives may
have important implications for the design of manipulative
systems.

3.3.4. Effect of Surface Features on Time to Solve Problems. The
surface alteration of the blocks did not significantly increase
the time children spent on problems. A repeated measures
ANOVA, with test type (pretest, practice test 1, practice test
2, posttest) as the within-subjects factor and type of block
(distinctive versus standard) as the between-subjects factor
found a significant effect of test type, F(3,51) = 136.48, p >
.001, and r]; = .89, but no significant interaction between test

and type of blocks, p = .89, 17f7 = .45.

In summary, we did not find a significant difference
between the performances of the distinctive and standard
manipulatives instruction groups. In part this may reflect
rather large variability, particularly in the distinctive manip-
ulatives instruction group. However, we did find two poten-
tially important ways in which the distinctive manipulatives
led to differences in children’s behavior. First, children who
learned with the distinctive manipulatives were even less
likely than the standard manipulatives instruction group
to begin their calculations in the ones column. Second,
children who learned with the distinctive manipulatives used
them more often in mathematically irrelevant ways, such as
building towers. Taken together, these results suggest that
highly distinctive manipulatives could make it harder for
children to focus on the learning of mathematics.

4. Experiment 2

In Experiment la and 1b, children successfully learned
two-digit subtraction from both written and manipulatives
instruction. However, children who received manipulatives
instruction had difficulty transferring what they learned to
a written posttest. Was the manipulatives instruction group’s
failure to transfer related to the mode of instruction they
received, or is it indicative of a more general difficulty in
transferring from one mode of instruction to a different mode
of testing? We investigate this question in Experiment 2,
in which the posttest was administered in a manipulatives
format, rather than in a written format. Thus, in Experiment
2, the children in the written instruction group experienced
a mismatch between the form of instruction and the form of
the posttest. If these children now do poorly on the posttest, it
would suggest that the problem we observed in Experiment la
was due to the general need to switch modalities, rather than
the specific ordering of manipulatives followed by written
instructions that was followed in Experiment la. The design
of Experiment 2 is summarized in Table 2.

4.1. Method

4.1.1. Participants. Fifteen girls and 15 boys participated in
the study (M age = 89.4; SD = 3.61 months; range = 83-
96). All children were tested during the summer break after
they had completed first grade. Recruitment procedures were
identical to those used in Experiment 1.

4.1.2. Materials and Procedures. Children were randomly
assigned to the written instruction, manipulatives instruc-
tion, or control group. The design of Experiment 2 was very
similar to that of Experiment la; the only difference was the
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TABLE 2: Experiment 2 design.
n Pretest Practice test 1 Practice test 2 Posttest
Control 10 Written None None Manipulatives
Written instruction 10 Written Written Written Manipulatives
Manipulatives instruction 10 Written Manipulatives Manipulatives Manipulatives

Note: In Experiment 1, children who received no instruction did not improve their performance after completing two practice tests. Consequently, in

Experiment 2 children who received no instruction were given only the pretest.
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FIGURE 5: Number of problems correct, by condition, across four
tests in Experiment 2.

format of the posttest. In Experiment 2, children in all three
groups completed the posttest using the manipulatives.

Introducing the manipulatives at the posttest did require
some additional instructions for children in the written
instructions group. Prior to the posttest, the experimenter
introduced the Digi-Blocks to these children by pointing out
the blocks of ten and the single blocks, adding, “Some people
find these blocks helpful in answering the types of problems
we have been working on.” Participants were then asked to
solve the problems using the Digi-Blocks and were provided
with a pencil to record their answer after they had reached a
solution. As in Experiment la, no procedural instruction or
assistance was given during the posttest.

The procedure for the control group was similar to that
of Experiment la, but two differences should be noted. First,
the control group in Experiment 2 completed only the pretest
and posttest, all on the same day. The lack of learning across
the two days in the control group in Experiment la suggested
that it was not necessary to have the control group complete
all four assessments. Second, in contrast to the procedures for
the written and manipulatives instruction group, the control
group did not use the manipulatives counter at posttest
(see Figurel) but instead solved the problems only with
the blocks. We reasoned that providing the counter might
constrain children’s solutions or, in essence, provide implicit
instruction on the use of the blocks.

4.2. Results and Discussion

4.2.1. Effect of Instruction on Performance. The results clearly
indicate that the failure of transfer also holds when children

are asked to apply what they have learned from written
instruction to using manipulatives. Figure 5 shows perfor-
mance means across four tests for the two instructed groups.
The performance of the control group is not shown because
they completed only the pretest and posttest, and their
performance on these assessments was similar to that of
the written instruction group. The written instruction and
manipulatives instruction groups both improved their per-
formance on practice tests 1 and 2, relative to their respective
pretest performance. As in Experiment la, both instruction
groups learned from their respective forms of instruction.
At posttest, children in the manipulatives instruction group,
who had learned with the manipulatives throughout, had
the largest adjusted mean scores (M = 6.00; SD = 1.05),
followed by the control group (M = 2.70; SD = 1.70)
and the written instructions group (M = 2.60; SD =
2.32). Unlike Experiment la, in which the performance of
the manipulatives group decreased from practice test 2 to
posttest, there was no significant difference between the per-
formance of the manipulatives instruction group at posttest
compared to practice test 2. This demonstrates that children
instructed in the manipulatives method were able to apply
what they had learned during instruction to the posttest. In
contrast, the performance of the written instructions group
plummeted from practice test 2 to the posttest, suggesting
that they had difficulty transferring what they had learned
during instruction to the manipulatives that were used at the
posttest.

Thus the pattern of results was very similar to that of
Experiment la in that the group that used the same materials
throughout performed well, whereas the group that switched
to a different form of representation at posttest did poorly. In
Experiment 2, however, it was the manipulatives instruction
group that had the same materials throughout, whereas in
Experiment la it had been the written instructions group. This
result clearly indicates that whether posttest performance is
good or poor is not dependent on which learning materials
were given but on whether there was a need to transfer from
one (e.g., manipulatives) to the other (e.g., writing).

We conducted a one-way ANCOVA to investigate the
effect of instruction on posttest performance. As in Experi-
ment 1, the covariate was pretest performance. There was a
significant effect of instruction on posttest scores, F(2,26) =
9.38, p < .001, and 11; = .42. The magnitude of this
difference, although substantial, was somewhat smaller than
the effect of instruction observed in Experiment la. The
effect of the covariate, pretest, was nonsignificant, F(1,26) =
1.06, p = .32, and r]; = .04. Note that in contrast to
Experiment 1, the pretest and posttest in Experiment 2 were
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FIGURE 6: Mean time to complete tests, by condition, in Experiment
2.

presented in different formats. This difference may help to
explain the lack of an effect of the covariate (pretest) on
posttest performance.

The manipulatives instruction group improved on aver-
age by 3.5 problems, which differs significantly from 0, #(9) =
434, p < .01. The written instructions group (M =
1.30; SD = 2.50) did not improve significantly from pretest
to posttest, £(9) = 1.65, p > .13. The control group (M =
1.4; SD = 1.65) did improve significantly from pretest to
posttest, £(9) = 2.70, p < .05.

4.2.2. Effect of Instruction on Time to Solve Problems. Figure 6
shows mean time, in seconds, for participants in the two
instructed conditions to complete each of the four tests
(pretest, practice test 1, practice test 2, and posttest) in
Experiment 2 (as noted in the Method section, the control
group completed only the pre- and posttest). A repeated
measures ANOVA, with test type (pretest, practice test 1,
practice test 2, and posttest) as the within-subjects factor and
condition as the between-subjects factor, found a significant
effect of test type, F(3,54) = 39.84, p > .001, and ;7?7 =
.69, and a significant interaction between test type and
condition, F(3,54) = 14.76, p > .001, and 11; = 45,
The control group took about the same amount of time
to solve the problems on the pre- and posttests. For the
written instructions group, time to complete each of the four
tests was relatively stable across four tests. The manipulatives
instruction group took longer to complete practice test 1 than
any of the other tests in Experiment 2. The results clearly
reflect that using the manipulatives takes more time than
using writing alone. The manipulatives instruction group
spent almost twice as much time on the two practice tests
as the written instructions group. However, at posttest, when
all groups used manipulatives, the manipulatives and written
instruction group took almost exactly the same amount of
time.

Experiment 2 allows us to separate the effects of time
to learn with manipulatives from those of time required to
solve the problems with manipulatives, once the information
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FIGURE 7: Use of starting-in-the-ones strategy by test and condition,
in Experiment 2.

is learned. Did children in the manipulatives condition get
faster with the blocks as they mastered the mathematical
content? If so, then we would expect to see small differences
between the written instructions group and the manipulatives
instruction group in time to finish the posttest. Using a
univariate ANOVA, we compared the time to solve the
posttest for the written and manipulatives instruction groups
only, covarying for time to solve the pretest. There were no
significant differences between the written and manipulatives
instruction groups in time to solve the posttest, F(1,17) =
.00, p = .99, and 17f7 = .00. The covariate was also
nonsignificant, F(1,17) = .11, p = .75, and 11}2, = .0L
Thus, although children required more time to learn with
manipulatives, they were able to solve the posttest problems
as quickly as those children who had learned with the written
method.

4.2.3. Effect of Type of Instruction on Subtraction Strategies.
For the two instructed conditions, we coded videotapes
for starting the subtraction process in the ones column
across four tests. We coded the control group’s subtraction
procedures for the pre- and posttest. Figure 7 shows means
for starting in the ones column, across four tests. The results
of a univariate ANOVA showed a significant effect of condi-
tion on children’s use of the starting-in-the-ones procedure
across four tests, F(2,27) = 31.57, p < .001, and 17?7 =
.70. As in Experiment 1, there was a significant positive
correlation between posttest performance and starting in the
ones column on the posttest, r(28) = .51, p < .001. Thus,
as in Experiment 1, children who started in the ones column,
as instructed, performed substantially better than those who
did not.
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To further investigate children’s subtraction strategies
over the course of instruction, we analyzed the use of the
starting-in-the-ones strategy by test. The three groups were
equally matched in their tendency to start subtraction in the
ones column on the pretest, as demonstrated by a univariate
ANOVA, F(1,27) = .02, p = .98 and#; = .002, and
shown in Figure7. On practice test 1, condition made a
significant positive contribution to use of the starting-in-the-
ones procedure, F(1,18) = 7.5, p = .01, and r]; = .29, with
the written instruction group starting in the ones column
significantly more often than the manipulatives instruction
group (recall that the control group did not complete practice
tests 1 or 2). On practice test 2, there were no significant
differences between the written instruction group and the
manipulatives instruction group, F(1,18) = 1.55p =
.23, and 11127 = .08. However, at posttest, the manipulatives
instruction group used the starting-in-the-ones procedure
significantly more than the written instruction condition on
posttest, F(2,27) = 14.75, p < .001, and 11f7 = .52. Children
in the manipulatives instruction group scored significantly
higher than those in the control group, p < .001, and
significantly higher than those in the written instructions
condition, p < .001, as demonstrated by Fisher’s least-
significant difference post hoc tests. In Experiment 2, children
in the written instructions group were much more likely to
use a strategy at posttest that was different from the one they
had successfully used during the practice tests. In essence,
this result shows that children followed the procedure that
they were taught as long as the format of the posttest matched
the format in which they were taught. As long as children
continued to solve problems in the format in which they
were taught, their strategies remained consistent. However,
as soon as children were required to change problem for-
mat, they became much more likely to adopt a different
strategy.

5. General Discussion

A common approach that has guided much of the research on
manipulatives has been to focus on whether manipulatives-
based instruction is better, worse, or as good as traditional
written methods of instruction. Some research [11, 12, 34]
has emphasized the benefits of manipulatives, whereas other
investigations have raised criticisms of their use [14, 35, 36].
Our research may contribute to redirecting the focus of this
debate. We found no inherent advantage either for manip-
ulatives or for the written method in terms of the number
of test items answered correctly. In fact, children instructed
in either format were able to demonstrate very high levels
of competence within a short period of instruction, as long
as they were tested in the same format in which they were
instructed. Performance deteriorated only when children
were required to solve problems in the noninstructed format.
This finding may explain why research that focuses on pitting
the two modes of instruction against one another has often
yielded mixed results, with manipulatives sometimes, but
not always, appearing to be an improvement upon standard
written instruction.

Child Development Research

5.1. Differences between Manipulatives and Written Instruc-
tion. The present work also provides insight into why transfer
did not occur, either from manipulatives to writing in Exper-
iment 1 or from writing to manipulatives in Experiment 2.
Anecdotal evidence suggests that many children did not think
of the manipulatives and written problems as being related
to each other. For example, at the end of Experiment 1, we
sometimes asked children whether they had thought about
the blocks when completing the written pretest. Almost all
children answered “no,” even though we had suggested to
them that thinking about what they had learned with the
blocks might help them in solving the written pretest. In
combination with their poor performance on the posttest,
this suggests that their solutions to the written problems
were not influenced by their work with the manipulatives.
This explanation is consistent with previous work that has
demonstrated that children often have difficulty seeing the
relationships between concrete and abstract representations
of the same problem [14, 18, 22, 28].

Second, at a more specific level, the results also suggest
that manipulatives and written instruction may encourage
children to learn different procedures that are not always
equally accessible or mutually reinforcing. In the first and
second practice tests of Experiments la and 2, some children
in the manipulatives condition solved some problems without
starting in the ones column, even though they had been
taught to do so. Rather than starting in the ones column,
these children subtracted the blocks of ten before borrowing
from the tens position and subtracting the blocks in the ones
position. Although this method yielded the correct answers
when the children used manipulatives, the same procedure
often would not generate the correct solution on written
problems. Manipulatives permit children to solve two-digit
subtraction problems in multiple ways. This flexibility may
carry advantages in terms of conceptual understanding, but
it may also carry some disadvantages. For example, it may
make it more difficult for children trained in manipulatives
instruction to discover the correct order in which procedural
operations must be performed in the written method.

5.2. Time to Complete Problems. During the practice tests
Experiments of 1 and 2, children took twice as long to learn
and solve problems with manipulatives as they did with
the written method. Much of the additional time required
during manipulatives instruction can be accounted for by
the time needed to physically manipulate the blocks. In
combination, the results of Experiments 1 and 2 rule out
the possibility that the manipulatives instruction groups got
substantially faster as they became more familiar with blocks.
In both experiments, the children were much slower when
they used manipulatives than when they used writing. Thus
the decrease in time in Experiment 1 at the posttest represents
the switch to writing, rather than a decrease in the time
needed to use the manipulatives. The reduced amount of
time required to complete the problems in writing is one of
the advantages of using numeral and mathematical symbols
that could accrue once children have established adequate
groundings to allow them to use the symbols in a meaningful
way.
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5.3. Should Manipulatives Be Visually Distinctive? Several
authors (e.g., [19]) have noted that American teachers often
believe that manipulatives should be attractive, interesting,
or visually distinctive to enhance children’s interest in them.
Likewise, teachers may also believe in the value of varying
manipulatives, using a host of different manipulatives (both
formal and informal) to avoid boredom. However, the present
results and those of other researchers (e.g., [10, 27]) indicate
that using distinctive objects or those that have been used
in other contexts (e.g., money, Cheerios, paper clips, etc.)
may actually engender additional difficulties with transfer of
knowledge, particularly to written procedures. In the present
study, we found that children were more likely to treat the
visually distinctive manipulatives in nonmathematical ways,
such as building towers or playing other games with the
blocks. Manipulatives may be a case in which less is more;
decreasing children’s interest in the manipulatives as objects
in their own right may help the children to focus more on the
mathematical information that is being taught [27].

5.4. Implications for Instruction. The results clearly indicate
that children can learn quickly and well from either manip-
ulatives or from the written method. However, regardless of
the format in which they learn, they have trouble transferring
their knowledge to the other format. Here we consider two
questions arising from our results that are highly relevant for
instruction.

The first question is whether it makes sense to continue
to use manipulatives. We demonstrated that manipulatives-
based instruction may not transfer to written assessments,
and written assessments are typically how students will be
required to express their knowledge. As mentioned earlier,
part of the advantage of mathematics is its symbolic nature,
and using the written system leads to far faster solutions.
Given these issues, why should teachers use manipulatives
at all? We believe that the answer is that manipulatives
can have very important advantages in situations that differ
from those used in the present experiment. Here our goal
was to teach a specific mathematical procedure, and in
these situations, written instruction may be faster and more
efficient. However, in other situations, where the goal involves
conceptual understanding, the use of manipulatives may
lead to a more grounded and deeper understanding. Both
procedural and conceptual knowledge are required for long-
term success in mathematics, and thus both manipulatives-
and written-based instruction will continue to be useful.

The second question is how we can help children to
connect what they learn from manipulatives and from written
instruction. Our results, and those of others, suggest that this
serial introduction of manipulative and written instruction
(regardless of the order in which the materials are introduced)
carries the risk of children failing to connect the two. It may
be worthwhile to consider whether children can learn about,
and hence associate, both forms of representation at the same
time.

We suggest that the use of analogy in instruction can lead
to better learning outcomes. Prior work on analogy and simi-
larity offers methods that might help learners overcome their
tendency to focus on superficial dissimilarities. For example,
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Gick and Holyoak [37] showed that simple reminders about
the similarities between two solutions could help adult college
subjects make an analogy between two structurally similar,
but superficially different, problems. A growing body of
research suggests that there are other ways besides simply
providing hints that may help children to see connections
between different forms of mathematics problems, and by
extension (we believe), different forms of representation of
the same problem. For example, Star and Rittle-Johnson [38]
demonstrated that drawing specific analogies between prob-
lems of different formats facilitates students’ understanding
of the underlying algebraic concepts that are common to
both problems, regardless of format. Japanese teachers are
much more likely to point out correspondences between
different problems, whereas American teachers tend to solve
the individual problems with relatively little comparison
between previous and current problems [39]. Comparison,
analogy, and alignment of parts of a solution can facilitate
understanding of the principles that are involved in a set of
problems. For example, explicitly directing children who are
learning the written format for double-digit subtraction to
think of the ones column as a stack of blocks could provide
a valuable means for physically instantiating the concept of
borrowing.

A similar idea may hold in facilitating children’s under-
standing of the relation between concrete and abstract
representations of similar problems. Pointing out corre-
spondences between manipulatives-based procedures and
comparable procedures in writing may facilitate children’s
understanding of both the commonalities and differences
between the two forms of representation. Reminders that
highlight the relational similarities between manipulative and
written formats of two-digit subtraction problems might help
children transfer learning between manipulatives and written
representations of the same problems. Such comparisons can
then form the basis of higher-order principles that are more
portable and less tied to either specific context.

We do not suggest, however, that teachers can or should
limit their analogies and comparison to specific correspon-
dences between numerals and mathematical symbols and
specific manipulatives. It would be a mistake, we believe,
to interpret this suggestion as advocating the linkage of
specific numerals or mathematical symbols to particular
manipulatives [21]. That approach might lead children to
focus on superficial similarities (e.g., “this block = 3”) rather
than on more structural similarities (e.g., the process of
borrowing in writing is like the process of borrowing with
blocks). Thus, what we are advocating is the systematic
comparison of solutions to problems involving the two forms
of representation.

6. Conclusion

In the present work, we have demonstrated how transfer
problems exist in both directions. This demonstration can
be interpreted either negatively or positively. On the negative
side, it means that even extensive instruction with manipu-
latives may not help children perform well on written tests,
such as the standardized tests that they are often required to
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take in most if not all states. However, on the positive side, our
results indicate that the problem is neither with manipulatives
nor with written representations, but the problem is specif-
ically with helping children to see the connection between
the two. Several emerging lines of research point the way to
new and more effective methods for helping children see the
connection between different forms of representation.
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